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Inventory model considering trade discounts and scrap 
disposal with sustainability
Nalini S, Ritha W*

Abstract
Inventory management in today’s scenario is very complex involving many factors exercising influence on each other. Studies are being 
made continuously to find the relationship among these factors to arrive at the most optimum solutions. This paper develops a mathematical 
model for inventory management, incorporating factors such as ordering, holding, screening, and disposal costs, along with quantity 
discounts, interest payable/earned, and transportation costs. The model considers three scenarios based on the relationship between 
the cycle time and the trade credit period.
The analysis determines the optimal order quantity and cycle time for each case. Case (ii), where interest is earned on revenue while 
avoiding interest charges, yields the lowest total cost. Conversely, case (i), which only accounts for inventory holding costs without any 
offsetting earnings, is the costliest.
Numerical examples illustrate the model’s application and validate the findings. The results provide insights for businesses to optimize 
their inventory management strategies, reduce costs, and improve overall efficiency within the supply chain.
Keywords: Sustainable inventory, Environmental factors, Quantity discounts, Cycle time, Order quantity, Optimum cost, Transportation 
cost, Screening cost, Scrap disposal cost.
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Introduction
An inventory model that incorporates trade discounts 
aims to optimize ordering quantities by considering price 
reductions offered by suppliers for larger purchases. This 
complexity arises because the unit cost of inventory is 
no longer constant but varies based on the order size, 
potentially leading to multiple price break points. The 
model must balance the cost savings from these discounts 
against the increased holding costs associated with larger 
inventory levels. Furthermore, it needs to determine the 

optimal order quantity that minimizes the total inventory 
cost, which includes purchasing costs, ordering costs, and 
holding costs, while taking into account the tiered pricing 
structure offered by trade discounts. 

The integration of scrap disposal into the inventory model 
adds another layer of complexity. Over time, some inventory 
may become obsolete, damaged, or otherwise unusable, 
resulting in scrap. The model needs to consider the timing 
and quantity of scrap disposal, as well as the associated costs 
or potential revenues. Therefore, the inventory model must 
not only optimize the inflow and storage of goods but also 
strategically manage the outflow of scrap in an economic 
manner. This might involve determining optimal times for 
scrap removal, evaluating different disposal methods, and 
potentially adjusting ordering policies to minimize future 
scrap generation.

Sustainable transportation in inventory management 
focuses on minimizing the environmental impact of moving 
goods. This involves strategies like optimizing delivery 
routes to reduce mileage and fuel consumption, utilizing 
fuel-efficient or alternative fuel vehicles (such as electric 
or hybrid), and consolidating shipments to maximize 
vehicle capacity. Embracing intermodal transportation, 
like combining road and rail, can also lower emissions. 
Furthermore, sustainable packaging choices that reduce 
weight and volume contribute to more efficient and eco-
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friendly transportation. The goal is to create a greener 
supply chain by reducing the carbon footprint associated 
with inventory movement.  

Literature Review
A fundamental model analyzing the effect of permissible 
delay in payments offered by the supplier to the retailer on 
the optimal order quantity was developed (Goyal, 1985). 
This model serves as a cornerstone for subsequent research 
in the field and was extended to incorporate the scenario 
where shortages in inventory are allowed, providing a more 
realistic representation of inventory management in certain 
contexts (Aggarwal et al., 1995). Focusing on the seller’s 
perspective, the optimal unit price and the length of the 
credit period were jointly determined, recognizing that end 
demand is sensitive to price (Abad et al., 2003). The retailer’s 
optimal replenishment policy was examined, considering 
the non-instantaneous receipt of goods and the impact of 
both trade credit and cash discounts offered by the supplier 
(Huang, 2007). The optimal economic order quantity (EOQ) 
under the conditions of date-terms supplier credit was 
derived, providing insights into how credit terms influence 
ordering decisions (Carlson et al., 1989). A decision-making 
procedure for a vendor who aims to dispose of excess stock 
was formulated, evaluating the options of offering either a 
price discount or a credit period to incentivize additional 
purchases (Arcelus et al., 1993).

