
Abstract
This study introduces a novel framework for investigating thermoelastic damping (TED) in viscoelastic micro-scale rectangular beams 
using the Euler-Bernoulli beam theory (EBBT). A two-temperature thermoviscoelastic model is developed, uniquely integrating non-
Fourier effects and fractional-order parameters through a generalized thermoelasticity approach with an internal heat source and the 
dual-phase-lag (DPL) thermal conduction model. This innovative approach addresses the limitations of classical models by incorporating 
size-dependent effects and spatially varying thermal properties, providing new insights into thermal-mechanical coupling in micro-scale 
systems. Explicit formulas are derived for the inverse quality factor and frequency shifts, with the study comprehensively analyzing the 
influence of parameters such as beam thickness, aspect ratios, end constraints, relaxation constants, and fractional-order parameters. 
Novel findings reveal critical thickness ranges and phase-lag effects that govern energy dissipation and system dynamics. The results 
highlight the divergence from existing models, emphasizing the importance of non-local and fractional-order frameworks for accurately 
predicting damping and frequency behavior. Practical applications of the study include the optimization of micro-electromechanical 
systems (MEMS), nanoscale resonators, sensors, and energy-harvesting devices. By bridging theoretical advancements with tangible 
engineering solutions, this research provides a robust foundation for future exploration in thermal management and micro-scale system 
design, marking a significant contribution to the field. Graphical representations illustrate the effects of temperature discrepancy factors 
on damping and frequency shifts in non-simple micro-beams, offering a comprehensive understanding of the interaction between 
thermal and mechanical responses.
Keywords: Thermoviscoelastic, Relaxation time, Non-Fourier effect, Damping, Non-local, Heat source, Non-simple micro-beam, Inverse 
quality factor.
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Introduction
Thermoviscoelasticity is the study that merges thermal, 
viscous, and elastic characteristics of materials to capture 
both their time-dependent deformation and the way they 
convert mechanical energy into heat. Damping refers to 
the inherent energy-dissipation mechanisms in viscoelastic 
materials. Under dynamic loading conditions, part of the 
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mechanical energy is absorbed through the material’s 
internal molecular friction and dissipated as heat. 

Thermoviscoelasticity describes material behavior where 
deformation and heat transfer are interrelated, and damping 
refers to the dissipation of energy, often as heat, during 
oscillatory or vibrational motion. In thermoviscoelastic 
materials, the interaction between thermal and mechanical 
fields can result in damping, as energy is dissipated through 
heat generation during deformation. The deformation 
process in these materials may produce heat due to the 
material’s viscous response and the coupling between 
thermal and elastic fields.

Thermoelastic damping is a critical factor in energy 
dissipation for vacuum-operated resonators that undergo 
transverse vibrations at room temperature. The material’s 
thermal expansion coefficient causes thermoelastic 
coupling, inevitably leading to a temperature gradient 
along the beam’s thickness. This temperature gradient 
drives irreversible heat flow, which increases entropy and 
ultimately converts the beam’s elastic potential energy into 
thermal energy. Consequently, structures incorporating 
flexural vibration inherently exhibit thermoelastic damping. 
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This damping is employed in aerospace, aircraft, and 
submarine designs to achieve high-precision performance 
and minimize unwanted vibrations and flutter (Bishop and 
Kinra, 1997). Thermoelastic damping adversely affects micro-
beam resonators, diminishing their sensitivity. Achieving a 
low level of thermoelastic damping is critical, as it signifies 
a high-quality factor in the resonators. Energy dissipation in 
micro-resonators occurs through two primary mechanisms: 
internal losses, which are mainly caused by thermoelastic 
damping, and external losses, including air damping and 
support loss. These external losses can be effectively 
reduced through precise manufacturing techniques and 
optimized structural designs (Lin, 2014).

Li et al. (2012) analyzed thermoelastic damping in circular 
and rectangular microplates with fully clamped and simply 
supported boundaries. Bostani and Mohammadi (2018) 
employed the Euler–Bernoulli beam theory in conjunction 
with the modified strain gradient theory, revealing 
significant differences in thermoelastic damping across 
the modified strain gradient, modified couple stress, and 
classical beam theories.

A notable approach for estimating thermoelastic 
damping in beams and plates is the complex frequency 
technique. Lifshitz and Roukes (2000) utilized the 
unidirectional coupled thermoelastic theory to derive 
a more accurate analytical expression for the inverse 
quality factor. Sun et al. (2006) explored the influence 
of thermoelastic coupling on damping in micro-beam 
resonators, employing generalized thermoelastic theory 
with relaxation time. Vahdat and Rezazadeh (2011) analyzed 
the impact of axial and residual stresses on thermoelastic 
damping in capacitive micro-beam resonators using two-
dimensional non-Fourier thermoelasticity theory. Guo (2013) 
utilized the generalized thermoelasticity theory for micro-
beams to derive an expression for thermoelastic damping. 
Hendou and Mohammadi (2014) analyzed the effects of 
geometric nonlinearity on thermoelastic damping in Euler-
Bernoulli micro-beams. Borjalilou et al. (2019) applied the 
dual-phase-lag heat conduction model and the modified 
couple stress theory to predict thermoelastic damping in 
micro-beams at small scales. Gu et al. (2021) investigate the 
limitations of classical thermoelastic damping (TED) models 
in the design of micro/nano-devices, utilizing non-local 
strain gradient theory and dual-phase-lag heat conduction.

