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Abstract

Cloud computing (CC) is extensively used across various domains, yet task and resource scheduling still demand significantimprovement.
In heterogeneous computing systems, effective task scheduling ensures optimal task-machine mapping, reducing makespan and
enhancing resource utilization. One major challenge in cloud data centers is managing vast user requests while maintaining efficient
scheduling. This work introduces the Bradley-Terry BrownBoost and Lemke flower pollinated resource optimization (BTB-LFPRO)
method to enhance task scheduling and improve performance. The BTB-LFPRO approach includes two main steps: classification and
optimization. First, the Bradley-Terry BrownBoost Classifier categorizes tasks into high- and low-priority based on pairwise comparisons.
Then, the Lemke flower pollinated resource optimization algorithm selects the optimal virtual machine using swarm intelligence. This
algorithm balances global exploration and local exploitation via Lévy flights to find the best scheduling path. Experimental results
demonstrate that the BTB-LFPRO method significantly improves task scheduling efficiency by 24% and enhances throughput by 24%,

outperforming existing techniques.
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Introduction

A e-fuzzy dominance-based reliable green workflow
scheduling (FDRGS) algorithm was designed (Rani, R. &
Garg, R., 2022) to optimize application reliability and energy
consumption. The fast Fourier transform (FFT) and Gaussian
elimination (GE) task graphs reduced energy consumption
and improved system reliability. Though the system
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reliability was improved, the computational complexity
was not minimized by FDRGS. A fruit fly-based simulated
annealing optimization scheme (FSAQS) was designed by
Gabi, D., Dankolo, N. M., Muslim, A. A., Abraham, A., Joda, M.
U, Zainal, A., & Zakaria, Z.(2022) to ensure efficient resource
allocation in mobile edge-clouds. In the designed scheme,
simulated annealing was integrated to ensure a balance
between global and local search, thereby addressing
premature convergence. A trade-off factor was employed
with application owners to determine the optimal service
quality that would minimize execution costs. However, the
task scheduling efficiency was not improved by FSAOS.

A semi-dynamic real-time task scheduling algorithm
was introduced in (Abohamama, A. S., EI-Ghamry, A., &
Hamouda, E., 2022) for bag-of-tasks applications in cloud-
fog environment. The scheduling algorithm addressed
the permutation-based optimization issues. The genetic
algorithm was employed to provide different permutations
for arrived tasks at each scheduling round. The tasks were
allocated to a virtual machine with sufficient resources
and minimum expected execution time. However, the
task scheduling time was not reduced by a semi-dynamic
real-time task scheduling algorithm. A new contract-
based resource-sharing model was introduced by Xu, J., &
Palanisamy, B. (2018) for federated geo-distributed clouds to
perform efficient resource sharing contracts with individual
data centers for specific time intervals. Individual CSPs used

Published : 31/05/2025
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contracts, cost, and duration-aware job scheduling and
provisioning algorithms to complete and meet response
time requirements. However, the computational cost was
not reduced by the designed model.

Due to its coherence, effectiveness, and significance in
global optimum identification, electric fish optimization (EFO)
has received a great amount of attention as a metaheuristic
model for addressing optimization issues. In Kumar, M. S., &
Kumar, G. R. (2023), an electric fish optimization technique
was proposed to address scheduling for cloud tasks with the
objective of minimizing power utilization and turnaround
time. By employing this optimization technique, energy
consumption improved. Yet another comprehensive review
of task scheduling algorithms was presented in Choppara
and Mangalampalli (2024).

Despite numerous research works being performed on
resource management in cloud computing environments,
identifying materials and methods with the objective
of enhancing job completion, minimizing costs, and
maximizing resources has remained a top priority that has
not been thoroughly explored. A novel hybrid method, with
the potential to entirely change the game, employing Neural
Network Task Classification (N2TC), was proposed by Mittal,
P.,Kumar, D.S., & Sharma, D. S. (2024). By integrating neural
networks with genetic algorithms, both cost reduction
and response time were minimized. In Thanka, M. R,
Maheswari, P. U., & Edwin, E. B. (2019), a hybrid algorithm
was proposed by combining artificial bee and particle
swarm optimization. The hybrid algorithm optimized task
scheduling by minimizing makespan, cost, and improving
resource utilization in an efficient manner.

Due to the flexibility of the cloud, numerous business
establishments are establishing additional data centers
and transitioning their businesses to cloud technology.
Optimal allocation of resources can be achieved through
effective scheduling and load balancing to ensure quality
of service (QoS) parameters. In Jain and Sharma (2023), a
hybridized Firefly Salp Swarm Algorithm was proposed with
the objective of improving not only throughput but also
significantly minimizing waiting time. With the intention of
exploiting cloud resources in an energy-efficient manner
while providing extensive services to users, optimal cloud
task scheduling is a prerequisite.

A new deadline-aware task scheduling method
for cloud environments using the Firefly Optimization
Algorithm (FOA) was designed by Ya-meng, B. A. I., Yang,
W. A. N. G, and Shen-shen, W. U. (2023). With this design,
a significant improvement was said to be achieved in both
terms of makespan and power consumption. Yet another
multiple-task scheduling algorithm employing regression
and quartile range was presented in Singh, S. P,, Nayyar, A.,
Kaur, H., & Singla, A. (2019) to focus on minimizing energy
consumption during VM migration. A review of resource

scheduling employing machine learning techniques was
conducted by Raeisi-Varzaneh, M., Dakkak, O., Habbal, A.,
and Kim, B. S. (2023).