Inventory models with imperfect quality items and 
analyzed repair and disposal policies were considered 
(Taleizadeh et al., 2013). Both ordering and disposal 
decisions were integrated, recognizing the importance of 
coordinating these two aspects of inventory management, 
including potential scrap (Nahmias, 1982). Economic order 
quantity models for items with imperfect quality were 
analyzed, addressing the issue of managing defective or 
flawed products within the inventory system, which can 
lead to scrap (Teunter et al., 2004). A model that explicitly 
incorporates transportation costs into the inventory 
management framework was developed (Ertogral et al., 
2007). A joint economic-lot-size model was the focus, 
considering the perspectives of both the purchaser and 
the vendor to optimize the overall supply chain efficiency, 
including transportation (Banerjee, 1986).

Optimal inventory policies in a general sense were 
discussed (Woolsey, 1963). An inventory model that 
incorporates both trade credit was investigated (Lu et al., 
2010). A comprehensive analysis of inventory models was 
provided (Hadley et al., 1963). The relationship between 
network design and inventory theory was examined (Friesz 
et al., 1984). The impact of freight consolidation on inventory 
costs was analyzed (Blumenfeld et al., 1987). Planning for 
inbound logistics was discussed (Bramel et al., 1997). A 
periodic review inventory model with a return policy was 

considered (Song et al., 2005). Reverse logistics for end-of-
life computers was explored (Blackburn et al., 1999). The 
Vendor-Buyer’s integrated inventory model with quantity 
discount, delay in payments, and trade credit policy was 
explained (Ritha et al., 2016).

Materials and Methods

The model focusses on the optimization of the total cost of 
the inventory with particular reference to the relationship 
of trade credit with the cycle time. The impact of the 
transportation cost on the overall cost scenario is also 
captured.

Description of the model
The model identifies the individual cost components and 
the relationship of the components with each other in the 
form of individual cost functions. The critical parameters are 
the optimum quantity and the optimum cycle time. These 
are calculated and their impact on the total cost function 
is determined.

Notation and Assumptions 

Notation
D	 Annual demand 
K	 Setup costs per order 
h 	 Holding costs %
p	 Delivered unit price paid by the buyer
Q	 Order quantity 
C	 Unit purchase cost 
Cs	 Unit disposal cost for scrap items 
S	 Scrap quantity to be disposed
Vs	 Screening cost per item
d	 Per unit rupee discount to the buyer 
I	 Initialization cost
W	 Minimum order quantity at which the delay in payments 

is permitted 
c	 Unit purchasing price per item 
s	 Unit selling price per item 
M	 The trade credit period 
T	 The cycle time 
Ie	 Interest which can be earned per year 
Ip	 Interest charges per investment in inventory per year 
B	 Backordering ratio
F	 Truck charge per km
z	 distance in km
tc	 truck capacity

Assumptions
•	 Demand is known and constant.
•	 Shortages are not allowed. 
•	 Time period is infinite.
•	 The buyer does not return the damaged products 

instead make arrangement for screening or disposed 
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for damaged products.

•	 If Q < W, i.e. T < W / D, the delayed payment is not 
permitted. Otherwise, fixed trade credit M is permitted. 
Hence, if Q < W, cQ is paid when the order is received. 
If Q > W,  cQM time periods after the order is received. 

•	 During the time the account is not settled, generated 
sales revenue is deposited in an interest-bearing 
account. When T >= M, the account is settled at T = M, 
the buyer pays off all units sold and keeps profits and 
starts paying for the higher interest charges on the items 
in stock. When T <= M, the account is settled at T = M 
and the buyer does not need to pay any interest charge.

•	 s >= c, Ip >= Ie

Model formation
The annual total cost consists of the following:

Ordering cost = 
2

DK       	

Holding cost = ( )21
2

h B QC−

Screening cost = 
2
sV Q 	

Disposal cost = 
2
sC Q

Quantity discount given by vendor = pQd      
Cost of interest charges for the items kept in stock per 

year.