Mihailovich and MacDonald (1995) studied the 
mechanical loss in numerous micron-sized single-crystal 
silicon resonators operating in vacuum to identify the 
primary loss mechanism. Their investigation focused on 
three possible contributors to mechanical loss which 
includes doping-impurity losses, surface-related losses, 
and support-related losses. Zhang et al. (2003) analyzed the 
influence of air damping on the frequency response and 
quality factor of a micro-machined beam resonator. Zener 

(1937) predicted the existence of the thermoelastic damping 
process and experimentally validated the core principles 
of the theory. Berry (1955) further conducted experiments 
on a-brass, which supported Zener’s concept, measuring 
damping at room temperature as a function of frequency. 
Yasumura et al. (1999) observed thermoelastic damping 
in silicon nitride micro-resonators at room temperature, 
although their measurements were an order of magnitude 
smaller than Roszhardt’s (1990) findings for thermoelastic 
damping in single-crystal silicon micro-resonators under 
similar conditions. Manolis and Beskos (1980) examined 
the effects of axial loads and damping on beam vibrations 
induced by rapid surface heating.

Although the connection between temperature and 
stress fields was disregarded, the effects of damping and 
axial loading were considered. Copper and Pilkey (2002) 
proposed a thermoelastic solution method for beams with 
arbitrary quasi-static temperature distributions that induce 
significant transverse normal and shear stresses. Previous 
studies have explored the influence of thermoelastic 
damping’s size on the vibration frequency response of 
micro-resonators. Guo and Rogerson (2003) examined the 
size dependence of thermoelastic coupling in a doubly 
clamped elastic prism beam. 

Lifshitz and Roukes (2000) conducted a study on 
thermoelastic damping in beams with rectangular cross-
sections, revealing that thermoelastic attenuation decreases 
with increasing size after the Debye peaks. However, the 
conclusions of both Guo and Rogerson (2003) and Lifshitz 
and Roukes (2000) were formulated using the classical Fourier 
heat conduction equation, without accounting for boundary 
conditions. Additionally, several notable non-Fourier-based 
models exist, including the single-phase lagging (SPL) model 
derived from Lord-Shulman’s thermoelasticity theory (Lord 
et al. (1967), Heydarpour (2016)), the dual-phase lagging (DPL) 
model based on Tzou’s thermoelasticity theory (Tzou 2015, 
Othman et al. 2017), the three-phase lagging (TPL) model 
rooted in Choudhuri’s thermoelasticity theory [Kumar (2018), 
Choudhuri(2007)], and the Green-Naghdi thermoelasticity 
theory [Marin(2017), Wang(2016)]. Abbas (2015) examines 
thermoelastic interactions in functionally graded materials 
(FGMs) subjected to thermal shock, utilizing the fractional-
order three-phase lag model to formulate governing 
equations. Carrera et al. (2015) investigate the influence of 
two-temperature effects on a microbeam under ramp-type 
heating, employing generalized thermoelasticity theory 
and a relaxation time model to illustrate behavior across 
the microbeam’s thickness. Mondal and Sur (2025) study 
thermoelastic interactions in a permeating rod, emphasizing 
non-Fourier heat conduction in thermomass gas flow within 
the framework of generalized thermoelasticity theory. 

Kalkal et al. (2020) examine plane wave reflection in a 
rotating thermoelastic medium, focusing on four coupled 
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plane waves and demonstrating that the modulus of 
energy ratios equals unity at every incidence angle. Wang 
(2020) examines thermoelastic damping in micro-beams, 
highlighting the accuracy of memory-dependent heat 
conduction over classical models for small-scale resonators. 
Zhou (2021) explores thermoelastic damping (TED) and 
frequency shift in micro/nano-ring resonators, emphasizing 
the effects of heat-conduction dimension (HCD) and 
dual-phase-lagging (DPL) non-Fourier heat conduction. 
Key findings reveal that geometrical parameters, material 
properties, and DPL effects significantly influence TED 
and frequency shifts. Gu (2021) develops a scale-aware 
theoretical model for thermoelastic damping (TED) 
in micro-beam resonators, highlighting the effects of 
small-scale parameters like nonlocality, length scale, and 
slenderness ratio. It presents a size-dependent Q-factor 
formula and compares it with classical models, aiming 
to improve the design of micro/nanoscale devices. Singh 
(2007) analyzes the governing equations of Lord-Shulman’s 
theory for a two-dimensional, homogeneous, isotropic 
generalized thermoelastic half-space with voids, focusing 
on compressional and shear wave reflection phenomena. 

Recent studies include the work of Abouelregal et al. 
(2024), who introduced a novel viscoelastic heat transfer 
model. This model incorporates a memory-based derivative 
with the Moore-Gibson-Thomson equation to analyze 
the properties and behavior of polymers under external 
stresses. Makkad et al. (2025) proposed an innovative 
thermoviscoelasticity model based on fractional calculus 
to examine the thermal and mechanical characteristics of a 
non-simple nanobeam subjected to ramp-type heat loading. 
Similarly, Chandel et al. (2024) investigated thermoelastic 
heat transfer in a spherically symmetric sphere under point 
impulsive thermal loading, employing memory-dependent 
derivatives to predict the behavior of nanostructures. 
Zhang’s (2016) study models thermoelastic damping (TED) in 
micro- and nanomechanical beam resonators, emphasizing 
size effects such as phonon mean-free path and relaxation 
time. Results show non-local effects are negligible at 
small scales, while size effects significantly impact energy 
dissipation, especially at submicron levels. Kakhki et al. (2015) 
provide an analytical framework for analyzing thermoelastic 
damping (TED) and dynamic behavior in MEMS micro-
beam resonators under diverse boundary conditions. It 
leverages modified coupled stress theory and Laplace 
transform techniques, offering an accurate alternative to 
numerical methods. Guo et al. (2012) examine thermoelastic 
damping (TED) in micro-beam resonators using the dual-
phase-lagging (DPL) model, revealing that nanoscale TED 
can surpass traditional models like Lifshitz–Roukes’ and 
Zener’s approximations. It highlights the impact of thermal 
relaxation constants and their ratio on TED behavior, offering 
insights into nanoscale resonator design.

