
Abstract
This paper’s goals center on understanding the physiological behavior of diabetes, specifically type 2 diabetes, through mathematical 
modeling and in order to assess the health of diabetic patients and identify the most effective and practical blood glucose control 
strategies. Additionally, research on diabetes patients, both those with and without complications, is the main objective. Either a new 
model can be built or an existing model can be improved in order to develop a mathematical model for diabetes mellitus.
Keywords: Typical roots approach, The Direct Method of Lyapunov, Diabetes.

Linear and non-linear mathematical model of the physiological 
behavior of diabetes
B. Swaminathan*, G. Komahan, A. Venkatesh

RESEARCH ARTICLE

© The Scientific Temper. 2024
Received:  10/10/2024				    Accepted:  19/10/2024			   Published: 29/10/2024

Department of Mathematics, A.V.V.M. Sri Pushpam College 
(Affiliated to Bharathidasan University, Tiruchirappalli), Poondi, 
Thanjavur, Tamilnadu, India.
*Corresponding Author: B. Swaminathan, Department 
of Mathematics, A.V.V.M. Sri Pushpam College (Affiliated to 
Bharathidasan University, Tiruchirappalli), Poondi, Thanjavur, 
Tamilnadu, India, E-Mail: saminathan1291@gmail.com
How to cite this article: Swaminathan, B., Komahan, G., 
Venkatesh, A. (2024). Linear and non-linear mathematical model 
of the physiological behavior of diabetes. The Scientific Temper, 
15(spl):389-394.
Doi: 10.58414/SCIENTIFICTEMPER.2024.15.spl.45
Source of support: Nil

Conflict of interest: None.

Introduction
The process of turning a problem from a practical one into 
a mathematical one, creating the mathematical models 
required to solve the problem, and interpreting the solutions 
is known as mathematical modeling. It entails figuring out 
the mathematical puzzles, interpreting the answers in terms 
of the real world, validating the conclusions by contrasting 
them with the actual situation, and either improving the 
model or, if it is acceptable, applying the model to related 
situations for assessment and improvement, Berry and 
Nyman, 2002; Bukova-Guzel, 2011, Acker. E., Gate. L.C., 
Rosevaer J.W. and Mol. G.D., (1965), Ada. I.I., Garb. E.J.D., 
Harun. Y., (2012), Adew. S.O., Ayeni R.O., Aj. O.A. and Aden. 
T., (2007).

Another definition of mathematical modeling is the 
use of mathematics to examine significant issues related 
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to the seen world, test hypotheses, and make predictions 
about it. There are only better models; there is no best 
model. It is employed in the fields of engineering, including 
computer science and artificial intelligence, as well as the 
natural sciences, including physics, biology, earth science, 
and meteorology, as well as the social sciences, including 
political science, economics, psychology, and sociology. 
A mathematical model can be used to analyze a system, 
explore the interactions between its parts, and anticipate 
behavior, Ajm. I., Swat M., Lai. C., N. N.L., C. V., (2013), Ben.D.L. 
and Gour. S.A., (2004).

Dynamical systems, statistical models, differential 
equations, and game theoretic models are only a few 
examples of the many diverse types of mathematical 
models that exist. There are two sides to every field of 
knowledge: an analytical, mathematical, statistical, and 
computer-based one and an empirical, experimental, and 
observational one. The first of these two aspects require the 
use of mathematical modeling. 1988 in Kanpur. According to 
the mathematical methods used to solve them, the goal we 
have for the model, and their nature, mathematical models 
can be categorized as linear or non-linear, static or dynamic, 
deterministic or stochastic, discrete or continuous. Although 
linear, static, or deterministic models are simpler to handle 
and also produce reasonable approximations, non-linear, 
dynamic, and stochastic models are fundamentally more 
realistic, Bout. A. and Chet. A., (2006)., Cob. C. and Thom. 
K., (1985), Cob. C. and Thom. K., (1987), C.CC, Rust KF, F. ES, 
Ebe. MS, B.DD, Li C, et al., (2009), Del. C., Rom. M.R., Voe. M.R. 
and S. E., (1970).



