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Abstract

This study introduces a novel framework for investigating thermoelastic damping (TED) in viscoelastic micro-scale rectangular beams
using the Euler-Bernoulli beam theory (EBBT). A two-temperature thermoviscoelastic model is developed, uniquely integrating non-
Fourier effects and fractional-order parameters through a generalized thermoelasticity approach with an internal heat source and the
dual-phase-lag (DPL) thermal conduction model.This innovative approach addresses the limitations of classical models by incorporating
size-dependent effects and spatially varying thermal properties, providing new insights into thermal-mechanical coupling in micro-scale
systems. Explicit formulas are derived for the inverse quality factor and frequency shifts, with the study comprehensively analyzing the
influence of parameters such as beam thickness, aspect ratios, end constraints, relaxation constants, and fractional-order parameters.
Novel findings reveal critical thickness ranges and phase-lag effects that govern energy dissipation and system dynamics. The results
highlight the divergence from existing models, emphasizing the importance of non-local and fractional-order frameworks for accurately
predicting damping and frequency behavior. Practical applications of the study include the optimization of micro-electromechanical
systems (MEMS), nanoscale resonators, sensors, and energy-harvesting devices. By bridging theoretical advancements with tangible
engineering solutions, this research provides a robust foundation for future exploration in thermal management and micro-scale system
design, marking a significant contribution to the field. Graphical representations illustrate the effects of temperature discrepancy factors
on damping and frequency shifts in non-simple micro-beams, offering a comprehensive understanding of the interaction between
thermal and mechanical responses.

Keywords: Thermoviscoelastic, Relaxation time, Non-Fourier effect, Damping, Non-local, Heat source, Non-simple micro-beam, Inverse
quality factor.

Introduction

Thermoviscoelasticity is the study that merges thermal,
viscous, and elastic characteristics of materials to capture
both their time-dependent deformation and the way they
convert mechanical energy into heat. Damping refers to
the inherent energy-dissipation mechanisms in viscoelastic
materials. Under dynamic loading conditions, part of the
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mechanical energy is absorbed through the material’s
internal molecular friction and dissipated as heat.

Thermoviscoelasticity describes material behavior where
deformation and heat transfer are interrelated, and damping
refers to the dissipation of energy, often as heat, during
oscillatory or vibrational motion. In thermoviscoelastic
materials, the interaction between thermal and mechanical
fields can resultin damping, as energy is dissipated through
heat generation during deformation. The deformation
process in these materials may produce heat due to the
material’s viscous response and the coupling between
thermal and elastic fields.

Thermoelastic damping is a critical factor in energy
dissipation for vacuum-operated resonators that undergo
transverse vibrations at room temperature. The material’s
thermal expansion coefficient causes thermoelastic
coupling, inevitably leading to a temperature gradient
along the beam’s thickness. This temperature gradient
drives irreversible heat flow, which increases entropy and
ultimately converts the beam’s elastic potential energy into
thermal energy. Consequently, structures incorporating
flexural vibration inherently exhibit thermoelastic damping.

Published : 25/04/2025
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This damping is employed in aerospace, aircraft, and
submarine designs to achieve high-precision performance
and minimize unwanted vibrations and flutter (Bishop and
Kinra, 1997). Thermoelastic damping adversely affects micro-
beam resonators, diminishing their sensitivity. Achieving a
low level of thermoelastic damping is critical, as it signifies
a high-quality factor in the resonators. Energy dissipation in
micro-resonators occurs through two primary mechanisms:
internal losses, which are mainly caused by thermoelastic
damping, and external losses, including air damping and
support loss. These external losses can be effectively
reduced through precise manufacturing techniques and
optimized structural designs (Lin, 2014).

Lietal. (2012) analyzed thermoelastic damping in circular
and rectangular microplates with fully clamped and simply
supported boundaries. Bostani and Mohammadi (2018)
employed the Euler-Bernoulli beam theory in conjunction
with the modified strain gradient theory, revealing
significant differences in thermoelastic damping across
the modified strain gradient, modified couple stress, and
classical beam theories.

A notable approach for estimating thermoelastic
damping in beams and plates is the complex frequency
technique. Lifshitz and Roukes (2000) utilized the
unidirectional coupled thermoelastic theory to derive
a more accurate analytical expression for the inverse
quality factor. Sun et al. (2006) explored the influence
of thermoelastic coupling on damping in micro-beam
resonators, employing generalized thermoelastic theory
with relaxation time. Vahdat and Rezazadeh (2011) analyzed
the impact of axial and residual stresses on thermoelastic
damping in capacitive micro-beam resonators using two-
dimensional non-Fourier thermoelasticity theory. Guo (2013)
utilized the generalized thermoelasticity theory for micro-
beams to derive an expression for thermoelastic damping.
Hendou and Mohammadi (2014) analyzed the effects of
geometric nonlinearity on thermoelastic damping in Euler-
Bernoulli micro-beams. Borjalilou et al. (2019) applied the
dual-phase-lag heat conduction model and the modified
couple stress theory to predict thermoelastic damping in
micro-beams at small scales. Gu et al. (2021) investigate the
limitations of classical thermoelastic damping (TED) models
in the design of micro/nano-devices, utilizing non-local
strain gradient theory and dual-phase-lag heat conduction.