The overarching objective of this research is to enhance
task scheduling performance while significantly improving
throughput. A key objective is to predict the priority level
of incoming user-requested tasks in a cloud computing
environment as needed. To achieve this, we conduct a
systematic analysis of the BrownBoost Classifier for user
request task scheduling using the Bradley-Terry function in
a cloud environment. Moreover, we analyze the requirements
and consequences of utilizing quality of service in terms of
task scheduling efficiency and makespan using the proposed
Lemke-Flower-Pollinated Resource Optimization algorithm.

Related works
The CC environment operates on a pay-for-usage model,
where cloud users access services without possessing
complete knowledge of distribution policies and
hosting specifics. Due to the different types and levels of
configurations, task scheduling becomes a predominant
issue in the deployment of a significant cloud framework.
Data localization for evaluating task scheduling was
performed in Li, Y., & Hei, X. (2022) using the Hadoop
platform. Despite extensive advantages, the CC environment
poses demanding issues that circumvent the submission of
significant workflow. In Hai, T., Zhou, J., Jawawi, D., Wang, D.,
Oduah, U., Biamba, C., & Jain, S. K. (2023), a Heterogeneous
Earliest Finish Time (HEFT) algorithm was proposed, fine-
tuned to generate enhanced results, according to two
stages. In the first stage, ranks were calculated, followed by
the selection of empty slots for task scheduling in the second
stage. However, one of the significant metrics, energy
consumption, was not focused on. To address this issue,
a model based on eco-friendly aspects of reinforcement
learning was presented in (Wang, Z., Chen, S., Bai, L., Gao, J.,
Tao, J., Bond, R. R., & Mulvenna, M. D., 2023). By using these
mechanisms, in addition to minimizing waiting time for
task scheduling, energy consumption was also considerably
reduced. Yet another optimal resource allocation-based task
scheduling approach, with a main focus on quality of service,
was designed by Singh, H., Bhasin, A., and Kaveri, P.R. (2021).

The significance of cloud services is directly influenced by
certain other paramount metrics, such as energy utilization
and cost factors, that were not taken into consideration by
several prevailing techniques. To address on this aspect,
an efficient scheduling mechanism employing effective
scheduling called the electric earthwork optimization
algorithm was proposed in (Kumar, M. S., & Karri, G. R,,
2023) that in turn not only scheduled the workload in a
heterogeneous manner but also boosted the quality of
service (QoS) in a significant manner.

A holistic survey of task scheduling mechanisms
employing machine learning was conducted by
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Hosseinzadeh, M., Azhir, E., Lansky, J., Mildeova, S., Ahmed,
0. H., Malik, M. H., & Khan, F. (2023). Yet another descriptive
literature review on efficient scheduling techniques in CC
was presented by Sana, M. U., and Li, Z. (2021). However, the
load-balancing aspects was not focused. In Muthusamy and
Dhanaraj (2023), a dynamic load balancing approach based
on Q-learning and reinforcement learning was presented to
focus on the training time involved in task scheduling. Yet
another work aimed at minimizing task runtime through
efficient reinforcement learning was presented in (Jin, C,,
Han, Y., Deng, Z., Chen, Y., Liu, C., & Huang, J., 2023). Here,
using a combinatorial optimization mechanism resulted in
outstanding performance. In this context, a hybrid method
combining cuckoo search and grey wolf optimization was
presented in (Paulraj, D., Sethukarasi, T., Neelakandan,
S., Prakash, M., & Baburaj, E., 2023). By using this hybrid
mechanism, the success rate was said to be improved to a
considerable extent.

The prevailing method, though, worked well; however,
it suffered from issues such as resource utilization, increased
boot time, and running costs. To address on these issues,
a task scheduling model employing dynamic decision
was proposed in (Ali, A., & Igbal, M. M., 2022). Here,
computational offloading ensures cost minimization, in
addition to considerably reducing average boot time. Yet
another profit maximization algorithm, employing simulated
annealing and particle swarm optimization, was presented
in Yuan, H., Bi, J.,, Tan, W., & Li, B. H. (2016). By using this
hybrid optimization mechanism, throughput was increased
considerably. A resource optimization algorithm with the
minimum cost was proposed in Amer, A. A., Talkhan, I. E.,
Ahmed, R., & Ismail, T. (2022). A modified genetic algorithm
employing integer coding was designed by Sun, F.,, Hou, F,,
Cheng, N., Wang, M., Zhou, H., Gui, L., and Shen, X. (2018) to
ensure low latency and improve system stability. Despite
improvements observed in terms of latency and stability,
however, the energy efficiency aspects were not focused.
To address this issue, a multi-access edge computing system
was designed (Pliatsios, D., Sarigiannidis, P., Lagkas, T. D.,
Argyriou, V., Boulogeorgos, A. A., & Baziana, P, 2022). Here,
resource offloading was introduced with the objective of
minimizing total energy consumption.

A combination of local and global search strategies was
developed in (Senthilkumar, G., Suvarnamukhi, B., Lekashri,
S., & Mohammed Thaha, M., 2024) using an interactive
school optimization algorithm. By using this optimization
algorithm, the makespan was considerably reduced and
the throughput was significantly improved. Yet another
hybrid method, combining particle swarm optimization for
allocating optimal resources and fuzzy inference to ensure
task scheduling, was presented in Mansouri, N., Zade, B. M.
H., & Javidi, M. M. (2019). However, energy efficiency was
not ensured. An energy-efficient task scheduling algorithm

using HEFT was proposed in Tang, Z., Qi, L., Cheng, Z., Li,
K., Khan, S. U., & Li, K. (2016). Hazard Regressive Multipoint
Elitist Spiral Search Optimization for Resource-Efficient
Task Scheduling technique (HRMESSO) provides better
scheduling efficiency, a lesser makespan, and reduced
energy consumption (Jabeen, A., & Shanavas, A.R. M., 2024).

