
Abstract
Cloud computing (CC) is extensively used across various domains, yet task and resource scheduling still demand significant improvement. 
In heterogeneous computing systems, effective task scheduling ensures optimal task-machine mapping, reducing makespan and 
enhancing resource utilization. One major challenge in cloud data centers is managing vast user requests while maintaining efficient 
scheduling. This work introduces the Bradley–Terry BrownBoost and Lemke flower pollinated resource optimization (BTB-LFPRO) 
method to enhance task scheduling and improve performance. The BTB-LFPRO approach includes two main steps: classification and 
optimization. First, the Bradley–Terry BrownBoost Classifier categorizes tasks into high- and low-priority based on pairwise comparisons. 
Then, the Lemke flower pollinated resource optimization algorithm selects the optimal virtual machine using swarm intelligence. This 
algorithm balances global exploration and local exploitation via Lévy flights to find the best scheduling path. Experimental results 
demonstrate that the BTB-LFPRO method significantly improves task scheduling efficiency by 24% and enhances throughput by 24%, 
outperforming existing techniques.
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Introduction 
A ε-fuzzy dominance-based reliable green workflow 
scheduling (FDRGS) algorithm was designed (Rani, R. & 
Garg, R., 2022) to optimize application reliability and energy 
consumption. The fast Fourier transform (FFT) and Gaussian 
elimination (GE) task graphs reduced energy consumption 
and improved system reliability. Though the system 
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reliability was improved, the computational complexity 
was not minimized by FDRGS. A fruit fly-based simulated 
annealing optimization scheme (FSAOS) was designed by 
Gabi, D., Dankolo, N. M., Muslim, A. A., Abraham, A., Joda, M. 
U., Zainal, A., & Zakaria, Z. (2022) to ensure efficient resource 
allocation in mobile edge-clouds. In the designed scheme, 
simulated annealing was integrated to ensure a balance 
between global and local search, thereby addressing 
premature convergence. A trade-off factor was employed 
with application owners to determine the optimal service 
quality that would minimize execution costs. However, the 
task scheduling efficiency was not improved by FSAOS.

A semi-dynamic real-time task scheduling algorithm 
was introduced in (Abohamama, A. S., El-Ghamry, A., & 
Hamouda, E., 2022) for bag-of-tasks applications in cloud–
fog environment. The scheduling algorithm addressed 
the permutation-based optimization issues. The genetic 
algorithm was employed to provide different permutations 
for arrived tasks at each scheduling round. The tasks were 
allocated to a virtual machine with sufficient resources 
and minimum expected execution time. However, the 
task scheduling time was not reduced by a semi-dynamic 
real-time task scheduling algorithm. A new contract-
based resource-sharing model was introduced by Xu, J., & 
Palanisamy, B. (2018) for federated geo-distributed clouds to 
perform efficient resource sharing contracts with individual 
data centers for specific time intervals. Individual CSPs used 
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contracts, cost, and duration-aware job scheduling and 
provisioning algorithms to complete and meet response 
time requirements. However, the computational cost was 
not reduced by the designed model.

Due to its coherence, effectiveness, and significance in 
global optimum identification, electric fish optimization (EFO) 
has received a great amount of attention as a metaheuristic 
model for addressing optimization issues. In Kumar, M. S., & 
Kumar, G. R. (2023), an electric fish optimization technique 
was proposed to address scheduling for cloud tasks with the 
objective of minimizing power utilization and turnaround 
time. By employing this optimization technique, energy 
consumption improved. Yet another comprehensive review 
of task scheduling algorithms was presented in Choppara 
and Mangalampalli (2024). 

Despite numerous research works being performed on 
resource management in cloud computing environments, 
identifying materials and methods with the objective 
of enhancing job completion, minimizing costs, and 
maximizing resources has remained a top priority that has 
not been thoroughly explored. A novel hybrid method, with 
the potential to entirely change the game, employing Neural 
Network Task Classification (N2TC), was proposed by Mittal, 
P., Kumar, D. S., & Sharma, D. S. (2024). By integrating neural 
networks with genetic algorithms, both cost reduction 
and response time were minimized. In Thanka, M. R., 
Maheswari, P. U., & Edwin, E. B. (2019), a hybrid algorithm 
was proposed by combining artificial bee and particle 
swarm optimization. The hybrid algorithm optimized task 
scheduling by minimizing makespan, cost, and improving 
resource utilization in an efficient manner. 

Due to the flexibility of the cloud, numerous business 
establishments are establishing additional data centers 
and transitioning their businesses to cloud technology. 
Optimal allocation of resources can be achieved through 
effective scheduling and load balancing to ensure quality 
of service (QoS) parameters. In Jain and Sharma (2023), a 
hybridized Firefly Salp Swarm Algorithm was proposed with 
the objective of improving not only throughput but also 
significantly minimizing waiting time. With the intention of 
exploiting cloud resources in an energy-efficient manner 
while providing extensive services to users, optimal cloud 
task scheduling is a prerequisite. 

A new deadline-aware task scheduling method 
for cloud environments using the Firefly Optimization 
Algorithm (FOA) was designed by Ya-meng, B. A. I., Yang, 
W. A. N. G., and Shen-shen, W. U. (2023). With this design, 
a significant improvement was said to be achieved in both 
terms of makespan and power consumption. Yet another 
multiple-task scheduling algorithm employing regression 
and quartile range was presented in Singh, S. P., Nayyar, A., 
Kaur, H., & Singla, A. (2019) to focus on minimizing energy 
consumption during VM migration. A review of resource 

scheduling employing machine learning techniques was 
conducted by Raeisi-Varzaneh, M., Dakkak, O., Habbal, A., 
and Kim, B. S. (2023). 