Advanced numerical techniques, such as the finite 
element method (FEM), have been adapted to include 
thermoviscoelastic phenomena by integrating mechanical 
displacement and heat flow conservation equations. This 
adaptation is essential because the heat generated during 
viscoelastic deformation influences the temperature 
field and subsequently alters material behavior. Building 
upon these foundational concepts, current research in 
thermoviscoelasticity delves into advanced models such as 
those employing fractional calculus or incorporating non-
local effects to capture the intricate behaviors of materials 
at micro and nanoscales. These cutting-edge studies aim 
to enhance predictive models for damping characteristics 
under highly variable environmental conditions, ultimately 
contributing to the development of more resilient and 
efficient materials and structures.

While significant research has been conducted on 
thermoelastic damping in micro-beam resonators, a 
notable gap persists in applying fractional calculus and 
dual-phase-lag theory. Current studies predominantly rely 
on classical and modified Fourier-based models, which 
inadequately account for thermal relaxation effects and 
other critical factors. This research seeks to bridge this gap 
by introducing a fractional thermoviscoelastic damping 
analysis for non-simple micro-beams within the framework 
of dual-phase-lag theory. The inclusion of the dual-phase-
lag thermal conduction model, along with a non-uniform 
internal heat source, offers a novel framework to analyze 
real-world heat transfer mechanisms and their influence 
on micro-beams. The research derives an explicit formula 
to calculate the inverse quality factor and frequency shift, 
enabling precise characterization of these parameters. 
Furthermore, it thoroughly examines how damping 
behavior varies with different aspect ratios and boundary 
conditions, emphasizing the role of end constraints and 
aspect ratios in shaping both damping and frequency shifts.

This research investigates the interplay between 
frequency shifts and damping in a nanoscale microbeam. 
A novel non-simple model is introduced, incorporating 
temperature discrepancy factors to capture the coupling 
between heat and elastic deformations, facilitating the 
derivation of explicit damping formulas. The study examines 
the inverse quality factor through graphical representations 
and illustrations, deriving explicit expressions for frequency 
shift, attenuation, and the inverse quality factor. 

The paper is structured as follows: Section 2 outlines the 
mathematical framework for the governing equations of 
non-local Klein-Gordon elasticity theory. Section 3 discusses 
the practical considerations of heat conduction and the 
thermoelastic field. Section 4 focuses on deriving analytical 
solutions for temperature distribution and associated stress, 
highlighting the thermal effects on damping and frequency 
shifts. Section 5 presents parametric analyses and numerical 
results, while Section 6 concludes the study.
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Mathematical modeling and the fundamental 
equation

The non-local Klein-Gordon elasticity theory
According to Eringen’s non-local elasticity theory [Eringen 
(1983)], the stress tensor at a given point x within an elastic 
body is influenced by the strain tensors at all other points 
in the body. Utilizing experimental findings on phonon 
dispersion and the atomic theory of lattice dynamics, the 
non-local stress tensor σ  at position x can be formulated 
to reflect these interactions comprehensively as

 ( ) ( , ) ( ) ,
v

x K x x t x dvσ ζ′ ′= −∫∫∫                                          (1)

where the kernel function ( , )K x x ζ′ −  represents the 
non-local modulus, where x x′ −  is the Euclidean distance 
and ζ  is a material constant determined by both internal 
and external characteristic lengths. Additionally, the 
generalized Hooke’s law defines the classical (local) stress 
tensor at point x′ , denoted as ( )t x′ . Given the complexity of 
solving elasticity problems through the integral constitutive 
relation in Eq. (1), other challenges are often addressed by 
employing an equivalent differential form of the integral 
constitutive relation. The differential form of Klein–Gordon 
non-local constitutive relations for an elastic body described 
in [Eringen (1983), Singh(2024)], is formulated as 

2 2 2(1 ) ,t tµ τ σ− ∇ + ∂ =                                              (2)

where µ  represents the non-local parameter given by

2( )lµ ζ=  with 0 ,e a
l

ζ =                                            (3)

where a and l stand for the internal and external 
characteristic lengths, respectively, and 0e  is a material 
constant. Given the thermoelastic constitutive relationships 
between the kinematic parameters and the local stresses, 
Eq. (2) can be expressed as

 2 2 2
0(1 ) [ (1 2 ) (1 ) ],

(1 )(1 2 )t mm
E v I v v I

v v
µ τ σ ε ε α θ− ∇ + ∂ = + − − +

+ −
   (4)

where the identity and strain tensors are denoted by I 
and ε, respectively. 

The strain tensor components ε are acquired using

1 ,
2

ji
ij

j i

uu
x x

ε
 ∂∂

= +  ∂ ∂ 
                                                 (5)

where iu  represents the components of the displacement 
vector u. 

The strain tensor ε  can be expressed in relation to the 
non-local stress tensor σ  and the temperature increment 
θ , derived using Eq. (4) as

2 2 2 2 2 2
0

1 [(1 )(1 ) (1 ) ] ,t t mmv v I I
E

ε µ τ σ µ τ σ α θ= + − ∇ + ∂ − − ∇ + ∂ +
       (6)

Non-simple dual-phase fractional heat conduction 
equation
In a thin micro-beam, the temperature gradient along the 
x-direction is insignificant compared to that along the 
z-direction (Lifshitz and Roukes, 2000). The energy equation 
given by Biot (1956) is

.v
TC Q q
t

ρ ∂ ′− = −∇ ⋅
∂

                                                 (7)

where Q′ is an internal heat source.
To microscopically analyze the microstructural 

interactions in solid heat conductors, the temperature 
gradient Tτ  and heat flux vector  qτ  were translated into a 
dual-phase-lag model with delay time translation by Tzou 
(1995) as

( ) ( ).q Tq t k tτ τ+ =− ∇Φ +                                               (8)

By using Taylor’s series to expand both sides of Eq. (8) 
about the fractional order derivatives and keeping terms up 
to the 2α  order in both phase-lags, one can derive

2 2 2 2

2 21 1 ,
! (2 )! ! (2 )!