Except for the above works, most other research
only concentrate on either lessening the training time or
minimizing the makespan. The objectives of most existing
task scheduling algorithms in cloud computing (CC) are
to reduce the makespan without focusing on energy
consumption. Unlike the aforementioned research, our
optimal task-scheduling algorithm aims to minimize energy
consumption. The elaborate description of the Bradley-Terry
BrownBoost Lemke Flower Pollinated Resource Optimization
(BTB-LFPRO) method is provided in the following sections.

Methodology

The proposed Bradley-Terry BrownBoost Lemke flower
pollinated resource optimization (BTB-LFPRO) method
involves components such as cloud users that send access
to certain tasks, a cloud service provider, and cloud servers.
Figure 1 shows the proposed Bradley-Terry BrownBoost
Lemke Flower Pollinated Resource Optimization (BTB-
LFPRO) method. The figure shows the architecture of the
BTB-LFPRO method.

Asillustrated in the above figure, the system is designed
such that the proposed BTB-LFPRO method is fed to the
cloud service provider. Access requests for certain tasks are
sent to the CC environment by cloud users. Here, numerous
cloud users send the requests simultaneously. The cloud
service provider evaluates these requests and the allocation
of access requests to tasks is done based on the proposed
Bradley-Terry BrownBoost algorithm. Access requests to
tasks are processed based on a priority mechanism, and the
selected requests are allocated to the respective cloud users
and stored in the cloud server for further processing. Second

Cloud Users

Cloud Service
Provider

|

Bredley-Terry
Boost Classifer

!

Lemke Flower Pollinated
Resource Optimization

Schedule Application task
onto the VM’s

Figure 1: Block diagram of Bradley-Terry BrownBoost Lemke Flower
Pollinated Resource Optimization (BTB-LFPRO) method

Requested Task

Cloud Server




4223 Bradley Terry Brownboost and Lemke flower pollinated resource efficient task scheduling in cloud computing

on the major issues in the CC environment is resource
scheduling. Resource scheduling refers to the procedures of
distributing scheduled tasks onto available virtual machines
in CC environment. Due to the constraint on the number of
VMs and their distinct potentialities, an effective resource
scheduling model called Lemke-Flower-Pollinated Resource
Scheduling is designed to meticulously schedule application
tasks onto subsequent VMs.

Cloud application model

According to the above explanation of the proposed
Bradley-Terry BrownBoost Lemke Flower Pollinated
Resource Optimization (BTB-LFPRO) method, designed
according to priority constraints, the task flow with priority
constraints in our work is represented by a Directed Acyclic
Graph (DAG), defined as follows.

G=(T,E,C,LW) (1)

From the above equation (1), the DAG ‘G’ is represented
by means of cloud user requested tasks T = {1, T5, .., Tn ),
Edges between tasks ‘E = {E;; = (T;.T;)|T;, T; € T;;}, cost
¢ = {C;i,7} involved in communicating between tasks Ty
and ‘T, and computation cost ‘W = {W;;|i.j}’ between

¢ = {C;;1i,7} respectively.

Bradley—Terry BrownBoost Classifier-based Task
Scheduling

Task scheduling is used to schedule cloud user-requested
tasks for optimal resource utilization by assigning specific
tasks to definite resources at specific time instances. The
issue of task scheduling encompasses two classes of users:
cloud providers and consumers. On the one hand, cloud
consumers run their tasks to address issues of various scales
and complexity levels, and on the other hand, resources
from cloud service providers are utilized in executing tasks
requested by cloud users.

A priority assignment function is designed to utilize
a new log likelihood data structure, known as the binary
classification matrix, to assign priority to individual cloud
user-requested tasks upon arrival. In addition to this, the
binary classification queue implements a unique concept
based on the principle of linear combination of weak
hypotheses for extracting the cloud user’s requested task
with the highest priority. This work introduces a parallel
algorithm for cloud user-requested task scheduling, in which
the priority assignment to tasks and the building of linear
combinations of weak hypotheses are executed in parallel,
taking into account the non-preemptive and preemptive
nature of cloud user-requested tasks.

In this work, the Bradley-Terry BrownBoost Classifier is
used to categorize tasks into high-priority and low-priority
tasks. The Bradley-Terry model is a probability model used
to predict the outcome of priority levels in the BrownBoost
Classifier. Based on priority level, the tasks are stored in the

queue with minimal memory space consumption. Figure 2
shows the structure of Bradley-Terry BrownBoost Classifier
model.

As illustrated in the above figure, the cloud user-
requested tasks obtained from the dataset are provided
as input to the classifier model to classify the tasks based
on priority. First, the input cloud user’s requested tasks
are subjected to a log-likelihood function, followed by a
pairwise comparison to obtain the text-categorized results.
Next, the categorized text results are subjected to the
BrownBoost classifier to generate strong classifier results,
improving the prediction of priority levels and enhancing
task scheduling efficiency and makespan.