The overarching objective of this research is to enhance 
task scheduling performance while significantly improving 
throughput. A key objective is to predict the priority level 
of incoming user-requested tasks in a cloud computing 
environment as needed. To achieve this, we conduct a 
systematic analysis of the BrownBoost Classifier for user 
request task scheduling using the Bradley–Terry function in 
a cloud environment. Moreover, we analyze the requirements 
and consequences of utilizing quality of service in terms of 
task scheduling efficiency and makespan using the proposed 
Lemke-Flower-Pollinated Resource Optimization algorithm. 

Related works
The CC environment operates on a pay-for-usage model, 
where cloud users access services without possessing 
complete knowledge of distribution policies and 
hosting specifics. Due to the different types and levels of 
configurations, task scheduling becomes a predominant 
issue in the deployment of a significant cloud framework. 
Data localization for evaluating task scheduling was 
performed in Li, Y., & Hei, X. (2022) using the Hadoop 
platform. Despite extensive advantages, the CC environment 
poses demanding issues that circumvent the submission of 
significant workflow. In Hai, T., Zhou, J., Jawawi, D., Wang, D., 
Oduah, U., Biamba, C., & Jain, S. K. (2023), a Heterogeneous 
Earliest Finish Time (HEFT) algorithm was proposed, fine-
tuned to generate enhanced results, according to two 
stages. In the first stage, ranks were calculated, followed by 
the selection of empty slots for task scheduling in the second 
stage. However, one of the significant metrics, energy 
consumption, was not focused on. To address this issue, 
a model based on eco-friendly aspects of reinforcement 
learning was presented in (Wang, Z., Chen, S., Bai, L., Gao, J., 
Tao, J., Bond, R. R., & Mulvenna, M. D., 2023). By using these 
mechanisms, in addition to minimizing waiting time for 
task scheduling, energy consumption was also considerably 
reduced. Yet another optimal resource allocation-based task 
scheduling approach, with a main focus on quality of service, 
was designed by Singh, H., Bhasin, A., and Kaveri, P. R. (2021). 

The significance of cloud services is directly influenced by 
certain other paramount metrics, such as energy utilization 
and cost factors, that were not taken into consideration by 
several prevailing techniques. To address on this aspect, 
an efficient scheduling mechanism employing effective 
scheduling called the electric earthwork optimization 
algorithm was proposed in (Kumar, M. S., & Karri, G. R., 
2023) that in turn not only scheduled the workload in a 
heterogeneous manner but also boosted the quality of 
service (QoS) in a significant manner. 

A holistic survey of task scheduling mechanisms 
employing machine learning was conduc ted by 
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Hosseinzadeh, M., Azhir, E., Lansky, J., Mildeova, S., Ahmed, 
O. H., Malik, M. H., & Khan, F. (2023). Yet another descriptive 
literature review on efficient scheduling techniques in CC 
was presented by Sana, M. U., and Li, Z. (2021). However, the 
load-balancing aspects was not focused. In Muthusamy and 
Dhanaraj (2023), a dynamic load balancing approach based 
on Q-learning and reinforcement learning was presented to 
focus on the training time involved in task scheduling. Yet 
another work aimed at minimizing task runtime through 
efficient reinforcement learning was presented in (Jin, C., 
Han, Y., Deng, Z., Chen, Y., Liu, C., & Huang, J., 2023). Here, 
using a combinatorial optimization mechanism resulted in 
outstanding performance. In this context, a hybrid method 
combining cuckoo search and grey wolf optimization was 
presented in (Paulraj, D., Sethukarasi, T., Neelakandan, 
S., Prakash, M., & Baburaj, E., 2023). By using this hybrid 
mechanism, the success rate was said to be improved to a 
considerable extent. 

The prevailing method, though, worked well; however, 
it suffered from issues such as resource utilization, increased 
boot time, and running costs. To address on these issues, 
a task scheduling model employing dynamic decision 
was proposed in (Ali, A., & Iqbal, M. M., 2022). Here, 
computational offloading ensures cost minimization, in 
addition to considerably reducing average boot time. Yet 
another profit maximization algorithm, employing simulated 
annealing and particle swarm optimization, was presented 
in Yuan, H., Bi, J., Tan, W., & Li, B. H. (2016). By using this 
hybrid optimization mechanism, throughput was increased 
considerably. A resource optimization algorithm with the 
minimum cost was proposed in Amer, A. A., Talkhan, I. E., 
Ahmed, R., & Ismail, T. (2022). A modified genetic algorithm 
employing integer coding was designed by Sun, F., Hou, F., 
Cheng, N., Wang, M., Zhou, H., Gui, L., and Shen, X. (2018) to 
ensure low latency and improve system stability. Despite 
improvements observed in terms of latency and stability, 
however, the energy efficiency aspects were not focused. 
To address this issue, a multi-access edge computing system 
was designed (Pliatsios, D., Sarigiannidis, P., Lagkas, T. D., 
Argyriou, V., Boulogeorgos, A. A., & Baziana, P., 2022). Here, 
resource offloading was introduced with the objective of 
minimizing total energy consumption. 