Mihailovich and MacDonald (1995) studied the
mechanical loss in numerous micron-sized single-crystal
silicon resonators operating in vacuum to identify the
primary loss mechanism. Their investigation focused on
three possible contributors to mechanical loss which
includes doping-impurity losses, surface-related losses,
and support-related losses. Zhang et al. (2003) analyzed the
influence of air damping on the frequency response and
quality factor of a micro-machined beam resonator. Zener

(1937) predicted the existence of the thermoelastic damping
process and experimentally validated the core principles
of the theory. Berry (1955) further conducted experiments
on a-brass, which supported Zener’s concept, measuring
damping at room temperature as a function of frequency.
Yasumura et al. (1999) observed thermoelastic damping
in silicon nitride micro-resonators at room temperature,
although their measurements were an order of magnitude
smaller than Roszhardt’s (1990) findings for thermoelastic
damping in single-crystal silicon micro-resonators under
similar conditions. Manolis and Beskos (1980) examined
the effects of axial loads and damping on beam vibrations
induced by rapid surface heating.

Although the connection between temperature and
stress fields was disregarded, the effects of damping and
axial loading were considered. Copper and Pilkey (2002)
proposed a thermoelastic solution method for beams with
arbitrary quasi-static temperature distributions that induce
significant transverse normal and shear stresses. Previous
studies have explored the influence of thermoelastic
damping’s size on the vibration frequency response of
micro-resonators. Guo and Rogerson (2003) examined the
size dependence of thermoelastic coupling in a doubly
clamped elastic prism beam.

Lifshitz and Roukes (2000) conducted a study on
thermoelastic damping in beams with rectangular cross-
sections, revealing that thermoelastic attenuation decreases
with increasing size after the Debye peaks. However, the
conclusions of both Guo and Rogerson (2003) and Lifshitz
and Roukes (2000) were formulated using the classical Fourier
heat conduction equation, without accounting for boundary
conditions. Additionally, several notable non-Fourier-based
models exist, including the single-phase lagging (SPL) model
derived from Lord-Shulman'’s thermoelasticity theory (Lord
etal.(1967), Heydarpour (2016)), the dual-phase lagging (DPL)
model based on Tzou'’s thermoelasticity theory (Tzou 2015,
Othman et al. 2017), the three-phase lagging (TPL) model
rooted in Choudhuri’s thermoelasticity theory [Kumar (2018),
Choudhuri(2007)], and the Green-Naghdi thermoelasticity
theory [Marin(2017), Wang(2016)]. Abbas (2015) examines
thermoelastic interactions in functionally graded materials
(FGMs) subjected to thermal shock, utilizing the fractional-
order three-phase lag model to formulate governing
equations. Carrera et al. (2015) investigate the influence of
two-temperature effects on a microbeam under ramp-type
heating, employing generalized thermoelasticity theory
and a relaxation time model to illustrate behavior across
the microbeam’s thickness. Mondal and Sur (2025) study
thermoelasticinteractions in a permeating rod, emphasizing
non-Fourier heat conduction in thermomass gas flow within
the framework of generalized thermoelasticity theory.

Kalkal et al. (2020) examine plane wave reflection in a
rotating thermoelastic medium, focusing on four coupled
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plane waves and demonstrating that the modulus of
energy ratios equals unity at every incidence angle. Wang
(2020) examines thermoelastic damping in micro-beams,
highlighting the accuracy of memory-dependent heat
conduction over classical models for small-scale resonators.
Zhou (2021) explores thermoelastic damping (TED) and
frequency shift in micro/nano-ring resonators, emphasizing
the effects of heat-conduction dimension (HCD) and
dual-phase-lagging (DPL) non-Fourier heat conduction.
Key findings reveal that geometrical parameters, material
properties, and DPL effects significantly influence TED
and frequency shifts. Gu (2021) develops a scale-aware
theoretical model for thermoelastic damping (TED)
in micro-beam resonators, highlighting the effects of
small-scale parameters like nonlocality, length scale, and
slenderness ratio. It presents a size-dependent Q-factor
formula and compares it with classical models, aiming
to improve the design of micro/nanoscale devices. Singh
(2007) analyzes the governing equations of Lord-Shulman’s
theory for a two-dimensional, homogeneous, isotropic
generalized thermoelastic half-space with voids, focusing
on compressional and shear wave reflection phenomena.

Recent studies include the work of Abouelregal et al.
(2024), who introduced a novel viscoelastic heat transfer
model. This model incorporates a memory-based derivative
with the Moore-Gibson-Thomson equation to analyze
the properties and behavior of polymers under external
stresses. Makkad et al. (2025) proposed an innovative
thermoviscoelasticity model based on fractional calculus
to examine the thermal and mechanical characteristics of a
non-simple nanobeam subjected to ramp-type heat loading.
Similarly, Chandel et al. (2024) investigated thermoelastic
heat transfer in a spherically symmetric sphere under point
impulsive thermal loading, employing memory-dependent
derivatives to predict the behavior of nanostructures.
Zhang's (2016) study models thermoelastic damping (TED) in
micro-and nanomechanical beam resonators, emphasizing
size effects such as phonon mean-free path and relaxation
time. Results show non-local effects are negligible at
small scales, while size effects significantly impact energy
dissipation, especially at submicron levels. Kakhki et al. (2015)
provide an analytical framework for analyzing thermoelastic
damping (TED) and dynamic behavior in MEMS micro-
beam resonators under diverse boundary conditions. It
leverages modified coupled stress theory and Laplace
transform techniques, offering an accurate alternative to
numerical methods. Guo et al. (2012) examine thermoelastic
damping (TED) in micro-beam resonators using the dual-
phase-lagging (DPL) model, revealing that nanoscale TED
can surpass traditional models like Lifshitz—-Roukes’ and
Zener's approximations. It highlights the impact of thermal
relaxation constants and their ratio on TED behavior, offering
insights into nanoscale resonator design.