Case-(i): 0 < T < W/D
Cost of interest charges per year = 

2
pcI DT

Cost of interest earned per year = 0

Case-(ii): W/D < T < M
Cost of interest charges per year = 0

Cost of interest earned per year = DsIe(M-
2
T ) 

Case-(iii): T > M

Cost of interest charges per year = ( )2

2
pcI D T M

T
−

  

Cost of interest earned per year = 
2

2
eDM sI

T

Transportation cost = 
c

fzq
t

TOTAL COST TC = Ordering cost + Holding cost + 
Screening cost + Disposal cost + Quantity discount given by 
vendor + interest Payable - Interest earned + Transportation 
cost. 
The total costs for the 3 cases are:
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Differentiation of TC with respect to Q and T and setting 
it to 0 are done separately for all the three cases and the 
optimum values of Q* and T* are found.

Case-(i): 0 ≤ T ≤ W/D

1dTC
dQ

 = 0       

Hence, Q* = 
( )2

2

1 2 2s s
c

DK
fzh B C V C pd
t

− + + + +

1dTC
dT

 = 0

1dTC
dT

 = d
dT

 (
2
pCI DT

) = 
2
pCI D

 = 0

But this cannot be zero unless all of the parameters C, Ip, 
D are zero — which is typically not the case in a real-world 
scenario

There is no minimum or optimal point for T from this 
equation within this cost function in the current range (Case 
i: 0<T<W/D), because:
•	 The function is strictly increasing in T since  1  dTC

dT
> 0

•	 Hence, lower values of T are more favorable in this case.
This means that TC1 increases as T increases, so the 

function is monotonically increasing with respect to T in 
this interval.

The optimal value of T is as close to zero as practical or 
feasible in operations — meaning shorter cycle times are 
better for minimizing cost in case (i).

Examples for calculating TC1(T) = 
2
pCI DT

W
D

 = 4000
5000

 = 0.8 years

Valid range of case-(i) = 0 ≤ T ≤ 0.8

Now calculate TC1(T) for a few values of T

TC1(T) = 100*0.1*5000* 
2 2
pCI DT T

=  = 2500T

Table 1: Case-(i) Input

Description Parameter Value

Unit purchase price c Rs 100

Interest charges per investment per year Ip 10% = 0.1

Annual Demand D 5000 units

Minimum order qty W 4000 units

Cycle Time in years T Variable
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From the above data, it is observed that the TC1(T) is least 
at the value of T = 0.1 years. Hence, T* = 0.1 years

Cost increases linearly with T (due to interest charges 
only).

For this case, the total cost function TC1 increases 
linearly with T due to interest charges only, and is therefore 
minimized at the smallest practical value of T.

As shown in Table 1, the input parameters include a 
unit purchase price of Rs 100 and an annual demand of 
5000 units. The corresponding total costs are presented in 
Table 2, and the relationship between cycle time and cost 
is graphically illustrated in Figure 1.

Cost increases linearly with T (due to interest charges 
only).

Case-(ii): W/D ≤ T ≤ M

2dTC
dQ

 = 0        

Hence, Q* = 
( )2

2

1 2 2s s
c

DK
fzh B C V C pd
t

− + + + +

TC2(T) = pDIe(M- )
2
T    2dTC

dQT
  = d

dT
(pDIeM - 

2
pDIe )

     2
epDI−  = 0

This is only possible if p, D, or Ie = 0, which is not realistic 
in most practical cases.

Therefore, 2  0dTC
dQT

< , means that TC2 decreases with 

increasing T in this range.
To maximize interest earned (i.e., minimize cost) 
T* = M (just below M)

Examples for calculating TC2(T) = pDIe(M- )
2
T    

Cycle Time T is in the range W/D < T < M
Total cost includes interest earned TC2(T) = pDIe(M- )

2
T   

 W
D

= 5000
3000

 = 0.6 Let us assume T  ∈ (0.6, 0.9)

TC2(T) = 60000 x (0.6 - 
2
T  )

As T increases, cost (TC2) decreases. So, the function is 
monotonically decreasing in T.