q q T Tq k
t t t t

α αα α α α α α

α α α α

τ τ τ τ
α α α α

   ∂ ∂ ∂ ∂
+ + = − + + ∇Φ    ∂ ∂ ∂ ∂  

      (9)     

in which [0,1]α ∈ . 
Using Eq. (7) and application of the divergence operator 

on both sides of Eq. (9) yields

2 2 2 2
2

2 21 1 .
! (2 )! ! (2 )!

q q T T
v

TC Q k
t t t t t

α αα α α α α α

α α α α

τ τ τ τρ
α α α α

   ∂ ∂ ∂ ∂ ∂ ′+ + − = + + ∇ Φ     ∂ ∂ ∂ ∂ ∂    
(10)

However, Quintanilla (2008) noted that if the energy 
equation provided by 

( ) ( ),q t c t−∇ = Φ                                                   (11)

and the heat conduction Eq. (10) is coupled, then the 
elements of a point spectrum can always be rearranged in 
such a way that the resulting equation’s real part is close to 
infinity. This demonstrates the instability and ill-posedness 
of Tzou’s proposed heat conduction model. As a result, Eq. 
(10) for heat conduction is unstable and ill-posed. Within the 
framework of two-temperature theory, Quintanilla (2008) 
demonstrated that the dual-phase-lag heat conduction Eq. 
(10) can be made well-posed and stable. In this context, Chen 
and Gurtin (1968) proposed categorizing real materials into 
simple and non-simple types by considering two distinct 
temperatures: conductive and thermodynamic. These 
temperatures are interrelated through

2(1 ) , 0.TΦ = +℘∇ ℘>                                             (12)



4155	 Fractional thermoviscoelastic damping response in a non-simple micro-beam via DPL and KG nonlocality effect

In a simple medium, the thermodynamic temperature 
Φ and the conductive temperature T  are identical. 
However, in a non-simple material, these temperatures differ. 
Consequently, as a limiting case, 0,℘→  TΦ→ , the classical 
one-temperature theory (1TT), is retrieved.

Thus, for a non-simple medium, Eq. (10) can be written as

21 ,q T
v

T QD D T
t C t

κ
ρ κ

 ′∂ ℘ ∂ − = + ∇   ∂ ∂  
                                  (13)

where

2 2

21 ,
! (2 )!

q q
qD

t t

α αα α

α α

τ τ
α α

∂ ∂
= + +

∂ ∂

2 2

21 .
! (2 )!

T T
TD

t t

α α α α

α α

τ τ
α α

∂ ∂
= + +

∂ ∂
   (14)

In the above, the Laplacian operator has been taken 
as 2 2 2 2 2/ /x z∇ = ∂ ∂ + ∂ ∂ . Eq. (10) represents the fractional 
thermoviscoelastic heat conduction equation, formulated 
within the dual-phase-lag framework and incorporating the 
principles of two-temperature theory.

Fundamental equations of the Kelvin-Voigt model 
The Kelvin-Voigt (K-V) model is a widely recognized 
macroscopic mechanical framework used to describe the 
viscoelastic behavior of materials. This model captures 
the phenomenon of delayed elastic response to applied 
stress, where the deformation exhibits time-dependent 
yet reversible characteristics. The practical implications 
of the interplay between mechanical and thermal forces 
in solids are prominent across various domains, including 
astronautics, aeronautics, high-energy particle accelerators, 
and atomic reactors. To begin, we consider a homogeneous, 
isotropic, thermally conducting thermoviscoelastic solid of 
the Kelvin-Voigt type, initially at an undeformed state and a 
uniform temperature 0T . The full set of differential equations 
of thermoviscoelasticity (2000) is composed if there are no 
body forces, be summed up as follows: 

The equation of motion takes the form 

2

, , 2( ) , .i
i jj j ij i

uu u T
t

µ λ µ ρ β∂
+ + = +

∂
                            (15)

The constitutive equations have the form
2 2 2(1 ) 2 ( ) .t ij ij kk ije e Tµ τ σ µ λ β δ− ∇ + ∂ = + −                        (16)

The parameters ,λ µ  and β are expressed as

0 1 0 1 0 1

0 0 0 1 0 1 0 2 0

1 , 1 , 1 ,

(3 2 ) , (3 2 ) / .t t

t t t
λ λ α µ µ α β β β

β λ µ α β λ α µ α α β

∂ ∂ ∂     = + = + = +     ∂ ∂ ∂     

= + = +

           (17)

Formulation of the physical problem
The formulation of the physical problem introduces a novel 
approach to analyzing viscothermoelastic micro-scale 
beams by integrating the Kelvin-Voigt viscoelastic model 
with the classical Euler-Bernoulli beam theory (EBBT). 
This combination offers a comprehensive framework for 
studying the coupled thermal and mechanical behavior at 
micro-scale levels, emphasizing size-dependent effects and 
thermal relaxation phenomena. By focusing exclusively on 
transverse movement along the z-axis, the study simplifies 
the analysis while capturing the essential bending behavior 
of the beam, where any plane cross-section remains 
orthogonal to the neutral surface after bending. The neutral 
surface, which remains unstressed during bending, serves 
as a reference for understanding deformation and stress 
distribution. Incorporating viscoelasticity allows for the 
consideration of time-dependent mechanical responses 
such as creep and stress relaxation, while thermoelastic 
effects enable exploration of energy dissipation mechanisms 
like thermoelastic damping. This problem formulation 
provides critical insights into thermal-mechanical coupling 
in micro-scale beams, laying the groundwork for optimizing 
micro-electromechanical systems (MEMS) such as sensors 
and actuators.