A combination of local and global search strategies was 
developed in (Senthilkumar, G., Suvarnamukhi, B., Lekashri, 
S., & Mohammed Thaha, M., 2024) using an interactive 
school optimization algorithm. By using this optimization 
algorithm, the makespan was considerably reduced and 
the throughput was significantly improved. Yet another 
hybrid method, combining particle swarm optimization for 
allocating optimal resources and fuzzy inference to ensure 
task scheduling, was presented in Mansouri, N., Zade, B. M. 
H., & Javidi, M. M. (2019). However, energy efficiency was 
not ensured. An energy-efficient task scheduling algorithm 

using HEFT was proposed in Tang, Z., Qi, L., Cheng, Z., Li, 
K., Khan, S. U., & Li, K. (2016). Hazard Regressive Multipoint 
Elitist Spiral Search Optimization for Resource-Efficient 
Task Scheduling technique (HRMESSO) provides better 
scheduling efficiency, a lesser makespan, and reduced 
energy consumption (Jabeen, A., & Shanavas, A. R. M., 2024).

Except for the above works, most other research 
only concentrate on either lessening the training time or 
minimizing the makespan. The objectives of most existing 
task scheduling algorithms in cloud computing (CC) are 
to reduce the makespan without focusing on energy 
consumption. Unlike the aforementioned research, our 
optimal task-scheduling algorithm aims to minimize energy 
consumption. The elaborate description of the Bradley–Terry 
BrownBoost Lemke Flower Pollinated Resource Optimization 
(BTB-LFPRO) method is provided in the following sections. 

Methodology 
The proposed Bradley–Terry BrownBoost Lemke flower 
pollinated resource optimization (BTB-LFPRO) method 
involves components such as cloud users that send access 
to certain tasks, a cloud service provider, and cloud servers. 
Figure 1 shows the proposed Bradley–Terry BrownBoost 
Lemke Flower Pollinated Resource Optimization (BTB-
LFPRO) method. The figure shows the architecture of the 
BTB-LFPRO method.

As illustrated in the above figure, the system is designed 
such that the proposed BTB-LFPRO method is fed to the 
cloud service provider. Access requests for certain tasks are 
sent to the CC environment by cloud users. Here, numerous 
cloud users send the requests simultaneously. The cloud 
service provider evaluates these requests and the allocation 
of access requests to tasks is done based on the proposed 
Bradley–Terry BrownBoost algorithm. Access requests to 
tasks are processed based on a priority mechanism, and the 
selected requests are allocated to the respective cloud users 
and stored in the cloud server for further processing. Second 

Figure 1: Block diagram of Bradley–Terry BrownBoost Lemke Flower 
Pollinated Resource Optimization (BTB-LFPRO) method
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on the major issues in the CC environment is resource 
scheduling. Resource scheduling refers to the procedures of 
distributing scheduled tasks onto available virtual machines 
in CC environment. Due to the constraint on the number of 
VMs and their distinct potentialities, an effective resource 
scheduling model called Lemke-Flower-Pollinated Resource 
Scheduling is designed to meticulously schedule application 
tasks onto subsequent VMs. 

Cloud application model
According to the above explanation of the proposed 
Bradley–Terry BrownBoost Lemke Flower Pollinated 
Resource Optimization (BTB-LFPRO) method, designed 
according to priority constraints, the task flow with priority 
constraints in our work is represented by a Directed Acyclic 
Graph (DAG), defined as follows. 

	 (1)
From the above equation (1), the DAG ‘ ’ is represented 

by means of cloud user requested tasks ‘ ’, 
Edges between tasks ‘ ’, cost ‘

’ involved in communicating between tasks ‘ ’ 
and ‘ ’, and computation cost ‘ ’ between ‘

’ respectively. 

Bradley–Terry BrownBoost Classifier-based Task 
Scheduling 
Task scheduling is used to schedule cloud user-requested 
tasks for optimal resource utilization by assigning specific 
tasks to definite resources at specific time instances. The 
issue of task scheduling encompasses two classes of users: 
cloud providers and consumers. On the one hand, cloud 
consumers run their tasks to address issues of various scales 
and complexity levels, and on the other hand, resources 
from cloud service providers are utilized in executing tasks 
requested by cloud users. 

A priority assignment function is designed to utilize 
a new log likelihood data structure, known as the binary 
classification matrix, to assign priority to individual cloud 
user-requested tasks upon arrival. In addition to this, the 
binary classification queue implements a unique concept 
based on the principle of linear combination of weak 
hypotheses for extracting the cloud user’s requested task 
with the highest priority. This work introduces a parallel 
algorithm for cloud user-requested task scheduling, in which 
the priority assignment to tasks and the building of linear 
combinations of weak hypotheses are executed in parallel, 
taking into account the non-preemptive and preemptive 
nature of cloud user-requested tasks. 

In this work, the Bradley–Terry BrownBoost Classifier is 
used to categorize tasks into high-priority and low-priority 
tasks. The Bradley–Terry model is a probability model used 
to predict the outcome of priority levels in the BrownBoost 
Classifier. Based on priority level, the tasks are stored in the 

queue with minimal memory space consumption. Figure 2 
shows the structure of Bradley–Terry BrownBoost Classifier 
model. 

As illustrated in the above figure, the cloud user-
requested tasks obtained from the dataset are provided 
as input to the classifier model to classify the tasks based 
on priority. First, the input cloud user’s requested tasks 
are subjected to a log-likelihood function, followed by a 
pairwise comparison to obtain the text-categorized results. 
Next, the categorized text results are subjected to the 
BrownBoost classifier to generate strong classifier results, 
improving the prediction of priority levels and enhancing 
task scheduling efficiency and makespan. 