T* = M = 0.6 (just below the upper limit)
This case benefits from earned interest without incurring 

any interest charges, making it the most cost-effective 
scenario. The values used are provided in Table 3 and the 
computed total costs at various cycle times are displayed 
in Table 4. The decreasing trend in cost with increasing T is 
visually represented in Figure 2.

Table 2: Case-(i) TC1(T) (vs) T

T (years) Total cost TC1(T) Rs

0.1 250

0.3 750

0.5 1250

0.7 1750

0.79 1975

Figure-1: Case-(i) Cycle time T (vs) cost

 Table 3: Case-(ii) Input

Description Parameter Value

Unit selling price c Rs 150

Interest earned rate Ie 8% = 0.08

Annual Demand D 5000 units

Minimum order qty W 3000 units

Trade credit period M 0.6 years



4099	 Inventory model considering trade discounts and scrap disposal with sustainability

Cost decreases with T (due to interest earned on delayed 
payments)

Case-(iii): T > M
When T > M, total cost includes

Interest charges (for late payments beyond the trade 
credit period)

Interest earned (on revenue within the trade credit 
period)

TC3(T) = cIpD(T-M)2 - DM2sIe

The optimality equation is cIpD(T-M)(T+M)+DM2sIe = 0

Find the value of T* (in the range of T > M)
On simplifying the equation cIpD(T-M)(T+M)+DM2sIe = 

0, we get

cIp(T2-M2)+M2sIe = 0
Here, interest is both earned and paid. While better than 

Case-(i), this scenario is not as efficient as Case-(ii). Input data 
are shown in Table 5. The cost behavior with respect to cycle 
time is shown in Figure 3.

Solving the above equation for T2 with the values, we 
get T2 = -0.072

But T2 cannot be negative.

Table 4: Case-(ii) TC2(T) (vs) T

T(years)
TC2(T) = 60000 x (0.6 - 2

T
 )

Cost Rs

0.61 60000 x (0.60 – 0.305) 17,700

0.7 60000 x (0.60 – 0.35) 15,000

0.8 60000 x (0.60 – 0.4) 12,000

0.9 60000 x (0.60 – 0.445)   9,300

Table 5: Case-(iii) Input

Description Parameter Value

Unit purchase price c Rs 100

Interest charges per investment per year Ip 10% = 0.1

Interest charges earned Ie 8% = 0.08

Annual Demand D 5000 units

Unit selling price W Rs 150

Trade credit period M 0.6

Figure-2: Case-(ii) Cycle time T (vs) cost

Figure-3: Case-(iii) Cycle time T (vs) cost
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This means that the interest earned is not enough to 
balance the interest charges, even when T is just above M. 
In this scenario, it’s better to operate at or just below T=M , 
which places us back into case-(ii)

So, the minimum point is not in case-(iii) at all.
Plugging different values for Ip and Ie, we finally arrive 

at the optimum values 
When Ip = 12%  Ie = 4%, T* = 0.424 years
The curve shows a minimum point around T≈0.424T years. 

To the right of that point, the cost increases rapidly due to 
high interest charges. To the left, cost decreases until just after 
T=M=0.36T = M = 0.36T=M=0.36, confirming that T∗∈(M,1).

Optimal T* and Costs in Each Case
The theoretical and numerical optimum values of cycle 
time (T*) and associated costs for all cases are summarized 
in Table 6. 