We are studying a viscothermoelastic micro-scale beam 
with dimensions L, h, and b, as illustrated in Fig. 1 for the Kelvin-
Voigt type model. When the thickness and width directions 
align with y  and z − axes, respectively, the structure 
occupies the domain specified by 0 , 2x L b y b≤ ≤ − ≤ ≤  and 

2 .h z h− ≤ ≤
Consequently, the displacement components are 

expected to align with the principles of the Euler-Bernoulli 
Beam Theory (EBBT) as

, 0, ( , , , ) ( , ).wu z v w x y z t w x t
x

∂
= − = =

∂                           
(18)

Substitution of Eq. (18) into Eq. (5), one obtains

2

2

( , ) .xx
w x tz

x
ε ∂

= −
∂                                                

(18a)

Figure 1: Configuration of the thermoviscoelastic micro-beam



The Scientific Temper. Vol. 16, No. 4 	 Makkad et al. 	 4156

With the displacement components as indicated in 
Eq. (18), the constitutive equation of the one-dimensional 
version in the presence of temperature can be expressed as

2
2 2 2

2

( , )(1 ) ,t xx t
w x tzE E T

x
µ τ σ α∂

− ∇ + ∂ = − −
∂                    

(19)

in which xxσ  is the constitutive equation reduced to the 
one-dimensional equation as

( 2 ) .xx
u T
x

σ λ µ β∂
= + −

∂                                               
(20)

Also, Eq. (20), using Eq. (17) may be expressed as

1 0 0 0 11 ( 2 ) 1 .xx
u T

t x t
σ α λ µ β β∂ ∂ ∂     = + + − +    ∂ ∂ ∂                   

(21)

Low-amplitude bending vibrations in the beam cause 
deformation consistent with the linear Euler-Bernoulli 
theory’s assumptions. The widely accepted Euler-Bernoulli 
assumption (Boley, 1972) asserts that, during bending, 
any plane cross-section of the beam that was originally 
perpendicular to its axis retains its flatness and remains 
orthogonal to the neutral surface. At this stage, the bending 
moment formula can be obtained by replacing the integral 
component of Eq. (22) given below, with Eq. (21) as

22

22
( , ) ,

h

xx Th

wM x t b z dz EI M
x

σ
−

 ∂
= = − + ∂ 
∫

                       
(22)

and
/ 2

/ 2

( , , ) .
h

T t
h

M bE T x z t zdzα
−

= ∫                                        (23)

The governing equation of motion undergoing free 
flexural vibration is

2 2

2 2 .M wA
x t

ρ∂ ∂
=

∂ ∂                                                         
(24)

The governing equation describing the beam’s dynamic 
behavior can be formulated by integrating Eq. (24) into Eq. 
(23), resulting in the following expression

4 2 2
2 2 2

4 2 2(1 ) 0,T
t

w w MEI A
x t x

µ τ ρ∂ ∂ ∂
+ − ∇ + ∂ + =

∂ ∂ ∂                   
(25)

subjected to the boundary conditions 

0
0

0, 0,
t

t

ww
t=

=

∂
= =

∂
                                                 

(26)

10
0, 0,

x x a
w w

= =
= =

                                                   
(27)

1

2 2

2 2
0

0, 0.
x x a

w w
x x

= =

∂ ∂
= =

∂ ∂
                                          (28)

Taking into account the volume strain as 2 2/z w x− ∂ ∂ , 
as described in Eq. (18), Eq. (13) can be adapted for a non-
simple medium as

2

2
21 .E

q T
v t

T Q wD D T
t

z
C tx

κ
αρ κ

 ′∂ ℘ ∂ − = + ∇   ∂ ∂  

∆ ∂
−

∂
                   (29)

In this case, the relaxation strength of the Youngs modulus 
is represented by 2

0 / ,tE vT E Cα ρ=∆ also known as the 
Zener modulus (5). It should be mentioned that there are 
no temperature gradients in the perpendicular direction. 
However, compared to gradients along the beam’s axis, 
thermal gradients situated perpendicularly inside the 
cross-section’s plane are much higher. We ignore the terms 

2 2/ x∂ ∂ , and replace 2∇  by 2 2/ z∂ ∂  (Zhang and Li, 1972).
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Additionally, we assume that there is no heat transmission 
between the upper and lower sides of the beam as

/ 2 / 2

0, 0.
z h z h

T T t
z z= =−

∂ ∂
= = >

∂ ∂
                                           (31)

Solution of the physical problem        

Dimensionless parameters
To transform the dimensionless system of governing 
equations, the subsequent non-dimensional parameters 
are introduced as

2 2 2
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(32)

Utilizing Eq. (32), governing Eq. (30), Eq. (25), and the 
boundary conditions (26)-(28) gives the dimensionless form 
of this model, which, by omitting the tilde sign for the sake 
of brevity, can be simplified as
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Thermal effects on the damping and frequency shifts
The novelty of this study lies in its detailed exploration of 
thermal effects on damping and frequency shifts, as well as 
the incorporation of a non-uniform internal heat source to 
model real-world heat transfer phenomena.

By setting
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                                   (39)

the study effectively captures the dynamic interplay 
between thermal and mechanical responses in micro-scale 
systems. This approach allows for a precise analysis of how 
thermal relaxation and phase-lag parameters influence energy 
dissipation (damping) and frequency shifts in micro-beams.

Significance of internal heat source 
The heat source ( , ) cos iQ x z x k z=  is crucial in heat transfer 
due to its non-uniform heat generation distribution, which 
can mimic real-world phenomena and serve as a test 
function for analytical and numerical methods. Its linear 
variation along the x-direction can model situations where 
material properties or external influences affect the rate of 
heat generation with position. The cos ik z  term introduces 
periodic modulation in the z-direction. In general, the 
significance of a heat source ( , ) cos iQ x z x k z=  lies in its 
ability to capture the subtleties of both periodic and linear 
spatial fluctuations in heat generation. For heat transfer 
investigations, this dual feature provides a solid foundation 
for testing analytical methods and numerical models, while 
also aiding in the understanding of the inherent behavior 
of non-uniformly heated systems.