Let ‘Prob’ denote the probability that the task ‘T3’ is
preferred in comparison with ‘T}’, then using the Bradley-
Terry model, for paired comparisons between ‘T;" and ‘T;
" the Bradley-Terry probabilistic function is formulated as
given below.

i (9

P?‘ob(Ti selected over T}) =TT
1 7

From the above equation (2) ‘T; > 0’ denote the overall
cloud user requested tasks placed in the cloud server and
to be processed via cloud service provider. Let us further
assume that the outcomes of all the comparison are
independentand in addition let ‘Res;;’ denote the frequency
of times ‘T;" is selected over 'T;". Then, the log likelihood
of above probability measure takes the following form
mathematically represented as given below.

log(prob) ¥, (Resij log[ Probi

Prob;
— |+ Res-i lOg T
Prob;+Probj gl Prob;+Prob;

3)

From the above equation (3), ‘Res;;’ denote the frequency
of times 'T;’ is selected over ‘T;” with the overall probability
rate of ‘Prob;" and 'Prob;’ respectively. Then, to obtain

Dataset

Log Likelihood Function

Pair-Wise Comparison

TC

BrownBoost Classifier

( Scalable Task Scheduling }

Figure 2: Structure of Bradley-Terry BrownBoost Classifier model
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multi-class probability estimates by roughly calculating by
pairwise comparisons is represented as given below.
Res = Prob(T in Class i| T; in Class i or Class j)
(4)
From the above equation (4), results of multi-class
probability estimates by pairwise comparisons ‘Res;;’ is
arrived at based on the probability of task ‘Ti’ in either
Class i’ (i.e., high priority) or Ty’ in either ‘Class’ or '
low priority) respectively. Then, this work
evaluates ‘T; = Prob(T in Class i)’ by minimizing the

" and this is

Classj' (i.e.,

H 1 ’
distance between ‘Res;;” and ‘jean,

i T;+T;
mathematically stated as given below.

TC = mTinE T; (Res log s —I— Res;; logmeanﬂ)(s)

From the above equation (5) ‘T;;’ represents the number
of cloud user requested tasks in ‘Class i’ (i.e., high priority)
‘Class j' (i.e., low priority) respectively. Also from the above
equation results the task categorization ‘TC’ results are
obtained and accordingly ‘1" represents the high priority
task whereas ‘0" denotes the low priority task. Followed
by which, BrownBoost classifier is employed to predict the
outcome of priority level.

Given ‘n’ feature vectors (i.e., task)

'TC, = (TCy1, TCyay ..., TCyp), oo, TCq = (TCoy, TCrz, ., TG )

.,Res,))
"where ‘Res; € K = {—1,1} elucidating the class to which
the task belongs to then the outcome of priority level is
formulated as given below.

ofsize’p’andvectorofclasslabels’Res = (Res;, Ress, ..

c = TC;lerfinv?(1— &)] 6)

From the above equation (6), the only performance
parameter of BrownBoost ‘C’ is the time it runs that states
that each hypothesis takes a discrete amount of time and
hence priority variance in cloud user requested tasks are said
to exist. Also a larger value of ‘¢’ means that BrownBoost will
treat the cloud user requested task to be noisy and hence
proceed with other set of cloud user requested tasks. On the
other hand, a smaller value of ‘c’ means that BrownBoost
will treat the cloud user requested task as non-noisy and
proceed with two-class classifier. Also, ‘erfinv(TC)’
denotes the inverse error function with a taraet classification

error ‘s’ definedas’e = i * (Prob|TC; — Res;]) and
'‘Prob|[TC;] formulated as given below.
L a;hy(TC)
Prob[TC;] = er f(T) (7)

From the above equation (7) the probability results
of the task categorization ‘T'C" is arrived at ‘Prob|[TC;]

" by taking into considerations the error function ‘erf(TC)
", hypothesis ‘h;(TC)' and weight ‘@;’ respectively. In this
manner, the core hypothesis of the BrownBoost classifier
is that noisy task-categorized samples will be correctly
labeled, whereas non-noisy task-categorized samples will
contribute to the final classifier. Owing to this if the final
classifier of task categorization is learned from the non-
noisy task categorized samples, the generalization error of
the final classifier can be much better than if learned from
noisy task categorized samples. This, in turn, would not only
improve task scheduling efficiency but also maximize the
completion of the last subtask, thereby improving makespan
in a significant manner. The pseudo code representation of
Bradley-Terry BrownBoost Classifier-based Task Scheduling
is given below.

As outlined in the above algorithm, with the objective
of improving task scheduling efficiency and reducing
the makespan, initially, cloud user-requested tasks are
categorized into low-priority or high-priority tasks. For
this, a probabilistic function and a log-likelihood function

Input: Dataset'DS’, User requested tasks T = {Ty, Ty, ..., T}’

Output: scalable task scheduling‘T'S"

Step 1: Initialize 1’
Step 2: Begin

Step 3: For each Dataset ') 5’ with User requested tasks ‘T

Step 4: Formulate Directed Acyclic Graph (DAG) for task flow with
priority constraints as given in equation (1)

Step 5: Formulate Bradley-Terry probabilistic function as given in
equation (2)

Step 6: Evaluate the log likelihood of probability measure as given
in equation (3)

Step 7: Evaluate multi-class probability estimates by pairwise
comparisons as given in equation (4)

Step 8: Formulate task categorization by minimizing the distance
as given in equation (5)

Step 9: ' TC = 1’

Step 10: Then cloud user requested task is high priority task

Step 11: Measure the outcome of priority level as given in
equation (6)

Step 12: Obtain BrownBoost classified results as given in equation
)

Step 13: Return task scheduling with high scalable cloud user

request access tasks ‘TS’
Step 14: End if

Step 15:'TC =

Step 16: Then cloud user requested task is low priority task
Step 17: End if

Step 18: End for

Step 19: End

Algorithm 1: Bradley-Terry BrownBoost Classifier-based Task
Scheduling
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are employed to obtain multi-class probability estimates
through pairwise comparisons. Finally, the BrownBoost
classifier is applied to the task-categorized results to ensure
scalable task scheduling. As a result the task scheduling
efficiency is improved with minimal makespan.