Table 6: Optimal T* and Costs for all cases

Case T* (Theoretical) T* (Numerical) Minimum Cost (Rs)

Case (i) → 0 or 0.1 0.1 300.00

Case (ii) ≈ M (0.6) 0.35 -5,550.00

Case (iii) ≈ 0.424 0.37 -5,245.95

Table 7: Input data for Numerical Example

D=5000 K=50 H=0.1 p=110 C=100 Cs=20 S=75 Vs=20

d=0.1 I=5 W=4000 C=100 s=150 M=0.36 Ie=0.08 Ip=0.1

B=0.5 f=5 z=20 tc=10

Table 8: Optimum values of Q* and T*

Case Q* T*

Case-(i) 77 0.1

Case-(ii) 77 0.35

Case-(iii) 77 0.37

Calculation of Total Cost (Rs)

Table 9: Total cost for all cases

Cost Component Case-(i) Case-(ii) Case-(iii)

Ordering Cost 125000 125000 125000

Holding Cost 96 96 96

Screening Cost 769 769 769

Disposal Cost 750 750 750

Quantity Discount 846 846 846

Interest-To be paid 5000 0 1

Interest-Earned 0 11100 1439

Transportation 769 769 769

Total Cost 133231 117131 126793

Theoretical values are derived from mathematical 
analysis (e.g., differentiation). Numerical values are obtained 
from cost evaluations at multiple T points.

For practical applications, it is better to use the 
numerically tested T* values from the cost table for practical 
applications (i.e., 0.1, 0.35, 0.37).

Case (ii) 
gives the lowest cost: Best when you can earn interest on 
revenue and avoid interest charges.

Case (i) 
is costlier, since you’re only paying inventory holding cost 
with no offsetting earnings.

Case (iii) 
is still better than (i), but not as efficient as (ii), because you’re 
paying interest for the delay beyond the trade credit period.

Why are the costs negative in Cases-(ii) and (iii)?
In case-(ii), this is the interest earned on the revenue. 

Since there’s no interest paid in this case, and no other 
T-dependent cost, the function is purely negative — it 
reflects a financial gain due to favourable credit terms.

So, a negative cost here doesn’t mean you’re “making 
money overall” — just that this portion of the cost (interest) 
is being offset or reduced due to interest earned.

In case-(iii), if the interest earned is larger than the 
interest paid, the net result could be negative. This again 
reflects a cost offset — not a profit.

Numerical Examples
As outlined in Table 7, parameter values used for the 
numerical example include demand (D=5000), setup cost 
(K=50), and holding cost rate (H=0.1).

The optimum values of Q* and T* for each case are 
presented in Table 8. The detailed breakdown of total costs 
per component across the three cases is given in Table 9, 
clearly showing Case-(ii) as the most cost-effective option.

Given
From the above data, it is observed that opting for case-

(ii) is the least cost option, since in this case, interest to be 
paid is 0 and interest earned is Rs 1439. After case-(ii), case-
(iii) is preferable. This has already been corroborated earlier.

Discussions
A fundamental model analysing the effect of permissible 
delay in payments offered by the supplier to the retailer on 
the optimal order quantity was developed (Goyal, 1985). The 
Vendor-Buyer’s integrated inventory model, incorporating 
quantity discount, delay in payments, and trade credit policy, 
was explained (Ritha et al., 2016).

The proposed model effectively evaluates inventory 
costs under varying trade credit conditions. Among the 
three cases, case-(ii) consistently yielded the lowest total 
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cost, as it allows firms to earn interest on revenues without 
paying any interest charges. Case-(i), with only holding 
and interest charges, was the costliest. Case-(iii) showed 
intermediate results where, earned interest partly offsets the 
charges incurred after exceeding the credit period.

Incorporating screening, disposal, and transportation 
costs adds practical relevance, especially for industries 
dealing with defective or perishable items. The results 
validate that aligning cycle time with credit terms 
significantly reduces overall costs, emphasizing the 
role of smart credit utilization in sustainable inventory 
management.

Conclusion
The study demonstrates that integrating trade credit, 
disposal, and transportation into inventory modeling leads 
to more accurate and cost-efficient strategies. Case-(ii) 
provides the best balance, helping businesses reduce costs 
by maximizing interest earnings within the credit period. 
These findings guide inventory planners in optimizing order 
timing and leveraging supplier credit to improve financial 
and operational efficiency.
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