Advanced numerical techniques, such as the finite
element method (FEM), have been adapted to include
thermoviscoelastic phenomena by integrating mechanical
displacement and heat flow conservation equations. This
adaptation is essential because the heat generated during
viscoelastic deformation influences the temperature
field and subsequently alters material behavior. Building
upon these foundational concepts, current research in
thermoviscoelasticity delves into advanced models such as
those employing fractional calculus or incorporating non-
local effects to capture the intricate behaviors of materials
at micro and nanoscales. These cutting-edge studies aim
to enhance predictive models for damping characteristics
under highly variable environmental conditions, ultimately
contributing to the development of more resilient and
efficient materials and structures.

While significant research has been conducted on
thermoelastic damping in micro-beam resonators, a
notable gap persists in applying fractional calculus and
dual-phase-lag theory. Current studies predominantly rely
on classical and modified Fourier-based models, which
inadequately account for thermal relaxation effects and
other critical factors. This research seeks to bridge this gap
by introducing a fractional thermoviscoelastic damping
analysis for non-simple micro-beams within the framework
of dual-phase-lag theory. The inclusion of the dual-phase-
lag thermal conduction model, along with a non-uniform
internal heat source, offers a novel framework to analyze
real-world heat transfer mechanisms and their influence
on micro-beams. The research derives an explicit formula
to calculate the inverse quality factor and frequency shift,
enabling precise characterization of these parameters.
Furthermore, it thoroughly examines how damping
behavior varies with different aspect ratios and boundary
conditions, emphasizing the role of end constraints and
aspect ratios in shaping both damping and frequency shifts.

This research investigates the interplay between
frequency shifts and damping in a nanoscale microbeam.
A novel non-simple model is introduced, incorporating
temperature discrepancy factors to capture the coupling
between heat and elastic deformations, facilitating the
derivation of explicit damping formulas. The study examines
the inverse quality factor through graphical representations
and illustrations, deriving explicit expressions for frequency
shift, attenuation, and the inverse quality factor.

The paper is structured as follows: Section 2 outlines the
mathematical framework for the governing equations of
non-local Klein-Gordon elasticity theory. Section 3 discusses
the practical considerations of heat conduction and the
thermoelastic field. Section 4 focuses on deriving analytical
solutions for temperature distribution and associated stress,
highlighting the thermal effects on damping and frequency
shifts. Section 5 presents parametric analyses and numerical
results, while Section 6 concludes the study.
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Mathematical modeling and the fundamental
equation

The non-local Klein-Gordon elasticity theory

According to Eringen’s non-local elasticity theory [Eringen
(1983)], the stress tensor at a given point x within an elastic
body is influenced by the strain tensors at all other points
in the body. Utilizing experimental findings on phonon
dispersion and the atomic theory of lattice dynamics, the
non-local stress tensor o at position x can be formulated
to reflect these interactions comprehensively as

o(x) = m K(x' = x|, e(x) v, )

where the kernel function K(|x'-x|,{) represents the
non-local modulus, where |x'— x| is the Euclidean distance
and ¢ is a material constant determined by both internal
and external characteristic lengths. Additionally, the
generalized Hooke's law defines the classical (local) stress
tensor at point x', denoted as #(x') . Given the complexity of
solving elasticity problems through the integral constitutive
relation in Eq. (1), other challenges are often addressed by
employing an equivalent differential form of the integral
constitutive relation. The differential form of Klein—Gordon
non-local constitutive relations for an elastic body described
in [Eringen (1983), Singh(2024)], is formulated as

(1-uV:+7°0))o =t, ()

where u represents the non-local parameter given by

= () with ¢ = % 3)

where a and [ stand for the internal and external
characteristic lengths, respectively, and ¢, is a material
constant. Given the thermoelastic constitutive relationships
between the kinematic parameters and the local stresses,
Eq. (2) can be expressed as

ve, I +(1-2ve—1+a,0I1, 4)

I —
A= D7 =z

where the identity and strain tensors are denoted by /
and g, respectively.

The strain tensor components ¢ are acquired using

ou,
g[_:l ouy oy | (5)
bo2lax, oy

where u, representsthe components of the displacement
vector u.

The strain tensor & can be expressed in relation to the
non-local stress tensor o and the temperature increment
0, derived using Eq. (4) as

I+ a1,

&= %[(1 V(1 =uV? +7°0)0 —v(1-uV’ +7°0))0,,
Non-simple dual-phase fractional heat conduction
equation

In a thin micro-beam, the temperature gradient along the
x-direction is insignificant compared to that along the
z-direction (Lifshitzand Roukes, 2000). The energy equation
given by Biot (1956) is

or
pCVEfQ =-V-q. (7)

where Q'is an internal heat source.

To microscopically analyze the microstructural
interactions in solid heat conductors, the temperature
gradient 7, and heat flux vector z, were translated into a
dual-phase-lag model with delay time translation by Tzou
(1995) as

q(t+7,)=—kVO(t +1,). (8)

By using Taylor's series to expand both sides of Eq. (8)
about the fractional order derivatives and keeping terms up
to the 2a order in both phase-lags, one can derive

a a 2a 2a
1+T—"a + Yy 62 q=—k| 1+
aldt (Qa)lor

in which « €[0,1].
Using Eq. (7) and application of the divergence operator
on both sides of Eq. (9) yields

o Aa 2a g @ Aa 2 A2a
120 O (pCva—TfQ'):k 1T 0 T 07 g (10)
alot”  QRa)l o™ ot alot”  QRa)lot™

a o
7, 0

alot”