Lemke Flower Pollinated Resource Optimization

Next to identify optimal virtual machine tracking global
optimum solutions remains a highly demanding task.
Frequently, traditional optimization mechanisms do not
perform satisfactorily in cases of optimal virtual machine
identification in CC environments, as they may be trapped
in local optima. Motivated by the pollination behavior of
flowers, several research works have applied the flower
pollination algorithm (FPA), a novel heuristic optimization
technique. However, the global and local search processes
of flower pollination algorithm are highly susceptible and
are sensitive to the process of distributing tasks scheduled
onto available virtual machines. Owing to the reason
that the virtual machines are constrained in number an
efficient scheduling model is required to schedule tasks
on to the virtual machine. To solve this issue, an improved
flower pollination algorithm based on the Gaussian Normal
Distribution with Zero Mean and Variance, called Lemke
Flower Pollinated Resource Optimization, is proposed.
Figure 3 shows the block diagram of Lemke Flower Pollinated
Resource Optimization model.

As shown in the above figure, the two element of flower
pollination are cross-pollination and self-pollination. On the
one hand, cross-pollination reveals that pollination occurs
among different flowers due to biological factors, and on the
other hand, self-pollination reveals that pollination occurs
among different flowers due to spontaneous diffusion.
Cross-pollination corresponds to a global search process
and is formulated as follows.

VMt =vM!P + LD(VM! — CF[VM]) (8)

Global-Search
Based Cross
Pollination

Cosine Inertia
Weight

Input (Task Scheduled)

Local-Search Based
Self Pollination

Parameter Flexible
Adaptation
Function

Optimized Task Scheduling

Figure 3: Structure of Lemke Flower Pollinated Resource
Optimization model

From the above equation (8) the global search cross-
pollination for the virtual machine ‘vM/*" with ‘VM;’
possessing specific configurations like main memory ‘VM,,, ..,
', storage VM, and processing power ‘VM,,," is formulated
by taking into considerations the levy distribution ‘LD’ of the
current fittest virtual machine ‘CF[VM]’ in action. On the
other hand, self-pollination corresponds to local searching
process and is mathematically represented as given below.

VM{™ = VM{ + ¢ (VM; — VM) )

From the above equation (9), 'VM}’ and ‘VM},’ two
pollens (i.e., virtual machine) individual positions (different
virtual machines with different specific configurations) in
the population that are distinct from pollen (i.e., virtual
machine) ‘i’ and ‘&’ follows a uniform distribution in the
range of ‘[0, 1]. The inertia weight in the conventional flower
pollination is said to be an arbitrary value. Despite larger
inertia weight contributing to better global searching and
smaller inertia weight contributing to better local searching,
leads to exploitation. Hence, to ensure trade-off between
exploitation and exploration a cosine inertia weight is
provided for global search cross-pollination as given below.

T CuiTyter

)] + inert, BetaRND(i, j)

(10)

From the above equation (10), global search cross-
pollination or local search self-pollinations, cosine inertia
weight ‘W’ is arrived based on the current iteration ‘Curry,,,.,
maximum number of iterations ‘Max;,,,., weight adjustment
factor ‘weight,, inertia adjustment factor ‘inert," along
with beta random numbers ‘BetaRND' with parameters
‘,j’ respectively. The deviation degree of ‘W’ employed in
our work manage the inertia weight value in turn therefore
facilitating the global searching as well as the local searching
potentiality.

Next, with the obtained global search cross-pollination
or local search self-pollination, the cosine inertia weight
crossover operation is performed using the parameter
flexible adaptation function. For different stages of the
virtual machine selection, process, it is mandatory to
formulate different parameters and should meet the
following requirements, select appropriate parameters
(i.e., task scheduled) for a specific region (i.e., population) in
the target scope (i.e., set of virtual machine) and eliminate
inappropriate parameters (i.e., inappropriate resources)
respectively. With this objective, initially, the parameter
flexible adaptation function is formulated as given below.

TS;
ET (TS:,VM;) = Total MIPS(VM;) (an

w = weight,, [1 — cos(

2 Maxitar

From the above equation (11) the cloud service provider
evaluates the execution time ‘ET’ of each task scheduled
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‘TS’ on each virtual machine ‘VM;’. Next, the cloud
service provider ensures that inappropriate parameters
are eliminated and appropriate parameters are retained,
with the purpose of maximizing resource utilization while
assigning virtual machines to keep resources occupied as
much as possible. Then, the average resource utilization is
mathematically stated as given below.

— E?=1 ET;

AUQ‘RU = W (12)

From the above equation (12) with the objective of
keeping as much resource as equipped by the cloud
service provider the average resource utilization ‘AvgRU
"is formulated based on the execution time ‘ET;" and the
modeled objective ‘Obj'. The objective function here
remains in optimal task scheduled being allocating the

tasks on virtual machine and is formulated as given below.

Obj = min(X}_; ET[TS;,VM;], Out;;)VVM; (13)

Lif TS; isallocated to VM;

. (14)
0, Otherwise

Outij = {

Fromthe above equations (13) and (14) ’outij’ determines
the binary decision output variable (i.e., ‘1) of either task
scheduled 'TS;’ being allocated to virtual machine ‘VM;" or
on contrary the decision output variable is (i.e., ‘0’) with not
allocation to virtual machine. In this manner, optimal task
scheduling is ensured. The pseudo code representation of
Lemke Flower Pollinated Resource Optimization is given
below.

As outlined in the above algorithm, with the objective of
reducing energy consumption and subsequently speeding
up the process, the scheduled tasks of the corresponding
cloud user should be allocated to a virtual machine. With
this objective, the Lemke Flower Pollination algorithm, which
introduces cosine inertia weight and flexible parameter
adaptation, is designed. Here, by using the cosine inertia
weight a trade-off between exploitation and exploration is
said to be achieved. Next, by introducing parameter-flexible
adaptation, both the cloud service providers’ and cloud
users’ requirements are said to be achieved in a fine-tuned
manner.