Let ‘ ’ denote the probability that the task ‘ ’ is 
preferred in comparison with ‘ ’, then using the Bradley–
Terry model, for paired comparisons between ‘ ’ and ‘
’ the Bradley–Terry probabilistic function is formulated as 
given below. 

	 (2)

From the above equation (2) ‘ ’ denote the overall 
cloud user requested tasks placed in the cloud server and 
to be processed via cloud service provider. Let us further 
assume that the outcomes of all the comparison are 
independent and in addition let ‘ ’ denote the frequency 
of times ‘ ’ is selected over ‘ ’. Then, the log likelihood 
of above probability measure takes the following form 
mathematically represented as given below. 

	

					     	       (3)

From the above equation (3), ‘ ’ denote the frequency 
of times ‘ ’ is selected over ‘ ’ with the overall probability 
rate of ‘ ’ and ‘ ’ respectively. Then, to obtain 

Figure 2: Structure of Bradley–Terry BrownBoost Classifier model
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multi-class probability estimates by roughly calculating by 
pairwise comparisons is represented as given below. 

	
			   (4)

From the above equation (4), results of multi-class 
probability estimates by pairwise comparisons ‘ ’ is 
arrived at based on the probability of task ‘ ’ in either ‘

’ (i.e., high priority) or ‘ ’ in either ‘ ’ or ‘
’ (i.e., low priority) respectively. Then, this work 

evaluates ‘ ’ by minimizing the 
distance between ‘ ’ and ‘ ’ and this is 

mathematically stated as given below.

(5) 

From the above equation (5) ‘ ’ represents the number 
of cloud user requested tasks in ‘ ’ (i.e., high priority) 
‘ ’ (i.e., low priority) respectively. Also from the above 
equation results the task categorization ‘ ’ results are 
obtained and accordingly ‘1’ represents the high priority 
task whereas ‘0’ denotes the low priority task. Followed 
by which, BrownBoost classifier is employed to predict the 
outcome of priority level. 

Given ‘ ’ feature vectors (i.e., task) 
‘ ’ 

of size ‘ ’ and vector of class labels ‘
’ where ‘ ’ elucidating the class to which 
the task belongs to then the outcome of priority level is 
formulated as given below.

			   (6)

From the above equation (6), the only performance 
parameter of BrownBoost ‘ ’ is the time it runs that states 
that each hypothesis takes a discrete amount of time and 
hence priority variance in cloud user requested tasks are said 
to exist. Also a larger value of ‘ ’ means that BrownBoost will 
treat the cloud user requested task to be noisy and hence 
proceed with other set of cloud user requested tasks. On the 
other hand, a smaller value of  ‘ ’ means that BrownBoost 
will treat the cloud user requested task as non-noisy and 
proceed with two-class classifier. Also, ‘ ’ 
denotes the inverse error function with a target classification 
error ‘ ’ defined as ‘ ’ and 

‘ ’ formulated as given below. 

		  (7)

From the above equation (7) the probability results 
of the task categorization ‘ ’ is arrived at ‘

’ by taking into considerations the error function ‘
’, hypothesis ‘ ’ and weight ‘ ’ respectively. In this 
manner, the core hypothesis of the BrownBoost classifier 
is that noisy task-categorized samples will be correctly 
labeled, whereas non-noisy task-categorized samples will 
contribute to the final classifier. Owing to this if the final 
classifier of task categorization is learned from the non-
noisy task categorized samples, the generalization error of 
the final classifier can be much better than if learned from 
noisy task categorized samples. This, in turn, would not only 
improve task scheduling efficiency but also maximize the 
completion of the last subtask, thereby improving makespan 
in a significant manner. The pseudo code representation of 
Bradley–Terry BrownBoost Classifier-based Task Scheduling 
is given below. 

As outlined in the above algorithm, with the objective 
of improving task scheduling efficiency and reducing 
the makespan, initially, cloud user-requested tasks are 
categorized into low-priority or high-priority tasks. For 
this, a probabilistic function and a log-likelihood function 

Input: Dataset ‘ ’, User requested tasks ‘ ’

Output: scalable task scheduling ‘ ’

Step 1: Initialize ‘ ’
Step 2: Begin 

Step 3: For each Dataset ‘ ’ with User requested tasks ‘ ’
Step 4: Formulate Directed Acyclic Graph (DAG) for task flow with 
priority constraints as given in equation (1)
Step 5: Formulate Bradley–Terry probabilistic function as given in 
equation (2)
Step 6: Evaluate the log likelihood of probability measure as given 
in equation (3)
Step 7: Evaluate multi-class probability estimates by pairwise 
comparisons as given in equation (4)
Step 8: Formulate task categorization by minimizing the distance 
as given in equation (5)

Step 9: If ‘ ’
Step 10: Then cloud user requested task is high priority task 
Step 11: Measure the outcome of priority level as given in 
equation (6)
Step 12: Obtain BrownBoost classified results as given in equation 
(7)
Step 13: Return task scheduling with high scalable cloud user 

request access tasks ‘ ’
Step 14: End if

Step 15: If ‘ ’
Step 16: Then cloud user requested task is low priority task 
Step 17: End if 
Step 18: End for
Step 19: End 

Algorithm 1: Bradley–Terry BrownBoost Classifier-based Task 
Scheduling
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are employed to obtain multi-class probability estimates 
through pairwise comparisons. Finally, the BrownBoost 
classifier is applied to the task-categorized results to ensure 
scalable task scheduling. As a result the task scheduling 
efficiency is improved with minimal makespan. 