LT e, (9
Qa)! or*” ’

However, Quintanilla (2008) noted that if the energy
equation provided by

V(1) =cd(0), (1)

and the heat conduction Eq. (10) is coupled, then the
elements of a point spectrum can always be rearranged in
such a way that the resulting equation’s real part is close to
infinity. This demonstrates the instability and ill-posedness
of Tzou's proposed heat conduction model. As a result, Eq.
(10) for heat conduction is unstable and ill-posed. Within the
framework of two-temperature theory, Quintanilla (2008)
demonstrated that the dual-phase-lag heat conduction Eq.
(10) can be made well-posed and stable. In this context, Chen
and Gurtin (1968) proposed categorizing real materials into
simple and non-simple types by considering two distinct
temperatures: conductive and thermodynamic. These
temperatures are interrelated through

O=1+pV)T, p>0. (12)
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In a simple medium, the thermodynamic temperature
® and the conductive temperature T are identical.
However, in a non-simple material, these temperatures differ.
Consequently, asalimiting case, ¢ -0, ® — T, the classical
one-temperature theory (1TT), is retrieved.

Thus, fora non-simple medium, Eq. (10) can be written as

ploL_ 2 :;{HQQJDTVZT, (13)
ot pC, K Ot
where
a a 2a 2a a a 2a 2a
) Y AL LA P . LA )
T ata” Qa)l o alot” (Qa)lore

In the above, the Laplacian operator has been taken
as V=0’ /ox’ +0%/0z° . Eq. (10) represents the fractional
thermoviscoelastic heat conduction equation, formulated
within the dual-phase-lag framework and incorporating the
principles of two-temperature theory.

Fundamental equations of the Kelvin-Voigt model
The Kelvin-Voigt (K-V) model is a widely recognized
macroscopic mechanical framework used to describe the
viscoelastic behavior of materials. This model captures
the phenomenon of delayed elastic response to applied
stress, where the deformation exhibits time-dependent
yet reversible characteristics. The practical implications
of the interplay between mechanical and thermal forces
in solids are prominent across various domains, including
astronautics, aeronautics, high-energy particle accelerators,
and atomic reactors. To begin, we consider ahomogeneous,
isotropic, thermally conducting thermoviscoelastic solid of
the Kelvin-Voigt type, initially at an undeformed state and a
uniform temperature 7, . The full set of differential equations
of thermoviscoelasticity (2000) is composed if there are no
body forces, be summed up as follows:

The equation of motion takes the form

o*u

ot

uu, y +(A+@u; = p—+pT,,. (15)

The constitutive equations have the form

(- uV?+7°0})0, =2ue, +(Ae, — BT)S,. (16)

The parameters A, u and p are expressed as

0 0 0
l—lo(l-rala}y—y0(1+ala),ﬂ—ﬂo(l+ﬂla} a7)

By =G +2u)e,, B, = BAe, +2u0,)e, | B.

Formulation of the physical problem

The formulation of the physical problem introduces a novel
approach to analyzing viscothermoelastic micro-scale
beams by integrating the Kelvin-Voigt viscoelastic model
with the classical Euler-Bernoulli beam theory (EBBT).
This combination offers a comprehensive framework for
studying the coupled thermal and mechanical behavior at
micro-scale levels, emphasizing size-dependent effects and
thermal relaxation phenomena. By focusing exclusively on
transverse movement along the z-axis, the study simplifies
the analysis while capturing the essential bending behavior
of the beam, where any plane cross-section remains
orthogonal to the neutral surface after bending. The neutral
surface, which remains unstressed during bending, serves
as a reference for understanding deformation and stress
distribution. Incorporating viscoelasticity allows for the
consideration of time-dependent mechanical responses
such as creep and stress relaxation, while thermoelastic
effects enable exploration of energy dissipation mechanisms
like thermoelastic damping. This problem formulation
provides critical insights into thermal-mechanical coupling
in micro-scale beams, laying the groundwork for optimizing
micro-electromechanical systems (MEMS) such as sensors
and actuators.

We are studying a viscothermoelastic micro-scale beam
withdimensionsL, h,and b, asillustrated in Fig. 1 forthe Kelvin-
Voigt type model. When the thickness and width directions
align with y and z-axes, respectively, the structure
occupies the domain specifiedby 0<x<L,-b<2y<5h and
—h<2z<h

Consequently, the displacement components are
expected to align with the principles of the Euler-Bernoulli
Beam Theory (EBBT) as

u=—zg—w, v=0, w(x,y,zt)=w(x,t). (18)
X

Substitution of Eq. (18) into Eq. (5), one obtains

=Tt (18a)
’ ox
|
b e L .
p
0 h .
T N N £ T

1
| =
Z Heat Source Q'

Figure 1: Configuration of the thermoviscoelastic micro-beam
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With the displacement components as indicated in
Eqg. (18), the constitutive equation of the one-dimensional
version in the presence of temperature can be expressed as

O’w(x,1)

ox?