Experimental setup

In this section, the experimental evaluations of the
proposed Bradley-Terry BrownBoost and Lemke flower
pollinated resource optimization (BTB-LFPRO) for optimized
task scheduling and existing methods namely e-fuzzy
dominance based reliable green workflow scheduling
(FDRGS) (Rani, R., & Garg, R., 2022) and fruit fly-based
simulated annealing optimization scheme (FSAQS) (Gabi,

Input: Dataset ‘DS, Virtual Machine’
VM = {VM{,VM,, ..., VM,}

Output: Energy and convergent-efficient task
scheduling

Step 1: Initialize task scheduled ‘TS, ‘l;'s = [0,1]’
Step 2: Begin

Step 3: For each Dataset ‘DS’ with task scheduled ‘TS’

and virtual machine 'V M’

Step 4: Formulate global search cross-pollination as
given in equation (8)

Step 5: Formulate local search self-pollination as given
in equation (9)

Step 6: Formulate a cosine inertia weight to ensure
trade-off between exploitation and exploration as given
in equation (10)

Step 7: Formulate parameter flexible adaptation as
given in equation (11)

Step 8: Evaluate average resource utilization to meet
requirements of cloud service provider as given in
equation (12)

Step 9: Evaluate modeled objective function to meet
requirements of cloud user tasks to be accomplished in
virtual machine as given in equations (13) and (14)
Step 10: Return virtual machine allocated

Step 11: End for

Step 12: End

Algorithm 2: Lemke Flower Pollinated Resource Optimization

D., Dankolo, N. M., Muslim, A. A., Abraham, A., Joda, M. U,,
Zainal, A., & Zakaria, Z., 2022) are implemented in Java with
the CloudSim network simulator. To ensure fair comparison
Personal Cloud Datasets is considered for validating and
analyzing the results obtained from http://cloudspaces.eu/
results/datasets. Detailed comparative analysis is performed
for four different performance metrics, makespan, energy
consumption, task scheduling efficiency and throughput
respectively.

Discussion

In this section detailed analysis of four different performance
metrics, namely, makespan, energy consumption, task
scheduling efficiency and throughput using the proposed
Bradley-Terry BrownBoost and Lemke Flower Pollinated
Resource Optimization (BTB-LFPRO) and two existing
methods, e-fuzzy dominance based reliable green workflow
scheduling (FDRGS) (Rani, R., & Garg, R., 2022) and fruit fly-
based simulated annealing optimization scheme (FSAOS)
(Gabi, D., Dankolo, N. M., Muslim, A. A., Abraham, A., Joda,
M. U., Zainal, A., & Zakaria, Z., 2022) respectively.
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Performance analysis of makespan

First, in this section, makespan or completion time
representing the total time consumed in processing a set
of cloud user requested tasks for its complete execution is
measured. In cloud computing environment as far as optimal
task scheduling is concerned, makespan denotes the time
when the last subtask is accomplished. Minimization of
makespan can be achieved by allocating the set of cloud
user requested tasks to set of virtual machines. To be
more specific, makespan in CC environment denotes the
maximum completion of last subtask and is mathematically
represented as given below.

MS(CTmax) = maXE?ﬂ Ti,lFi,p Ti,z Fi,2f s Ti,zFi,z

(15)
Lif T, - VM,
F, =

0, Otherwise 16)

From the above equations (15) and (16) the maximum
completion of last subtask or makespan ‘MS (CTyqy)’ is
represented by means of all the tasks ‘T;" and 'T; » VM,
denotes that task 'T;'is allocated to ‘vM;" and 'T; . denoting
the completion time of task ‘T;" on virtual machine ‘v’
respectively. Table 1 shows the comparison of makespan.
It is clear that the average makespan for existing methods,
FDRGS (Rani, R., & Garg, R., 2022) and FSAOS (Gabi, D.,
Dankolo, N. M., Muslim, A. A., Abraham, A., Joda, M. U., Zainal,
A., & Zakaria, Z., 2022) is 96.2ms and 109.1ms respectively.
However, the proposed BTB-LFPRO archives minimum
makespan of 83.7ms. This clearly shows the minimum
convergence speed of the proposed method. This is due to
the calculation of comparison of each cloud user request
tasks in the proposed method.

Table 1: Makespan

Number of user tasks ~ Makespan (ms)
BTB-LFPRO  FDRGS FSAOS

1000 35 53 68
2000 38 58 73
3000 55 63 78
4000 68 79 85
5000 75 80 98
6000 90 98 110
7000 105 115 123
8000 113 125 138
9000 120 138 155
10000 138 153 163

Figure 4 shows the variation of overall makespan using
the proposed BTB-LFPRO and existing two methods, FDRGS
(Rani, R., & Garg, R., 2022) and FSAQS (Gabi, D., Dankolo, N. M.,
Muslim, A. A., Abraham, A., Joda, M. U., Zainal, A., & Zakaria,
Z.,2022). With x-axis representing the distinct numbers of
cloud user requested tasks y-axis denotes the makespan
measured in terms of milliseconds (ms) using the three
methods, proposed BTB-LFPRO, (Rani, R., & Garg, R., 2022)
and (Gabi, D., Dankolo, N. M., Muslim, A. A., Abraham, A.,
Joda, M. U,, Zainal, A., & Zakaria, Z., 2022). While performing
simulations with 1000 cloud user requested tasks, the
makespan using the proposed BTB-LFPRO was 35ms, and for
(Rani, R., & Garg, R., 2022) is 53ms and for (Gabi, D., Dankolo,
N. M., Muslim, A. A., Abraham, A., Joda, M. U,, Zainal, A.,
& Zakaria, Z., 2022) is 68ms. However, the proposed BTB-
LFPRO method achieves minimum makespan. This clearly
shows the minimum amount of time consumed even for
the accomplishment of last subtask. The reason was due to
the application of Bradley-Terry BrownBoost Classification
algorithm. By applying this algorithm, Bradley-Terry
probabilistic function was applied in Directed Acyclic Graph
(DAG) for measuring task flow with priority constraints. Also
log likelihood of probability measure along with multi-
class probability estimates by pairwise comparisons was
performed for each cloud user requested tasks. With this
even the time consumed in accomplishing last subtask was
taken into consideration that in turn reduced the overall
makespan of the proposed BTB-LFPRO method by 15%
compared to (Rani, R., & Garg, R., 2022) and 26% compared
to (Gabi, D., Dankolo, N. M., Muslim, A. A., Abraham, A., Joda,
M. U., Zainal, A., & Zakaria, Z., 2022).