Physically, the inclusion of such a heat source is crucial 
for understanding and optimizing heat transfer in advanced 
engineering applications, such as micro-electromechanical 
systems (MEMS) and nanoscale devices. It enables the 
study of localized thermal effects, which are often critical in 
determining the performance and reliability of these systems.

Thermoviscoelastic damping solutions 
We expect to find complex frequencies, wherein the 
presence of thermoelastic coupling effect, the real part 

Re ( ω ) gives the new eigenfrequencies of the beam, and 
the imaginary part |Im ( ω )| represents the attenuation of 
vibration amplitude. Next, the amount of thermoelastic 
damping will be determined by expressing it as the inverse 
of the quality factor, which is provided by

1 Im( )2 ,
Re( )

ω
ω

−
=

                                                   (40)

which is the ratio of energy lost per radian; the factor of 
2 is since the beam’s mechanical energy is proportional to 
the square of its amplitude.

Substitution of Eq. (39) into Eq. (32) leads to

2 2

2 2 2

2

0

cos1 .
t

i
T q

E
q

v

zh L w x k zD D i
Ch zcL cT x

D
t

κ θ ωθ
κ α ρ

∗ ℘ ∂ ∂ ∆ ∂
− ++ = −  ∂  ∂  ∂

(41)

Under those assumptions, the general solution of the 
governing Eq. (41) can be obtained as
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and the constants 1C and 2C can be obtained by the 
boundary conditions given below 
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Using Eq. (44), from Eq. (45) one obtains
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Thus, using Eq. (39) and (46), Eq. (42) becomes
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Now, using Eq. (22), the thermal moment is obtained as
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Using Eq. (48), Eq. (24) can be obtained as  
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By solving Eq. (49), we obtain the thermoelastic vibration 
of the beam as,

1 2 3 4sin( ) cos( ) sinh( ) cosh( ),w P px P px P px P px∗ = + + +         (52)
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and the coefficients 21 3, ,P P P , and 4P  are constants. To 
calculate the constants, we use the boundary conditions 
Eqs. (34)-(36) at the two beam ends.

The dispersion relationship between ω  and np  is 
calculated as
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We ignore higher-order terms 2
E∆  corrections and keep 

the first-order term. 
Furthermore, when looking for an approximate 

solution, we can replace ( )g ω  in the square root by 0( )g ω
. Furthermore, the dispersion relation as can be seen in Eq. 
(51) is expressed as 
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If we take 0E∆ =  in Eq. (54), the equation can be 
rewritten as 2

0
1/ 22( / 12) ., 1,2,.n np hω = = .  As previously 

stated, the discovery makes it convenient to separate the 
real components and imaginary components, obtain the 
thermoelastic beam’s eigenfrequencies, and compute the 
required attenuation coefficients

{ }
0

0 ,
1 Re

R
(

)
)]

1(
2

[
e E g
ω ω

ω ∆ 
− 



∆



−
=                                  (56) 

  { }
0

0 .I
(

m( )
Im[ )]

2
E g ω

ω ω
 ∆ 
 
 

∆
=                                            (57)

Further, we anticipate that the frequencies will be 
complex, with the real component Re( )ω supplying the new 
eigenfrequencies of non-simple circular nanobeams in the 
presence of thermoelastic coupling and the imaginary part 
Im( )ω providing vibration attenuation. In this case 1E∆ <<

, the thermoelastic damping can be described in terms of 
the inverse quality factor given by

1
0
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)]E gω ω
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− ∆= = ∆                                  (58)

The definition of   in an electrical circuit is like that of 
definition (55). Like the electrical example,   typically varies 
with frequency in this case. The frequency shift brought 
on by thermoelastic damping is computed using the 
relation
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ω

ω
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= =                      (59)

Numerical Result and Discussion
The solutions illustrated across various figures are found to 
fully satisfy the boundary conditions, as outlined below. In 
this section, the dependence of the thermoelastic damping 
is demonstrated using numerical calculations and an 
example. The material parameters of a silicon beam are 
listed in Table 1 (Wong, 2006).

We shall take into account the range of beam length 
12(1 100) 10 ma −− ×  and an aspect ratio / 10h℘ =  for the 

nanoscale beam. In the picoseconds 14(1 100) 10 sec−− × , the 
initial time t  will be taken into account. The beam length 
when 1,℘=  and / 6z h=  were used to prepare the figures.

Impact of varying phase lags on thermoelastic 
damping and frequency shift
Figure 2 illustrates shows the variation in the thermoelastic 
damping 1 / EQ− ∆  along thickness h  for varying temperature 
phase-lag Tτ and for fixed heat flux phase lag 0.4qτ =  with 
a given value of temperature discrepancy factor ℘  and 
aspect ratio / 10h℘ = . 

Table 1: Material properties of silicon.

Parameters Value Unit

Density ρ 2330 3/kg m

Specific heat capacity vC 61.64 10× 3J/ m K

Thermal expansion coefficientα 62.60 10−× 1K −

Thermal conductivityκ 141.04 /w mK

Young’s modulus E 165 GPa

Poisson’s ratioν 0.22
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It shows how the thermoelastic damping (TED) varies 
along the thickness of viscoelastic micro-scale beams under 
different temperature phase-lag Tτ conditions. As the beam 
thickness increases, TED initially rises, peaks, and then 
decreases, showcasing the interplay between thermal and 
mechanical effects. The graph reveals that higher Tτ values 
amplify thermal relaxation effects, leading to greater energy 
dissipation, as evidenced by increased inverse quality factor 
(Q⁻¹). Additionally, the comparison between local and non-
local models underscores the importance of considering 
size-dependent effects at micro-scales, with non-local 
models providing a more accurate representation of TED. 
A closer examination within the thickness range of 46–60 
μm highlights subtle variations in 1 / EQ− ∆ , offering critical 
insights into the influence of Tτ  on damping. These findings 
have practical implications, enabling engineers to optimize 
material and geometric properties for micro-scale beams 
by leveraging the impact of thermal relaxation constants 
and their ratios.