390	 Swaminathan et al.	 The Scientific Temper. Vol. 15, special issue 

Diabetes and its symptoms
Diabetes Mellitus, often known as diabetes or hyperglycemia, 
is a syndrome of disturbed metabolism that is typically 
brought on by a combination of inherited and environmental 
factors. The hormone insulin, which is produced in the 
beta cells of the pancreas, interacts intricately with other 
chemicals and hormones in the body to regulate blood sugar 
levels. Diabetes mellitus is a collective term for a number of 
illnesses that increase blood sugar levels by impairing either 
insulin secretion or action in the body. This phrase is used 
to describe a condition marked by persistently elevated 
blood plasma glucose levels and other abnormalities in 
lipid and carbohydrate metabolisms, which are frequently 
linked to the emergence of particular microvascular and 
macrovascular conditions, Dia. Control and Complications T. 
R Group, (1995), Dia. Control and Complications T. Research 
Group, (1996) Dia. Control and Complications T. Research 
Group, (1997).

Diabetes of type 2 develops when the body becomes 
resistant to the effects of insulin. Adult-onset or non-insulin-
dependent diabetes mellitus are two names for it (NIDDM). 
When the liver, muscles, and other tissues stop responding 
to insulin, type 2 diabetes develops. The pancreas makes an 
effort to make up for this by manufacturing more insulin, but 
for some people, this effort falls short. If the high blood sugar 
is left untreated, the beta cells eventually die or degenerate, 
which causes the pancreas to stop generating insulin. The 
most prevalent kind of diabetes, type 2, is linked to lifestyle 
factors like junk food, obesity, and inactivity as well as 
heredity. The recent increases in the prevalence of type 2 
diabetes may be attributable to environmental exposures, 
Dia. Prevention P. Research Group, (2002), Fis. M.E. and Teo 
K.L., (1989), Fis. M.E., (1991), Gia. D.V., Lenb. Y., De Gaetano 
A. and Palumbo P., (2008), Heth. H.W., (1994), Heth. H.W., 
(2000), Hims. H.P. and K. R.B., (1939).

Diagnosis of Type 2 Diabetes
The most popular methods for identifying diabetes include
•	 The hemoglobin A1c test, commonly known as the 

glycohemoglobin test
•	 The fasting plasma glucose test (FPG)

Oral glucose tolerance evaluation (OGTT)
At routine medical checkups, a different blood test called 
the random plasma glucose (RPG) test is occasionally used 
to identify diabetes. If the RPG is 200 micrograms per 
deciliter or more and the patient additionally exhibits signs 
of diabetes, a medical professional may make the diagnosis 
of diabetes (World Health Organization, 2013). The blood 
test levels for diagnosing diabetes in people who are not 
pregnant, as well as prediabetes, are shown in the following 
Table 1. (ML = deciliter; mg = milligrams).

There are numerous approaches to diagnosing diabetes 
mellitus, but the glucose tolerance test (GTT), an approach 

that is universallyrecognized, is always chosen. To determine 
if it is IDDM or NIDDM, more tests must be performed when 
diabetes mellitus is found. The amount of fasting blood 
sugar immediately reveals the extent of carbohydrate 
intolerance. Thus, depending on this classification, the 
severity of the condition can be determined, as shown in 
the Table 2:

The atypical oral glucose tolerance curve of moderate 
diabetes is similar to those seen in many non-diabetic 
diseases, as seen in the above table. Because of this, 
understanding the patient’s metabolic profile is necessary 
in order to properly evaluate a particular tolerance curve. It is 
necessary to establish the following details before analysing 
the blood for glucose levels:
•	 The name of the actual technique utilised
•	 Whether it accurately measures sugar
•	 Whether whole blood, plasma, or serum will be used; and
•	 The normal person’s fasting glucose levels when any of 

these blood sample types are used.

Methodology
The formulation of mathematical models for the dynamics of 
glucose-insulin leaves out less important factors. The relative 
impact of system components on its dynamics is used to 
assess the relevance of the various components. After the 
mathematical issues are solved, interpretation is carried out 
by comparing the model’s constituent parts and behavior 
to those parts, traits, and behaviors of actual systems. The 
models are then verified using data from several sources 
as well as arbitrary parameter values. The dynamics of the 
disease can be explained using the models, and predictions 
regarding its rate of growth or decline can be made.