(1-uV’+7*0))0,, =—2E

-Ea,T, (19)

inwhich o isthe constitutive equation reduced to the
one-dimensional equation as

o, :(ﬂ+2,u)2—z—ﬂT. (20)

Also, Eqg. (20), using Eq. (17) may be expressed as

o :[1+a1§j[(%+2ﬂo)%}—ﬁo(1+ﬁlgj1 1)

Low-amplitude bending vibrations in the beam cause
deformation consistent with the linear Euler-Bernoulli
theory’s assumptions. The widely accepted Euler-Bernoulli
assumption (Boley, 1972) asserts that, during bending,
any plane cross-section of the beam that was originally
perpendicular to its axis retains its flatness and remains
orthogonal to the neutral surface. At this stage, the bending
moment formula can be obtained by replacing the integral
component of Eq. (22) given below, with Eq. (21) as

hf2 o*w
M(x,t)= bJ:h/2 zo dz = —[EI P + MT], (22)
and
2
M, =bE I a,T(x,z,t)zdz. (23)

~h/2

The governing equation of motion undergoing free
flexural vibration is

o*M B o*w

. 24
e P 24)

The governing equation describing the beam’s dynamic
behavior can be formulated by integrating Eq. (24) into Eq.
(23), resulting in the following expression

o'w s g O'W O*M
EI +(1=uV>+1°07)pA + L-0, 25
o Ta-u DpA—T+—3 (25)
subjected to the boundary conditions
|, = o,@ =0, (26)
. ot |,
w|_, =0, =0, (27)

o*w
ox?

o*w
ox?

- Y

=0.
(28)

Taking into account the volume strain as —zo’w/éx’,
as described in Eq. (18), Eq. (13) can be adapted for a non-
simple medium as

’ 2
0, [N_Q_msav;j_,{Hso@jDT VT (29)
K Ot

In this case, the relaxation strength of the Youngs modulus
is represented by A,=T,Ea’/pC,,also known as the
Zener modulus (5). It should be mentioned that there are
no temperature gradients in the perpendicular direction.
However, compared to gradients along the beam’s axis,
thermal gradients situated perpendicularly inside the
cross-section’s plane are much higher. We ignore the terms

0’ /ox*, and replace V* by &° /az* (Zhang and Li, 1972).
i 2 2
D, [W_Q_mfwjzk(leg,”. (30)

Additionally, we assume that thereis no heat transmission
between the upper and lower sides of the beam as

or
oz

_or

cwn OZ

=0,¢>0. (31)

z==h/2

Solution of the physical problem

Dimensionless parameters
To transform the dimensionless system of governing
equations, the subsequent non-dimensional parameters
are introduced as
F=x/LWw=w/hz=z/hh=h/L{7,5)=(c/L)t7,.7),
(32)
A =E/p,T=T/T,,pp=(c!L)p,0' =(L/T,c)0',\M, = (BL/ ph*c*)M,..

Utilizing Eq. (32), governing Eq. (30), Eqg. (25), and the
boundary conditions (26)-(28) gives the dimensionless form
of this model, which, by omitting the tilde sign for the sake
of brevity, can be simplified as

! 2 2
p[oT_ 2 _zhLAEavzv _ x2(+
o pC T, o) Leh’\ kot

I o'w lazMT 7_h2 o'w

__row 34
o b o’ 12 ox* (34)
ow
|,=0: ’5 :05 (35)
t=0
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wl _,=0w[_, =0, (36)
2 2
dwi Lo, v Ly, (37)
Oox o Oox i
__ W) (38)
ox

Thermal effects on the damping and frequency shifts

The novelty of this study lies in its detailed exploration of
thermal effects on damping and frequency shifts, as well as
the incorporation of a non-uniform internal heat source to
model real-world heat transfer phenomena.

By setting
T(x,z,t) O(x,z)
0'(x,z,t) =4 0(x,2) &, (39)
w(x,1) w(x)

the study effectively captures the dynamic interplay
between thermal and mechanical responses in micro-scale
systems. This approach allows for a precise analysis of how
thermal relaxation and phase-lag parameters influence energy
dissipation (damping) and frequency shifts in micro-beams.

Significance of internal heat source

The heat source Q(x,z)=xcosk,z is crucial in heat transfer
due to its non-uniform heat generation distribution, which
can mimic real-world phenomena and serve as a test
function for analytical and numerical methods. Its linear
variation along the x-direction can model situations where
material properties or external influences affect the rate of
heat generation with position. The cosk,z term introduces
periodic modulation in the z-direction. In general, the
significance of a heat source Q(x,z)=xcosk,z lies in its
ability to capture the subtleties of both periodic and linear
spatial fluctuations in heat generation. For heat transfer
investigations, this dual feature provides a solid foundation
for testing analytical methods and numerical models, while
also aiding in the understanding of the inherent behavior
of non-uniformly heated systems.

Physically, the inclusion of such a heat source is crucial
for understanding and optimizing heat transfer in advanced
engineering applications, such as micro-electromechanical
systems (MEMS) and nanoscale devices. It enables the
study of localized thermal effects, which are often critical in
determining the performance and reliability of these systems.

Thermoviscoelastic damping solutions

We expect to find complex frequencies, wherein the
presence of thermoelastic coupling effect, the real part

Re («) gives the new eigenfrequencies of the beam, and
the imaginary part |Im (. )| represents the attenuation of
vibration amplitude. Next, the amount of thermoelastic
damping will be determined by expressing it as the inverse
of the quality factor, which is provided by

Q =2

Im(w)
Re(w)

: (40)

which is the ratio of energy lost per radian; the factor of
2 is since the beam’s mechanical energy is proportional to
the square of its amplitude.