Figures 3 shows the variation in the thermoelastic 
damping 1 / EQ− ∆  along thickness h  for varying heat 
flux qτ  phase lag and for fixed temperature phase lag 

0.4Tτ = with a given value of temperature discrepancy 
factor ℘  and aspect ratio / 10h℘ = . It also illustrates how 
thermoelastic damping (TED) varies along the thickness 
h  of viscoelastic micro-scale beams for different heat flux 
phase-lag qτ values, while keeping the temperature phase-
lag constant. As the thickness increases, TED initially rises, 
peaks, and then decreases, reflecting the dynamic interplay 
between thermal and mechanical effects. Higher qτ values 
correspond to greater energy dissipation, as indicated by 
higher inverse quality factor (Q⁻¹) values, and the peak 
damping shifts towards larger thicknesses. This behavior 
highlights the significant role of heat flux phase-lag in 
influencing thermal relaxation effects.

The graph also compares local (solid lines) and non-local 
(dashed lines) models, emphasizing the importance of size-
dependent effects at micro-scales. Non-local models show 
distinct variations in TED, particularly in the zoomed-in 
thickness range of 40–54 mµ , where subtle differences 
between local and non-local effects become more apparent. 

Figure 4 reveals the relationship between frequency 
shift / Eδ ∆  and beam thickness h for varying heat flux 
phase-lag qτ , with a fixed temperature discrepancy factor 

,℘ and aspect ratio / 10h℘ = . Initially, for thicknesses up 
to 40 mµ , the frequency shift remains constant, indicating 
that the beam’s thickness has negligible influence in this 
range. Beyond 40 mµ , the thickness begins to significantly 
affect the frequency shift, with the highest peak observed 
between 40 mµ  and 60 mµ , particularly around 10 mµ  
within this range. This peak suggests a critical thickness 
where the interaction between thermal and mechanical 
effects is most pronounced, leading to maximum frequency 
shift.

Interestingly, as the thickness exceeds 60 mµ , the 
frequency shift starts to increase again, indicating a 
secondary influence of beam thickness on the system’s 
dynamic behavior. This trend underscores the complex 
interplay between heat flux phase-lag and beam thickness, 
which governs the thermal-mechanical coupling in micro-
scale systems. These findings are crucial for optimizing 
the design of micro-scale resonators, as they highlight the 
importance of selecting appropriate thicknesses to achieve 
desired frequency characteristics.

Impact of varying values of /L h  on thermoelastic 
damping and frequency shift
Figure 5 illustrates the variation of thermoelastic damping 
(TED) 1 / EQ− ∆  with beam thickness h for different values 
of the parameter L h  in the Dual-Phase-Lag (DPL) model. 

Figure 2: Variation of thermoelastic damping 1 / EQ− ∆  with the 

beam thickness h for varying  Tτ

Figure 3: Variation of thermoelastic damping 1 / EQ− ∆  with 

the beam thickness h for varying  qτ
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Initially, within the thickness range of 0 to 25 mµ , TED is 
highly sensitive, indicating that small changes in thickness 
significantly affect energy dissipation. Beyond 40 mµ , TED 
begins to increase gradually, reaching its peak between 45 
and 80 mµ . This peak represents the optimal thickness range 
where the interplay between thermal and mechanical effects 
is most pronounced, leading to maximum damping. After 
this range, TED starts to decrease, suggesting diminishing 
thermal-mechanical coupling effects at larger thicknesses.

The graph also highlights that damping increases 
with decreasing L h , implying that smaller values of L h  
enhance the influence of thermoelastic effects. This behavior 
underscores the importance of the parameter L h  in 
controlling energy-dissipation mechanisms in micro-scale 
systems. At other thicknesses, TED is negligible, indicating 
minimal energy loss due to thermoelastic effects. These 
findings are crucial for designing micro-scale resonators, as 
they provide insights into selecting appropriate thickness 
and L h  values to achieve desired damping characteristics.

Figure 6 illustrates the frequency shift / Eδ ∆  as a 
function of beam thickness h for varied values of the ratio 
L h . Initially, the frequency shift remains relatively stable 
for smaller thickness values, indicating minimal influence 
of L h  on the system’s dynamic behavior in this range. 
As the thickness increases, the frequency shift begins to 
exhibit significant variations, with distinct peaks observed 
for different L h  values. These peaks suggest critical 
thickness ranges where the interaction between thermal 
and mechanical effects is most pronounced, leading to 
noticeable changes in frequency.

The comparison between local (solid lines) and non-
local (dashed lines) models highlights the importance of 
size-dependent effects at micro-scales. Non-local models 
show more pronounced variations in frequency shift, 
particularly in the zoomed-in thickness range of 4–6 mµ
, where subtle differences between local and non-local 
effects become evident. These findings underscore the role 

Figure 4: Frequency shift / Eδ ∆  with the beam thickness 

h for varying heat flux qτ

Figure 5: Variation of  thermoelastic damping 1 / EQ− ∆  with the 
beam thickness h

Figure 6: Frequency shift / Eδ ∆  with the beam thickness 
h for varied values of /L h

Figure 7: Effect of fractional order parameter α on 
temperature T  versus x
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of L h  in governing the dynamic behavior of micro-scale 
systems, offering valuable insights for optimizing the design 
of resonators and other mechanical components.

Impact of fractional order parameter α  on 
temperature
The graph in Figure 7 illustrates the temperature profiles 
T versus the spatial variable x for different values of the 
fractional order parameter α , with a focus on the influence 
of the phase lag time Tτ  for the temperature gradient. As α  
increases from 0.0 to 0.75, the temperature profiles exhibit 
greater changes, indicating that higher fractional order 
parameters amplify the thermal response in the system. This 
behavior highlights the significant role of fractional order in 
governing heat transfer dynamics.