The two main methods used in our work for stability 
analysis are:

The typical roots approach
The eigenvalues of the variational matrix, a Jacobian matrix 
of first-order derivatives of interaction functions, determine 
a system’s asymptotic stability. This method only examines 
the local stability of the system near its equilibrium state 
because the Jacobian is determined by Taylor expansion of 
the interaction functions and neglects higher-order terms. 
When examining the local stability of large-scale systems 
in homogeneous environments, Gershgorin’s theorem and 
the Routh-Hurwitz criterion are both highly helpful. Only 
slight alterations of the initial state are stable under this 
technique. Thus, it is referred to as local stability, Lancaster 
and Tismanetsky, 1985.

The direct method of lyapunov
The initial state and system dynamics are frequently 
subjected to significant disturbances in real systems. The 
direct Lyapunov method is the most effective analytical 
technique for analyzing stability to finite perturbations of 
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Table 1: Diabetes blood test levels

Condition A1c (percent)
Fasting plasma 
glucose
(mg/dl)

Oral Glucose 
Tolerance Test 
(mg/dl)

Normal About 5 99 or below 139 or below

Pre-diabetic 5.66 to 6.355 100 to 125 140 to 199

Diabetic 6.5 or above 126 or above 200 or above

Table 2: Diabetes severity

Severity Range of fasting blood sugar

Normal 60–100mg/dl

Mildly diabetic 60–105 mg/dl

Moderately diabetic 106–200 mg/dl

Severely diabetic Above 200 mg/dl

an ecosystem model’s initial state. The creation of specific 
functions known as Lyapunov functions is necessary for this 
technique. The Lyapunov direct method generalizes the idea 
that a system is stable if it dissipates energy continuously 
until it reaches equilibrium, La Salle and Lefschetz, 1961; 
Rao, 1981.

Modelling the System that Controls Blood Sugar
Insulin and glucagon, two pancreatic hormones, are the 
two key players in the glucose control system. Together, 
glucagon and insulin regulate metabolism. When blood 
sugar (glucose) levels drop too low, the pancreas produces 
the hormone glucagon. The liver produces glucose 
when exposed to glucagon, which is then released into 
the bloodstream. Blood glucose levels are increased by 
glucagon, and fuel utilization is organized by insulin for 
either storage or oxidation. Increased blood glucose levels 
trigger the production of insulin, which then acts on cells 
all over the body to promote glucose absorption, storage, 
and use.

The broad paradigm for how insulin and glucose interact 
that we suggest is as follows:
𝑥˙ = −p1𝑥 − p2𝑥𝑦 + p3

𝑦˙ = q1𝑥 − q2𝑦		  ………….	 (1.1)
Where	 𝑥 ≥ 0, 𝑦 ≥ 0
𝑥 represents glucose concentration
𝑦 represents insulin concentration
p1 is the rate constant which represents insulin-independent 
glucose disappearance
p2 is the rate constant which represents insulin-dependent 
glucose disappearance
p3 is the glucose infusion rate
q1 is the rate constant which represents insulin production 
due to glucose stimulation
q2 is the rate constant which represents insulin degradation

The Model is Linearized
Consider the significant point of the coordination (1.1)
𝑥˙ = 0 ⇒ −p1𝑥 − p2𝑥𝑦 + p3 = 0 = M(𝑥, 𝑦)
𝑦˙ = 0 ⇒ q1𝑥 − q2𝑦 = 0 = N(𝑥, 𝑦) …………………….… (1.2)

The only equilibrium points are (0,0) and (𝑥*, 𝑦*).
Solving (1.2), we get

…………(1. 3)

We are interested in the interior-equilibrium point (𝑥*, 𝑦*) 
which always exist since all the parameters are considered 
positive.

Stability Analysis
Theorem 3.1: The trivial equilibrium point (0,0) is 
asymptotically stable locally.

Proof:	
At (0,0)









−

−
=

21

1
)0,0(

0
qq

p
K

Whose characteristic equation is given by E2 + (p1 + q2)E + 
p1q2 = 0

Where 𝑇𝑟k(0,0) = −(p1 + q2) < 0 and 𝑑𝑒𝑡𝐽(0,0) = p1q2 > 0, since 
p1 > 0, q2 > 0

As a result, the trivial critical point (0,0) is locally 
aymptotically stable according to Routh-Hurwitz criteria.
Theorem 3.2: If the interior-equilibrium point (x*, y*) is 
asymptotically stable locally,

(q1 − p2𝑥*)2 < 4q2(p1 + p2𝑦*)

Proof: Consider the Lyapunov function

𝑉 = 1 (X2 + 𝑌2)2
Hence, 𝑉˙ = −(p1 + p2𝑦*)X2 + (q1 − p2𝑥*)X𝑌 − q2𝑌2

𝑉˙ = -1/2 AX2 +BXY – ½ CY2

Where 𝐴 =2(p1 + p2𝑦*)
𝐵 = q1 − p2𝑥*

𝐶 = 2q2

That is a sufficient condition for 𝑉˙ to be negative 
definite.