Substitution of Eq. (39) into Eq. (32) leads to

2 2 2 =
K (H_go a)D M_Diwez_(zhLAfaw

i P 0 +xcosk‘z p.(41)
cLh K Ot

cTa, ox oC, a

Under those assumptions, the general solution of the
governing Eq. (41) can be obtained as

2 2. % D
0= C,cos(kz) + C,sin(kz) —| 2 EAe OW | xC0SkzZ 1By ()
chya, Ox pC, )
where
k? :%, 4, :%(1 +£%)DT, B,=-D,iw, (43)
Ci K

and the constants C, and C, can be obtained by the
boundary conditions given below

00 00
— =— =0. (44)
07 |y 02 |y
Also,
2 2wt sinkz |\ D
90 _ ok sin(kz) + Cok cos(h,z)—| TEAe O xhisinkz )\ By (45
0Oz cTyo, Ox pC, B,

Using Eq. (44), from Eq. (45) one obtains

D x

D 2 ) 2 %
C=—%—; C, :sec(k[ﬁj o WLA, O Mz} . (46)
B,pC, 2Bk, cTyr, Ox
Thus, using Eqg. (39) and (46), Eq. (42) becomes
D D, i 20
D B cos(kiz)+sec[k,.ﬁj o WLAS OW Gih2)
B,pC, 2 ) Bk, cTyer, Ox
(47)

[ 2PLA, W +xcosk[z D, oot
cTa, ox° oC, B, '
Now, using Eq. (22), the thermal moment is obtained as

_WLD A, 3w 3
MT:be"”’i"E8 MZ} —i2+%tan[k,£)—h— . (48)
BycTot, 0Ox ki Ok 2) 12
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Using Eq. (48), Eq. (24) can be obtained as

h? ow o*w
—{1-AA_[1- - =0, 49
12{ (11— g(@)]} w2 (49)
where
128A(D )h D hL
A= PR p - D (50)
h’k; ” pc’B T,
and
2 k.h nk?
== tan| & L 51
)= an[ 40+ 24 (51)

By solving Eq. (49), we obtain the thermoelastic vibration
of the beam as,

w" = Bsin(px) + B, cos( px) + P, sinh( px) + P, cosh( px), (52)

where

]2@2 1/4
p= {czh2 [1-aA,{I- g(a))}]] : 53]

and the coefficients B,P,PB,, and P, are constants. To
calculate the constants, we use the boundary conditions
Egs. (34)-(36) at the two beam ends.

The dispersion relationship between «» and p, is
calculated as

w=p} (i’z[l —AA{1- g(a))}]) . (54)

We ignore higher-order terms A’ corrections and keep
the first-order term.

Furthermore, when looking for an approximate
solution, we can replace g(w) in the square root by g(®,)
. Furthermore, the dispersion relation as can be seen in Eq.
(51) is expressed as

m:wo[l_AAE{lzg(%)}]_ (55)

If we take A, =0 in Eqg. (54), the equation can be
rewritten as @, =p2(h*/12)"*,n=1,2,... As previously
stated, the discovery makes it convenient to separate the
real components and imaginary components, obtain the
thermoelastic beam'’s eigenfrequencies, and compute the
required attenuation coefficients

Re(w) = o, [1 _A4; - IZe[g(a)o)]} j, (56)
Im(®) = @, [AAE {Imz[g(a)o)]}} (57)

Further, we anticipate that the frequencies will be
complex, with the real component Re(w) supplying the new
eigenfrequencies of non-simple circular nanobeams in the
presence of thermoelastic coupling and the imaginary part
[Im(@)| providing vibration attenuation. In this case A, <<1
, the thermoelastic damping can be described in terms of
the inverse quality factor given by

Im(w)
Re(w)

Q'=2 = AA,[Im[g(,)]|. (58)

The definition of Q in an electrical circuit is like that of
definition (55). Like the electrical example, Q typically varies
with frequency in this case. The frequency shift brought
on by thermoelastic damping is computed using the
relation

s_|Re@ @y _[AA{1-Relg(@)]}| (59)
@ | | 2 |

Numerical Result and Discussion

The solutions illustrated across various figures are found to
fully satisfy the boundary conditions, as outlined below. In
this section, the dependence of the thermoelastic damping
is demonstrated using numerical calculations and an
example. The material parameters of a silicon beam are
listed in Table 1 (Wong, 2006).

We shall take into account the range of beam length
a(1-100)x10"”m and an aspect ratio g/h=10 for the
nanoscale beam. In the picoseconds (1-100)x10™"sec, the
initial time ¢ will be taken into account. The beam length
when p =1, and z=%/6 were used to prepare the figures.

Impact of varying phase lags on thermoelastic
damping and frequency shift

Figure 2 illustrates shows the variation in the thermoelastic
damping Q' / A, alongthickness # forvaryingtemperature
phase-lag 7, and for fixed heat flux phase lag 7, =0.4 with
a given value of temperature discrepancy factor o and
aspectratio p/h=10.

Table 1: Material properties of silicon.

Parameters Value Unit
Density p 2330 kg | m’
Specific heat capacity C, 1.64x10° I m’K
Thermal expansion coefficienta 2 g0x10°¢ K
Thermal conductivity & 141.04 w/ mK
Young's modulus £ 165 GPa
Poisson’s ratio v 0.22
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It shows how the thermoelastic damping (TED) varies
along the thickness of viscoelastic micro-scale beams under
different temperature phase-lag z, conditions. As the beam
thickness increases, TED initially rises, peaks, and then
decreases, showcasing the interplay between thermal and
mechanical effects. The graph reveals that higher 7, values
amplify thermal relaxation effects, leading to greater energy
dissipation, as evidenced by increased inverse quality factor
QM. Additionally, the comparison between local and non-
local models underscores the importance of considering
size-dependent effects at micro-scales, with non-local
models providing a more accurate representation of TED.
A closer examination within the thickness range of 46-60
pum highlights subtle variations in 0!/ A, offering critical
insights into the influence of 7, on damping. These findings
have practical implications, enabling engineers to optimize
material and geometric properties for micro-scale beams
by leveraging the impact of thermal relaxation constants
and their ratios.