Lemke Flower Pollinated Resource Optimization
Next to identify optimal virtual machine tracking global 
optimum solutions remains a highly demanding task. 
Frequently, traditional optimization mechanisms do not 
perform satisfactorily in cases of optimal virtual machine 
identification in CC environments, as they may be trapped 
in local optima. Motivated by the pollination behavior of 
flowers, several research works have applied the flower 
pollination algorithm (FPA), a novel heuristic optimization 
technique. However, the global and local search processes 
of flower pollination algorithm are highly susceptible and 
are sensitive to the process of distributing tasks scheduled 
onto available virtual machines. Owing to the reason 
that the virtual machines are constrained in number an 
efficient scheduling model is required to schedule tasks 
on to the virtual machine. To solve this issue, an improved 
flower pollination algorithm based on the Gaussian Normal 
Distribution with Zero Mean and Variance, called Lemke 
Flower Pollinated Resource Optimization, is proposed. 
Figure 3 shows the block diagram of Lemke Flower Pollinated 
Resource Optimization model.

As shown in the above figure, the two element of flower 
pollination are cross-pollination and self-pollination. On the 
one hand, cross-pollination reveals that pollination occurs 
among different flowers due to biological factors, and on the 
other hand, self-pollination reveals that pollination occurs 
among different flowers due to spontaneous diffusion. 
Cross-pollination corresponds to a global search process 
and is formulated as follows. 

	 (8)

From the above equation (8) the global search cross-
pollination for the virtual machine ‘ ’ with ‘ ’ 
possessing specific configurations like main memory ‘
’, storage ‘ ’ and processing power ‘ ’ is formulated 
by taking into considerations the levy distribution ‘ ’ of the 
current fittest virtual machine ‘ ’ in action. On the 
other hand, self-pollination corresponds to local searching 
process and is mathematically represented as given below.

 
		  (9)

From the above equation (9), ‘ ’ and ‘ ’ two 
pollens (i.e., virtual machine) individual positions (different 
virtual machines with different specific configurations) in 
the population that are distinct from pollen (i.e., virtual 
machine) ‘ ’ and ‘ ’ follows a uniform distribution in the 
range of ‘ ’. The inertia weight in the conventional flower 
pollination is said to be an arbitrary value. Despite larger 
inertia weight contributing to better global searching and 
smaller inertia weight contributing to better local searching, 
leads to exploitation. Hence, to ensure trade-off between 
exploitation and exploration a cosine inertia weight is 
provided for global search cross-pollination as given below. 

	

							           (10)
From the above equation (10), global search cross-

pollination or local search self-pollinations, cosine inertia 
weight ‘ ’ is arrived based on the current iteration ‘ ’, 
maximum number of iterations ‘ ’, weight adjustment 
factor ‘ ’, inertia adjustment factor ‘ ’ along 
with beta random numbers ‘ ’ with parameters  
‘ ’ respectively. The deviation degree of ‘ ’ employed in 
our work manage the inertia weight value in turn therefore 
facilitating the global searching as well as the local searching 
potentiality. 

Next, with the obtained global search cross-pollination 
or local search self-pollination, the cosine inertia weight 
crossover operation is performed using the parameter 
flexible adaptation function. For different stages of the 
virtual machine selection, process, it is mandatory to 
formulate different parameters and should meet the 
following requirements, select appropriate parameters 
(i.e., task scheduled) for a specific region (i.e., population) in 
the target scope (i.e., set of virtual machine) and eliminate 
inappropriate parameters (i.e., inappropriate resources) 
respectively. With this objective, initially, the parameter 
flexible adaptation function is formulated as given below. 

	 	 (11)

From the above equation (11) the cloud service provider 
evaluates the execution time ‘ ’ of each task scheduled Figure 3: Structure of Lemke Flower Pollinated Resource 

Optimization model
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‘ ’ on each virtual machine ‘ ’. Next, the cloud 
service provider ensures that inappropriate parameters 
are eliminated and appropriate parameters are retained, 
with the purpose of maximizing resource utilization while 
assigning virtual machines to keep resources occupied as 
much as possible. Then, the average resource utilization is 
mathematically stated as given below. 

				    (12)

From the above equation (12) with the objective of 
keeping as much resource as equipped by the cloud 
service provider the average resource utilization ‘
’ is formulated based on the execution time ‘ ’ and the 
modeled objective ‘ ’. The objective function here 
remains in optimal task scheduled being allocating the 
tasks on virtual machine and is formulated as given below. 

   (13)

	 (14)

From the above equations (13) and (14) ‘ ’ determines 
the binary decision output variable (i.e., ‘ ’) of either task 
scheduled ‘ ’ being allocated to virtual machine ‘ ’ or 
on contrary the decision output variable is (i.e., ‘ ’) with not 
allocation to virtual machine. In this manner, optimal task 
scheduling is ensured. The pseudo code representation of 
Lemke Flower Pollinated Resource Optimization is given 
below. 

As outlined in the above algorithm, with the objective of 
reducing energy consumption and subsequently speeding 
up the process, the scheduled tasks of the corresponding 
cloud user should be allocated to a virtual machine. With 
this objective, the Lemke Flower Pollination algorithm, which 
introduces cosine inertia weight and flexible parameter 
adaptation, is designed. Here, by using the cosine inertia 
weight a trade-off between exploitation and exploration is 
said to be achieved. Next, by introducing parameter-flexible 
adaptation, both the cloud service providers’ and cloud 
users’ requirements are said to be achieved in a fine-tuned 
manner. 