Performance analysis of task scheduling efficiency

Cloud user request task scheduling by the cloud service
provider refers to the allocation of best suitable resources
by taking into considerations different factors, like, cost,
makespan, throughput, resource utilization and so on. In
other words, task scheduling efficiency refers to the ratio of
number of successfully scheduled tasks to the total number
of cloud user requested tasks made by distinct cloud users

180
160 p
140 p
120

—
o
S

uBTB-LFPRO
= FDRGS
FSAOS

80

Makespan (ms)

60

dddddinn

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of user tasks

Figure 4: Variation of makespan
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in cloud computing environment. This task scheduling
efficiency is mathematically represented as given below.

Eff;l‘s _ ?:1 Tasks s::edu!ed £ 100 (17)
i

From the above equation (17), task scheduling efficiency
‘Ef frs' is measured by taking into consideration the tasks
scheduled ‘Tasks scheduled’ and the cloud user requested
tasks made by the cloud user ‘T;". It is measured in terms of
percentage (%). Table 2 shows the comparison of task
scheduling efficiency. The FDRGS (Rani, R., & Garg, R., 2022)
method has average task scheduling efficiency of 85% and
FSAOS (Gabi, D., Dankolo, N. M., Muslim, A. A., Abraham, A.,
Joda, M. U,, Zainal, A., & Zakaria, Z., 2022) has an average
task scheduling efficiency of 76%. However, the proposed
BTB-LFPRO method has a high rate of 90%. This is due to
the usage of efficient network resource utilization.

Figure 5 shows the variation of task scheduling efficiency.
From the above figure x-axis referring to the distinct
numbers of cloud user request tasks provided as input and
y-axis denoting the task scheduling efficiency results by
substituting the values in equation (17). With simulations
performed for 1000 cloud user requested tasks 935 tasks
were scheduled using the proposed BTB-LFPRO method,
905 tasks were scheduled using (Rani, R., & Garg, R., 2022)
whereas 885 tasks were scheduled using (Gabi, D., Dankolo,
N. M., Muslim, A. A., Abraham, A., Joda, M. U., Zainal, A.,
& Zakaria, Z., 2022), therefore the overall task scheduling
efficiency was observed to be 93.5%, 90.5% and 88.5%
respectively. This clearly shows the high task scheduling
efficiency results of the BTB-LFPRO method. This is due to
the implementation of Bradley-Terry BrownBoost Classifier
model. By applying this model, BrownBoost classifier was
applied to the task categorized results for ensuring scalable
task scheduling. Moreover, the BrownBoost function
employed with discrete amount of time as hypothesis taken

Table 2: Task scheduling efficiency

Number of user tasks ~ Task scheduling efficiency (%)
BTB-LFPRO  FDRGS  FSAOS

1000 93.5 90.5 88.5

2000 91.35 86.15 76.13
3000 90 85.05 75.18
4000 88.25 83.45 73.25
5000 86.35 81.35 71.23
6000 89.35 84.25 74.28
7000 90.45 85.95 75.35
8000 91.25 86.35 76.31
9000 92 87.55 77.33
10000 93 88.45 78.38

into consideration priority variance is employed and by
classifying the resultant values, either cloud user requested
task are considered to be noisy or non-noisy and proceed
with two-class classifier. This in turn improves the overall task
scheduling efficiency of proposed BTB-LFPRO method by 5%
compared to (Rani, R., & Garg, R., 2022) and 18% compared
to (Gabi, D., Dankolo, N. M., Muslim, A. A., Abraham, A., Joda,
M. U., Zainal, A., & Zakaria, Z., 2022) respectively.

Performance analysis of energy consumption

Next, the energy consumption of CC environment chiefly
includes, to name a few being memory, storage, CPU
and network transmission. The energy consumption is
mathematically represented as given below.

ECi.I == PO‘WIECT:]' (18)
TEC;; = Xi—q XL, Pow, EC (19)

From the above equations (18) and (19) ’ECT;’ represents
the energy consumption of task ‘7’ on virtual machine ‘VM,’
and ‘EC;,' represents the consumption of energy consumed
by task ‘T;" executing on ‘VM;’ respectively. Table 3 shows
the comparison of energy consumption. It is clear that the
average energy consumption of the FDRGS (Rani, R., &
Garg, R., 2022) method is 75J and has the average energy
consumption of the FSAOS (Gabi, D., Dankolo, N. M., Muslim,
A.A. Abraham, A.,Joda, M. U,, Zainal, A., & Zakaria, Z., 2022)
was 83J. However, the proposed BTB-LFPRO method had
low energy consumption of 70J. This clearly shows the
high scalability of the proposed method. This is due to the
involvement of virtual machine for optimal scheduling.