Figures 3 shows the variation in the thermoelastic
damping QO7'/A, along thickness & for varying heat
flux z, phase lag and for fixed temperature phase lag
7, =0.4 with a given value of temperature discrepancy
factor ¢ and aspect ratio /7 =10. It also illustrates how
thermoelastic damping (TED) varies along the thickness
h of viscoelastic micro-scale beams for different heat flux
phase-lag z, values, while keeping the temperature phase-
lag constant. As the thickness increases, TED initially rises,
peaks, and then decreases, reflecting the dynamic interplay
between thermal and mechanical effects. Higher z, values
correspond to greater energy dissipation, as indicated by
higher inverse quality factor (Q™) values, and the peak
damping shifts towards larger thicknesses. This behavior
highlights the significant role of heat flux phase-lag in
influencing thermal relaxation effects.
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05l 21 (Solid): Local
..... (Dashed): Nonlocal

0.4] 46 48 50 52 54 56 88 60 /]

Q'|a;

0.3
0.2}

0.1!

0.0 20 40  h(um) 60 80 100

Figure 2: Variation of thermoelastic damping Q™' / A, with the

beam thickness h for varying 7,

The graph also compares local (solid lines) and non-local
(dashed lines) models, emphasizing the importance of size-
dependent effects at micro-scales. Non-local models show
distinct variations in TED, particularly in the zoomed-in
thickness range of 40-54 um, where subtle differences
between local and non-local effects become more apparent.

Figure 4 reveals the relationship between frequency
shift §/AE and beam thickness h for varying heat flux
phase-lag 7, with a fixed temperature discrepancy factor
@, and aspect ratio p/h=10. Initially, for thicknesses up
to 40 um, the frequency shift remains constant, indicating
that the beam’s thickness has negligible influence in this
range. Beyond 40 um, the thickness begins to significantly
affect the frequency shift, with the highest peak observed
between 40 um and 60 um, particularly around 10 um
within this range. This peak suggests a critical thickness
where the interaction between thermal and mechanical
effects is most pronounced, leading to maximum frequency
shift.

Interestingly, as the thickness exceeds 60 um, the
frequency shift starts to increase again, indicating a
secondary influence of beam thickness on the system'’s
dynamic behavior. This trend underscores the complex
interplay between heat flux phase-lag and beam thickness,
which governs the thermal-mechanical coupling in micro-
scale systems. These findings are crucial for optimizing
the design of micro-scale resonators, as they highlight the
importance of selecting appropriate thicknesses to achieve
desired frequency characteristics.

Impact of varying values of L/ on thermoelastic
damping and frequency shift

Figure 5 illustrates the variation of thermoelastic damping
(TED) Q' /A, with beam thickness h for different values
of the parameter L/h in the Dual-Phase-Lag (DPL) model.
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Figure 3: Variation of thermoelastic damping Q' /A, with

the beam thickness h for varying z,
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Figure 5: Variation of thermoelastic damping Q™' / A, with the
beam thickness h

Initially, within the thickness range of 0 to 25 wum, TED is
highly sensitive, indicating that small changes in thickness
significantly affect energy dissipation. Beyond 40 um, TED
begins to increase gradually, reaching its peak between 45
and 80 um .This peak represents the optimal thickness range
where theinterplay between thermal and mechanical effects
is most pronounced, leading to maximum damping. After
this range, TED starts to decrease, suggesting diminishing
thermal-mechanical coupling effects at larger thicknesses.

The graph also highlights that damping increases
with decreasing L/# , implying that smaller values of L/a
enhance the influence of thermoelastic effects. This behavior
underscores the importance of the parameter L/h in
controlling energy-dissipation mechanisms in micro-scale
systems. At other thicknesses, TED is negligible, indicating
minimal energy loss due to thermoelastic effects. These
findings are crucial for designing micro-scale resonators, as
they provide insights into selecting appropriate thickness
and L/h values to achieve desired damping characteristics.
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Figure 6: Frequency shift §/ AE with the beam thickness
h for varied values of L/#
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Figure 7: Effect of fractional order parameter « on
temperature T versus x

Figure 6 illustrates the frequency shift §/AE as a
function of beam thickness h for varied values of the ratio
L/h . Initially, the frequency shift remains relatively stable
for smaller thickness values, indicating minimal influence
of L/h on the system’s dynamic behavior in this range.
As the thickness increases, the frequency shift begins to
exhibit significant variations, with distinct peaks observed
for different L/h values. These peaks suggest critical
thickness ranges where the interaction between thermal
and mechanical effects is most pronounced, leading to
noticeable changes in frequency.

The comparison between local (solid lines) and non-
local (dashed lines) models highlights the importance of
size-dependent effects at micro-scales. Non-local models
show more pronounced variations in frequency shift,
particularly in the zoomed-in thickness range of 4-6 um
, Where subtle differences between local and non-local
effects become evident. These findings underscore the role
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of L/h in governing the dynamic behavior of micro-scale
systems, offering valuable insights for optimizing the design
of resonators and other mechanical components.

Impact of fractional order parameter a on
temperature

The graph in Figure 7 illustrates the temperature profiles
T versus the spatial variable x for different values of the
fractional order parameter « , with a focus on the influence
of the phase lag time z, for the temperature gradient. As «
increases from 0.0 to 0.75, the temperature profiles exhibit
greater changes, indicating that higher fractional order
parameters amplify the thermal response in the system. This
behavior highlights the significant role of fractional orderin
governing heat transfer dynamics.