Experimental setup
In this section, the experimental evaluations of the 
proposed Bradley–Terry BrownBoost and Lemke flower 
pollinated resource optimization (BTB-LFPRO) for optimized 
task scheduling and existing methods namely ε-fuzzy 
dominance based reliable green workflow scheduling 
(FDRGS) (Rani, R., & Garg, R., 2022) and fruit fly-based 
simulated annealing optimization scheme (FSAOS) (Gabi, 

D., Dankolo, N. M., Muslim, A. A., Abraham, A., Joda, M. U., 
Zainal, A., & Zakaria, Z., 2022) are implemented in Java with 
the CloudSim network simulator. To ensure fair comparison 
Personal Cloud Datasets is considered for validating and 
analyzing the results obtained from http://cloudspaces.eu/
results/datasets. Detailed comparative analysis is performed 
for four different performance metrics, makespan, energy 
consumption, task scheduling efficiency and throughput 
respectively. 

Discussion 
In this section detailed analysis of four different performance 
metrics, namely, makespan, energy consumption, task 
scheduling efficiency and throughput using the proposed 
Bradley–Terry BrownBoost and Lemke Flower Pollinated 
Resource Optimization (BTB-LFPRO) and two existing 
methods, ε-fuzzy dominance based reliable green workflow 
scheduling (FDRGS) (Rani, R., & Garg, R., 2022) and fruit fly-
based simulated annealing optimization scheme (FSAOS) 
(Gabi, D., Dankolo, N. M., Muslim, A. A., Abraham, A., Joda, 
M. U., Zainal, A., & Zakaria, Z., 2022) respectively. 

Input: Dataset ‘ ’, Virtual Machine ‘

’

Output: Energy and convergent-efficient task 
scheduling 

Step 1: Initialize task scheduled ‘ ’, ‘ ’, ‘ ’
Step 2: Begin

Step 3: For each Dataset ‘ ’ with task scheduled ‘ ’ 

and virtual machine ‘ ’
Step 4: Formulate global search cross-pollination as 
given in equation (8) 
Step 5: Formulate local search self-pollination as given 
in equation (9)
Step 6: Formulate a cosine inertia weight to ensure 
trade-off between exploitation and exploration as given 
in equation (10)
Step 7: Formulate parameter flexible adaptation as 
given in equation (11)
Step 8: Evaluate average resource utilization to meet 
requirements of cloud service provider as given in 
equation (12)
Step 9: Evaluate modeled objective function to meet 
requirements of cloud user tasks to be accomplished in 
virtual machine as given in equations (13) and (14)
Step 10: Return virtual machine allocated 
Step 11: End for 
Step 12: End 

Algorithm 2: Lemke Flower Pollinated Resource Optimization
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Performance analysis of makespan 
First, in this section, makespan or completion time 
representing the total time consumed in processing a set 
of cloud user requested tasks for its complete execution is 
measured. In cloud computing environment as far as optimal 
task scheduling is concerned, makespan denotes the time 
when the last subtask is accomplished. Minimization of 
makespan can be achieved by allocating the set of cloud 
user requested tasks to set of virtual machines. To be 
more specific, makespan in CC environment denotes the 
maximum completion of last subtask and is mathematically 
represented as given below. 

	
					                         (15)

	 		  (16)

From the above equations (15) and (16) the maximum 
completion of last subtask or makespan ‘ ’ is 
represented by means of all the tasks ‘ ’ and ‘ ’ 
denotes that task ‘ ’ is allocated to ‘ ’ and ‘ ’ denoting 
the completion time of task ‘ ’ on virtual machine ‘ ’ 
respectively. Table 1 shows the comparison of makespan. 
It is clear that the average makespan for existing methods, 
FDRGS (Rani, R., & Garg, R., 2022) and FSAOS (Gabi, D., 
Dankolo, N. M., Muslim, A. A., Abraham, A., Joda, M. U., Zainal, 
A., & Zakaria, Z., 2022) is 96.2ms and 109.1ms respectively. 
However, the proposed BTB-LFPRO archives minimum 
makespan of 83.7ms. This clearly shows the minimum 
convergence speed of the proposed method. This is due to 
the calculation of comparison of each cloud user request 
tasks in the proposed method. 

Figure 4 shows the variation of overall makespan using 
the proposed BTB-LFPRO and existing two methods, FDRGS 
(Rani, R., & Garg, R., 2022) and FSAOS (Gabi, D., Dankolo, N. M., 
Muslim, A. A., Abraham, A., Joda, M. U., Zainal, A., & Zakaria, 
Z., 2022). With x-axis representing the distinct numbers of 
cloud user requested tasks y-axis denotes the makespan 
measured in terms of milliseconds (ms) using the three 
methods, proposed BTB-LFPRO, (Rani, R., & Garg, R., 2022) 
and (Gabi, D., Dankolo, N. M., Muslim, A. A., Abraham, A., 
Joda, M. U., Zainal, A., & Zakaria, Z., 2022). While performing 
simulations with 1000 cloud user requested tasks, the 
makespan using the proposed BTB-LFPRO was 35ms, and for 
(Rani, R., & Garg, R., 2022) is 53ms and for (Gabi, D., Dankolo, 
N. M., Muslim, A. A., Abraham, A., Joda, M. U., Zainal, A., 
& Zakaria, Z., 2022) is 68ms. However, the proposed BTB-
LFPRO method achieves minimum makespan. This clearly 
shows the minimum amount of time consumed even for 
the accomplishment of last subtask. The reason was due to 
the application of Bradley–Terry BrownBoost Classification 
algorithm. By applying this algorithm, Bradley–Terry 
probabilistic function was applied in Directed Acyclic Graph 
(DAG) for measuring task flow with priority constraints. Also 
log likelihood of probability measure along with multi-
class probability estimates by pairwise comparisons was 
performed for each cloud user requested tasks. With this 
even the time consumed in accomplishing last subtask was 
taken into consideration that in turn reduced the overall 
makespan of the proposed BTB-LFPRO method by 15% 
compared to (Rani, R., & Garg, R., 2022) and 26% compared 
to (Gabi, D., Dankolo, N. M., Muslim, A. A., Abraham, A., Joda, 
M. U., Zainal, A., & Zakaria, Z., 2022). 