Figure 6 shows the comparison of energy consumption
efficiency. With x-axis denoting distinct numbers of
cloud user requested tasks, y-axis represents the energy
consumption measured by substituting the values in
equations (18) and (19). With the simulations performed
for 1000 cloud user requested tasks, 45) of energy was

50 =BTB-LFPRO
=FDRGS
#FSAOS

Task scheduling efficiency (%)

T ST D TS S S—

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of user tasks

Figure 5: Variation of task scheduling efficiency
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Table 3: Energy consumption efficiency

Table 4: Throughput analysis

Number of user tasks Energy consumption (J) Number of user tasks Throughput(tasks/sec)
BTB-LFPRO FDRGS FSAOS BTB-LFPRO  FDRGS  FSAOS

1000 45 56 65 1000 195 143 112
2000 49 54 62 2000 258 205 194
3000 55 60 68 3000 340 278 247
4000 58 63 71 4000 564 398 364
5000 65 68 76 5000 622 512 495
6000 73 78 84 6000 708 675 594
7000 79 84 920 7000 837 745 718
8000 85 89 95 8000 912 833 807
9000 92 97 103 9000 1011 982 952
10000 105 110 116 10000 1127 1013 1006

uBTB-LFPRO
EFDRGS

" FSAOS

Energy consumption (J)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of user tasks

Figure 6: Variation of energy consumption efficiency

consumed in ensuring optimal task scheduling when applied
with BTB-LFPRO method, 56J of energy consumed using
(Rani, R., & Garg, R., 2022) whereas 65J of energy consumed
using (Gabi, D., Dankolo, N. M., Muslim, A. A., Abraham,
A., Joda, M. U,, Zainal, A., & Zakaria, Z., 2022) respectively.
This clearly shows the lower energy consumption of the
proposed BTB-LFPRO method. This is due to the involvement
of effective optimization model based on the network
resource availability i.e., using Lemke Flower Pollinated
Resource Optimization. By using this optimization model,
to ensure trade-off between exploitation and exploration
a cosine inertia weight was applied to both global search
cross-pollination and local search self-pollination. This in
turn reduced the energy being consumed in obtaining
optimal task scheduled results. As a whole the overall energy
consumption was found to be comparatively lesser using the
proposed BTB-LFPRO method by 8% compared to (Rani, R.,
& Garg, R., 2022) and 16% compared to (Gabi, D., Dankolo,
N. M., Muslim, A. A., Abraham, A., Joda, M. U., Zainal, A., &
Zakaria, Z., 2022).

Performance analysis of throughput
Throughput is defined as the number of user-requested

1200
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Figure 7: Variation of throughput

tasks completed by a particular time in the cloud. The
mathematical representation for calculating throughput is
given below,

Number of tasks completed
t (sec)

TpT = | | eo

From the above equation (20) ‘T PT" indicates throughput,
‘T’ represents time in second (sec), and it is computed in
terms of tasks per second (tasks/sec).

Table 4 and Figure 7 portray a graphical representation
of throughput with varying numbers of user tasks ranging
from 1000 and 10000 considered for simulation. In Figure
7,the number of tasks is denoted in the horizontal axis, and
throughput performance is represented in the vertical axis.
The results illustrate that the throughput is comparatively
increased than the existing methods. Let us consider that
the number of tasks is 1000, and the throughput obtained
for BTB-LFPRO, FDRGS (Rani, R., & Garg, R., 2022) and FSAQOS
(Gabi, D., Dankolo, N. M., Muslim, A. A., Abraham, A., Joda, M.
U., Zainal, A., & Zakaria, Z., 2022) is 196 tasks/sec, 143 tasks/
sec, and 112 tasks/sec respectively. When the number of
data points gets increased, the throughput gets increased
correspondingly. From the graph, BTB-LFPRO improved than
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the existing methods. This is because of the application
of the Lemke Flower Pollinated Resource Optimization
algorithm. By using this algorithm, the Parameter Flexible
Adaptation function is employed for performing crossover
operations. Appropriate parameters (i.e., task scheduled)
were selected for a specific region (i.e., population), and
discarded inappropriate parameters (i.e., inappropriate
resources) with higher throughput. As a result, throughput
is enhanced using BTB-LFPRO improved by 19% compared
to (Rani, R., & Garg, R., 2022) and 29% compared to (Gabi,
D., Dankolo, N. M., Muslim, A. A, Abraham, A., Joda, M. U.,
Zainal, A., & Zakaria, Z., 2022), respectively.

Conclusion

Task scheduling is predominantly concentrated on
identifying the optimal resources with the purpose of
reducing the total execution time of virtual machines
and hence the focus remains in improving the significant
utilization of the shared resources. A plethora of meta-
heuristic techniques have been deployed to solve the
issue of optimal task scheduling in cloud computing
environment. In this work, priority classification and resource
optimization called, Bradley-Terry BrownBoost and Lemke
Flower Pollinated Resource Optimization (BTB-LFPRO) is
proposed. To begin, Bradley-Terry BrownBoost Classifier
was applied to the cloud user request schedules to classify
the tasks and prioritize according to the requirements.
This eventually leads to a decrease in the makespan and
improves task scheduling efficiency. The Lemke Flower
Pollinated Resource Optimization algorithm is then used
to ensure energy and convergent efficient task scheduling
that in turn ensure trade-off between exploitation and
exploration, therefore improving energy consumption and
throughput subsequently. Results showed that the Bradley-
Terry BrownBoost and Lemke Flower Pollinated Resource
Optimization (BTB-LFPRO) method outperformed the
counterpart. Moreover, the introduced BTB-LFPRO method
minimizes the makespan, average energy consumption
and throughput with improved task scheduling efficiency
compared to the counterpart.
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