The comparison between local and non-local models
further emphasizes the importance of considering size-
dependent effects in micro-scale systems. Non-local
models show distinct variations in temperature profiles,
particularly in the zoomed-in range of 0<x<0.12 where
subtle differences between local and non-local effects
become more apparent. These findings underscore the
critical influence of fractional order parameters and phase
lag times on temperature distribution, offering valuable
insights for optimizing heat transfer models in advanced
engineering applications.

Figure 8 illustrates the temperature variation T versus t
for 7,=3,and x = 3. The graph depicting the effect of the
fractional order parameter « ontemperature Tversustime
t reveals significant insights into the thermal behavior of the
system. As « increases (from 0.0 to 0.75), the temperature
rises more rapidly, reaches a higher peak, and then decreases
more sharply. This indicates that higher fractional order
parameters amplify the system’s thermal response, making
it more sensitive to external influences.

The local and non-local models show similar trends,
but the non-local model generally predicts slightly higher
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Figure 8: Effect of fractional order parameter & on temperature T
versus t

temperatures, emphasizing the importance of size-
dependent effects in micro-scale systems. The inset graph,
which zooms in on a specific time range, highlights subtle
variations in temperature behavior for different « values,
further underscoring the role of fractional order parameters
in controlling the rate of temperature change and peak
temperature.

These findings are crucial for applications requiring
precise thermal management, as they demonstrate how
adjusting a can influence the system’s thermal dynamics.

Conclusion

This study investigates thermoelastic damping in micro-

scale beams by combining the Euler-Bernoulli beam

theory with a two-temperature thermoviscoelastic model.

It incorporates non-Fourier effects and fractional-order

parameters to provide a deeper understanding of the

phenomenon. Several key conclusions emerge from the
numerical results, highlighting the study’s contributions to
this field are as follows:

« The relaxation time of heat flux impacts the frequency
shiftand damping, thoughits effect on these parameters
remains negligible. This aligns with the graphical
analyses that show limited effects of heat flux phase-lag
on TED and frequency shifts.

« TheTEDinitially increases, peaks, and then decreases as
the beam thickness increases. Critical thickness ranges,
such as 46-60 um for temperature phase-lags and
40-54 um for heat flux phase-lags, exhibit the most
pronounced damping effects (Figs. 2 and 3).

«  Frequency shift remains constant for smaller thicknesses
but shows significant variation for larger ones. Peak
shifts occur between 40-60 um, highlighting critical
ranges where thermal-mechanical interactions are most
pronounced (Fig. 4).

«  Forbeams with thicknesses of 0 um to 100 um,the non-
Fourier effect plays a significant role in influencing both
damping and frequency shift. The study emphasizes
the critical role of non-Fourier effects within the
Dual-Phase-Lag (DPL) thermal conduction model, as
discussed in Figs. 5 and 6.

« TEDincreases with decreasing values of L/h, underscoring
the critical role of this parameter in controlling energy
dissipation mechanisms for micro-scale systems.
Frequency shift remains stable at smaller thicknesses
but exhibits distinct variations at larger ones. Peaks
between 40-60 um highlight optimal thickness ranges
where thermal and mechanical interactions are most
pronounced. These findings offer crucial insights for
selecting appropriate thickness and L/h, values to
optimize damping and frequency characteristics in
micro-scale resonators (Figs. 5 and 6).

« Increasing the fractional order parameter « amplifies



The Scientific Temper. Vol. 16, No. 4

Makkad et al.

4162

the system’s thermal response, resulting in greater

temperature variations both spatially (x-direction) and

temporally (t-direction). This underscores itsimportance
in governing heat transfer dynamics in micro-scale

systems (Figs. 7 and 8).

« As a increases, temperature profiles exhibit more
pronounced changes, reflecting a stronger thermal
response. This effect is particularly evident in the
zoomed-in range, where non-local models capture size-
dependent variations more accurately (Fig. 7). Larger «
values lead to a faster temperaturerise, higher peak, and
sharper decline over time, highlighting the sensitivity of
thermal behavior to fractional order parameters (Fig. 8).

« Comparisons between local and non-local models
underscore the importance of considering size-
dependent phenomena in micro-scale systems for
accurate predictions of damping and frequency
behavior.

- The associated non-Fourier effects have a strong
influence on the distribution and response history
of the thermoviscoelastic fields. Damping can cause
a temperature reduction and energy loss even in
the absence of heat transmission to the surrounding
environment through convection and radiation. This
aligns with the exploration of TED and its coupling
with thermal responses, as depicted in the abstract and
graphical representations.

« By highlighting the crucial impact of numerous
parameters and offering insightful information
for upcoming research and applications in this
area, the study adds to the body of knowledge on
thermoelastic damping in viscoelastic micro-scale
beams. This encapsulates the study’s contributions
and its significance for future research in this domain,

« Numerical results emphasize the sensitivity of
thermoelastic damping to variations in temperature
and heat flux phase-lag parameters, highlighting the
dynamic interplay between thermal and mechanical
effects.

Overall, this study presents a novel framework for
analyzing thermoelastic damping (TED) in micro-scale
beams by combining the Euler-Bernoulli beam theory with
atwo-temperature thermoviscoelastic model. Incorporating
fractional-order parameters, non-Fourier effects, and
the dual-phase-lag thermal conduction model with a
non-uniform internal heat source, it provides a detailed
understanding of the interaction between thermal and
mechanical responses. While gaps remain in coupling
effects and experimental validation, this research lays the
foundation for advancements in MEMS, nanoscale devices,
energy harvesting, and thermal management, contributing
significantly to the field of micro-scale system design and
analysis.
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