Performance analysis of task scheduling efficiency 
Cloud user request task scheduling by the cloud service 
provider refers to the allocation of best suitable resources 
by taking into considerations different factors, like, cost, 
makespan, throughput, resource utilization and so on. In 
other words, task scheduling efficiency refers to the ratio of 
number of successfully scheduled tasks to the total number 
of cloud user requested tasks made by distinct cloud users 

Table 1: Makespan

Number of user tasks Makespan (ms)

BTB-LFPRO FDRGS FSAOS

1000 35 53 68

2000 38 58 73

3000 55 63 78

4000 68 79 85

5000 75 80 98

6000 90 98 110

7000 105 115 123

8000 113 125 138

9000 120 138 155

10000 138 153 163 Figure 4: Variation of makespan
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in cloud computing environment. This task scheduling 
efficiency is mathematically represented as given below. 

	      	    (17)	

	 From the above equation (17), task scheduling efficiency 
‘ ’ is measured by taking into consideration the tasks 
scheduled ‘ ’ and the cloud user requested 
tasks made by the cloud user ‘ ’. It is measured in terms of 
percentage (%). Table 2 shows the comparison of task 
scheduling efficiency. The FDRGS (Rani, R., & Garg, R., 2022) 
method has average task scheduling efficiency of 85% and 
FSAOS (Gabi, D., Dankolo, N. M., Muslim, A. A., Abraham, A., 
Joda, M. U., Zainal, A., & Zakaria, Z., 2022) has an average 
task scheduling efficiency of 76%. However, the proposed 
BTB-LFPRO method has a high rate of 90%. This is due to 
the usage of efficient network resource utilization. 

Figure 5 shows the variation of task scheduling efficiency. 
From the above figure x-axis referring to the distinct 
numbers of cloud user request tasks provided as input and 
y-axis denoting the task scheduling efficiency results by 
substituting the values in equation (17). With simulations 
performed for 1000 cloud user requested tasks 935 tasks 
were scheduled using the proposed BTB-LFPRO method, 
905 tasks were scheduled using (Rani, R., & Garg, R., 2022) 
whereas 885 tasks were scheduled using (Gabi, D., Dankolo, 
N. M., Muslim, A. A., Abraham, A., Joda, M. U., Zainal, A., 
& Zakaria, Z., 2022), therefore the overall task scheduling 
efficiency was observed to be 93.5%, 90.5% and 88.5% 
respectively. This clearly shows the high task scheduling 
efficiency results of the BTB-LFPRO method. This is due to 
the implementation of Bradley–Terry BrownBoost Classifier 
model. By applying this model, BrownBoost classifier was 
applied to the task categorized results for ensuring scalable 
task scheduling. Moreover, the BrownBoost function 
employed with discrete amount of time as hypothesis taken 

into consideration priority variance is employed and by 
classifying the resultant values, either cloud user requested 
task are considered to be noisy or non-noisy and proceed 
with two-class classifier. This in turn improves the overall task 
scheduling efficiency of proposed BTB-LFPRO method by 5% 
compared to (Rani, R., & Garg, R., 2022) and 18% compared 
to (Gabi, D., Dankolo, N. M., Muslim, A. A., Abraham, A., Joda, 
M. U., Zainal, A., & Zakaria, Z., 2022) respectively. 

Performance analysis of energy consumption 
Next, the energy consumption of CC environment chiefly 
includes, to name a few being memory, storage, CPU 
and network transmission. The energy consumption is 
mathematically represented as given below. 

				    (18)

		  (19)

From the above equations (18) and (19) ‘ ’ represents 
the energy consumption of task ‘ ’ on virtual machine ‘ ’ 
and ‘ ’ represents the consumption of energy consumed 
by task ‘ ’ executing on ‘ ’ respectively. Table 3 shows 
the comparison of energy consumption. It is clear that the 
average energy consumption of the FDRGS (Rani, R., & 
Garg, R., 2022) method is 75J and has the average energy 
consumption of the FSAOS (Gabi, D., Dankolo, N. M., Muslim, 
A. A., Abraham, A., Joda, M. U., Zainal, A., & Zakaria, Z., 2022) 
was 83J. However, the proposed BTB-LFPRO method had 
low energy consumption of 70J. This clearly shows the 
high scalability of the proposed method. This is due to the 
involvement of virtual machine for optimal scheduling. 