The comparison between local and non-local models 
further emphasizes the importance of considering size-
dependent effects in micro-scale systems. Non-local 
models show distinct variations in temperature profiles, 
particularly in the zoomed-in range of 0 0.12x≤ ≤  where 
subtle differences between local and non-local effects 
become more apparent. These findings underscore the 
critical influence of fractional order parameters and phase 
lag times on temperature distribution, offering valuable 
insights for optimizing heat transfer models in advanced 
engineering applications. 

Figure 8 illustrates the temperature variation T versus t 
for τq = 3, and x = 3. The graph depicting the effect of the 
fractional order parameter α  on temperature T versus time 
t  reveals significant insights into the thermal behavior of the 
system. As α  increases (from 0.0 to 0.75), the temperature 
rises more rapidly, reaches a higher peak, and then decreases 
more sharply. This indicates that higher fractional order 
parameters amplify the system’s thermal response, making 
it more sensitive to external influences.

The local and non-local models show similar trends, 
but the non-local model generally predicts slightly higher 

temperatures, emphasizing the importance of size-
dependent effects in micro-scale systems. The inset graph, 
which zooms in on a specific time range, highlights subtle 
variations in temperature behavior for different α  values, 
further underscoring the role of fractional order parameters 
in controlling the rate of temperature change and peak 
temperature.

These findings are crucial for applications requiring 
precise thermal management, as they demonstrate how 
adjusting α  can influence the system’s thermal dynamics.

Conclusion
This study investigates thermoelastic damping in micro-
scale beams by combining the Euler-Bernoulli beam 
theory with a two-temperature thermoviscoelastic model. 
It incorporates non-Fourier effects and fractional-order 
parameters to provide a deeper understanding of the 
phenomenon. Several key conclusions emerge from the 
numerical results, highlighting the study’s contributions to 
this field are as follows:
•	 The relaxation time of heat flux impacts the frequency 

shift and damping, though its effect on these parameters 
remains negligible. This aligns with the graphical 
analyses that show limited effects of heat flux phase-lag 
on TED and frequency shifts.

•	 The TED initially increases, peaks, and then decreases as 
the beam thickness increases. Critical thickness ranges, 
such as 46–60 μm for temperature phase-lags and 
40–54 μm for heat flux phase-lags, exhibit the most 
pronounced damping effects (Figs. 2 and 3).  

•	 Frequency shift remains constant for smaller thicknesses 
but shows significant variation for larger ones. Peak 
shifts occur between 40–60 μm, highlighting critical 
ranges where thermal-mechanical interactions are most 
pronounced (Fig. 4).  

•	 For beams with thicknesses of 0 mµ  to 100 mµ , the non-
Fourier effect plays a significant role in influencing both 
damping and frequency shift. The study emphasizes 
the critical role of non-Fourier effects within the 
Dual-Phase-Lag (DPL) thermal conduction model, as 
discussed in Figs. 5 and 6.

•	 TED increases with decreasing values of L/h, underscoring 
the critical role of this parameter in controlling energy 
dissipation mechanisms for micro-scale systems. 
Frequency shift remains stable at smaller thicknesses 
but exhibits distinct variations at larger ones. Peaks 
between 40–60 μm highlight optimal thickness ranges 
where thermal and mechanical interactions are most 
pronounced. These findings offer crucial insights for 
selecting appropriate thickness and L/h, values to 
optimize damping and frequency characteristics in 
micro-scale resonators (Figs. 5 and 6).

•	 Increasing the fractional order parameter α  amplifies Figure 8: Effect of fractional order parameter α on temperature T 
versus t
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the system’s thermal response, resulting in greater 
temperature variations both spatially (x-direction) and 
temporally (t-direction). This underscores its importance 
in governing heat transfer dynamics in micro-scale 
systems (Figs. 7 and 8).

•	 As α  increases, temperature profiles exhibit more 
pronounced changes, reflecting a stronger thermal 
response. This effect is particularly evident in the 
zoomed-in range, where non-local models capture size-
dependent variations more accurately (Fig. 7). Larger α
values lead to a faster temperature rise, higher peak, and 
sharper decline over time, highlighting the sensitivity of 
thermal behavior to fractional order parameters (Fig. 8).

•	 Comparisons between local and non-local models 
underscore the importance of considering size-
dependent phenomena in micro-scale systems for 
accurate predictions of damping and frequency 
behavior.  

•	 The associated non-Fourier effects have a strong 
influence on the distribution and response history 
of the thermoviscoelastic fields. Damping can cause 
a temperature reduction and energy loss even in 
the absence of heat transmission to the surrounding 
environment through convection and radiation. This 
aligns with the exploration of TED and its coupling 
with thermal responses, as depicted in the abstract and 
graphical representations. 

•	 By highlighting the crucial impact of numerous 
parameters and offering insightful information 
for upcoming research and applications in this 
area, the study adds to the body of knowledge on 
thermoelastic damping in viscoelastic micro-scale 
beams. This encapsulates the study’s contributions 
and its significance for future research in this domain,

•	 Numerical results emphasize the sensitivity of 
thermoelastic damping to variations in temperature 
and heat flux phase-lag parameters, highlighting the 
dynamic interplay between thermal and mechanical 
effects.  

Overall, this study presents a novel framework for 
analyzing thermoelastic damping (TED) in micro-scale 
beams by combining the Euler-Bernoulli beam theory with 
a two-temperature thermoviscoelastic model. Incorporating 
fractional-order parameters, non-Fourier effects, and 
the dual-phase-lag thermal conduction model with a 
non-uniform internal heat source, it provides a detailed 
understanding of the interaction between thermal and 
mechanical responses. While gaps remain in coupling 
effects and experimental validation, this research lays the 
foundation for advancements in MEMS, nanoscale devices, 
energy harvesting, and thermal management, contributing 
significantly to the field of micro-scale system design and 
analysis.
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