Figure 6 shows the comparison of energy consumption 
efficiency. With x-axis denoting distinct numbers of 
cloud user requested tasks, y-axis represents the energy 
consumption measured by substituting the values in 
equations (18) and (19). With the simulations performed 
for 1000 cloud user requested tasks, 45J of energy was 

Table 2: Task scheduling efficiency 

Number of user tasks Task scheduling efficiency (%)

BTB-LFPRO FDRGS FSAOS

1000 93.5 90.5 88.5

2000 91.35 86.15 76.13

3000 90 85.05 75.18

4000 88.25 83.45 73.25

5000 86.35 81.35 71.23

6000 89.35 84.25 74.28

7000 90.45 85.95 75.35

8000 91.25 86.35 76.31

9000 92 87.55 77.33

10000 93 88.45 78.38 Figure 5: Variation of task scheduling efficiency
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consumed in ensuring optimal task scheduling when applied 
with  BTB-LFPRO method, 56J of energy consumed using 
(Rani, R., & Garg, R., 2022) whereas 65J of energy consumed 
using (Gabi, D., Dankolo, N. M., Muslim, A. A., Abraham, 
A., Joda, M. U., Zainal, A., & Zakaria, Z., 2022) respectively. 
This clearly shows the lower energy consumption of the 
proposed BTB-LFPRO method. This is due to the involvement 
of effective optimization model based on the network 
resource availability i.e., using Lemke Flower Pollinated 
Resource Optimization. By using this optimization model, 
to ensure trade-off between exploitation and exploration 
a cosine inertia weight was applied to both global search 
cross-pollination and local search self-pollination. This in 
turn reduced the energy being consumed in obtaining 
optimal task scheduled results. As a whole the overall energy 
consumption was found to be comparatively lesser using the 
proposed BTB-LFPRO method by 8% compared to (Rani, R., 
& Garg, R., 2022) and 16% compared to (Gabi, D., Dankolo, 
N. M., Muslim, A. A., Abraham, A., Joda, M. U., Zainal, A., & 
Zakaria, Z., 2022). 

Performance analysis of throughput
Throughput is defined as the number of user-requested 

tasks completed by a particular time in the cloud. The 
mathematical representation for calculating throughput is 
given below,

      (20)
 
From the above equation (20)  ‘ ’ indicates throughput, 

‘ ’ represents time in second (sec),  and it is computed in 
terms of tasks per second (tasks/sec).

Table 4 and Figure 7 portray a graphical representation 
of throughput with varying numbers of user tasks ranging 
from 1000 and 10000 considered for simulation. In Figure 
7, the number of tasks is denoted in the horizontal axis, and 
throughput performance is represented in the vertical axis. 
The results illustrate that the throughput is comparatively 
increased than the existing methods. Let us consider that 
the number of tasks is 1000, and the throughput obtained 
for BTB-LFPRO, FDRGS (Rani, R., & Garg, R., 2022) and FSAOS 
(Gabi, D., Dankolo, N. M., Muslim, A. A., Abraham, A., Joda, M. 
U., Zainal, A., & Zakaria, Z., 2022) is 196 tasks/sec, 143 tasks/
sec, and 112 tasks/sec respectively. When the number of 
data points gets increased, the throughput gets increased 
correspondingly. From the graph, BTB-LFPRO improved than 

Table 3: Energy consumption efficiency

Number of user tasks Energy consumption (J)

BTB-LFPRO FDRGS FSAOS

1000 45 56 65

2000 49 54 62

3000 55 60 68

4000 58 63 71

5000 65 68 76

6000 73 78 84

7000 79 84 90

8000 85 89 95

9000 92 97 103

10000 105 110 116

Figure 6: Variation of energy consumption efficiency

Table 4: Throughput analysis

Number of user tasks Throughput(tasks/sec)

BTB-LFPRO FDRGS FSAOS

1000 195 143 112

2000 258 205 194

3000 340 278 247

4000 564 398 364

5000 622 512 495

6000 708 675 594

7000 837 745 718

8000 912 833 807

9000 1011 982 952

10000 1127 1013 1006

Figure 7: Variation of throughput
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the existing methods. This is because of the application 
of the Lemke Flower Pollinated Resource Optimization 
algorithm. By using this algorithm, the Parameter Flexible 
Adaptation function is employed for performing crossover 
operations. Appropriate parameters (i.e., task scheduled) 
were selected for a specific region (i.e., population), and 
discarded inappropriate parameters (i.e., inappropriate 
resources) with higher throughput. As a result, throughput 
is enhanced using BTB-LFPRO improved by 19% compared 
to (Rani, R., & Garg, R., 2022) and 29% compared to (Gabi, 
D., Dankolo, N. M., Muslim, A. A., Abraham, A., Joda, M. U., 
Zainal, A., & Zakaria, Z., 2022), respectively.

Conclusion 
Task scheduling is predominantly concentrated on 
identifying the optimal resources with the purpose of 
reducing the total execution time of virtual machines 
and hence the focus remains in improving the significant 
utilization of the shared resources. A plethora of meta-
heuristic techniques have been deployed to solve the 
issue of optimal task scheduling in cloud computing 
environment. In this work, priority classification and resource 
optimization called, Bradley–Terry BrownBoost and Lemke 
Flower Pollinated Resource Optimization (BTB-LFPRO) is 
proposed. To begin, Bradley–Terry BrownBoost Classifier 
was applied to the cloud user request schedules to classify 
the tasks and prioritize according to the requirements. 
This eventually leads to a decrease in the makespan and 
improves task scheduling efficiency. The Lemke Flower 
Pollinated Resource Optimization algorithm is then used 
to ensure energy and convergent efficient task scheduling 
that in turn ensure trade-off between exploitation and 
exploration, therefore improving energy consumption and 
throughput subsequently. Results showed that the Bradley–
Terry BrownBoost and Lemke Flower Pollinated Resource 
Optimization (BTB-LFPRO) method outperformed the 
counterpart. Moreover, the introduced BTB-LFPRO method 
minimizes the makespan, average energy consumption 
and throughput with improved task scheduling efficiency 
compared to the counterpart.
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