𝐵2 < 𝐴𝐶
i.e. (q1 − p2𝑥*)2 < 4q2(p1 + p2𝑦*)

Which is the requirement that the parameters satisfy in 
order for the critical point (x*, y*) to be locally asymptotically 
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stable.
Lemma 3.1: The set fi = {(𝑥, 𝑦): 0 ≤ 𝑥 + 𝑦 ≤ p3 
+ 𝑐𝑒−ð𝑡, H = 𝑚i 𝑛(p1 − q1, q2), c is a constant that 
attracts all solutions that begin in the positive quadrant.
Proof: From our model (1.1), we have
	

321 pxypxp
dt
dx

+−−=

And yqxq
dt
dx

21 −=

Therefore, 𝑑(𝑥+𝑦) = −p1𝑥 − p2𝑥𝑦 + p3 + q1𝑥 − q2𝑦
≤ −p1𝑥 + p3 + q1𝑥 − q2𝑦
= −(p1 − q1)𝑥 + p3 − q2𝑦}
≤ − min{(p1 − q1), q2} (𝑥 + 𝑦) + p3
Let H = min{(p1 − q1), q2}

Then 𝑑(𝑥+𝑦) ≤ −H(𝑥 + 𝑦) + p
𝑑𝑡

Or	
𝑑(𝑥+𝑦)

ð(𝑥+𝑦)−p3

≤ −𝑑𝑡
Or 1/ ð log{H(𝑥 + 𝑦) − p3} ≤ −𝑡 + 𝑙𝑜𝑔r1

Or 𝑥 + 𝑦 ≤ p3 / ð + r𝑒−ð𝑡, where r/ ð = r1

Theorem 3.3: If (x*, y*) is an interior-equilibrium point, it 
is globally asymptotically stable.
q1 − p2𝑥*)2 < 4q2(p1 + p2𝑦) .
Proof: Consider the Lyapunov function

𝑉 = 1 (𝑥 − 𝑥*)2 + 1 (𝑦 − 𝑦*)2

2	 2

Then	 𝑉˙	 = (𝑥 − 𝑥*)𝑥˙ + (𝑦 − 𝑦*)𝑦˙

= (𝑥 − 𝑥*)(−p1𝑥 − p2𝑥𝑦 + p3 + p1𝑥* + p2𝑥*𝑦* − p3 + p2𝑥*𝑦 
− p2𝑥*𝑦)
+(𝑦 − 𝑦*)(q1𝑥 − q2𝑦 − q1𝑥* − q2𝑦*)
= (𝑥 − 𝑥*){−p1(𝑥 − 𝑥*) − p2𝑦(𝑥 − 𝑥*) − p2𝑥*(𝑦 − 𝑦*)}
+(𝑦 − 𝑦*){q1(𝑥 − 𝑥*) + q2(𝑦 − 𝑦*)}
= (−p1 − p2𝑦)(𝑥 − 𝑥*)2 + (−p2𝑥* + q1)(𝑥 − 𝑥*)(𝑦 − 𝑦*) − 
q2(𝑦 − 𝑦*)2

= − 1 P11(𝑥 − 𝑥*)2 + P12(𝑥 − 𝑥*)(𝑦 − 𝑦*) − 1 P22(𝑦 − 𝑦*)2

2	 2

Where P11 =2(p1 + p2𝑦)
P12 = −p2𝑥* + q1
P22 = 2q2
The condition for 𝑉˙ to be negative definite is that

P12

2 < P11P22

i.e., (q1 − p2𝑥*)2 < 4q2(p1 + p2𝑦) 
If the interior-equilibrium point (x*, y*) is globally 
asymptotically stable,

(q1 − p2𝑥*)2 < 4q2(p1 + p2𝑦) where yϵΩ.

𝑑𝑡

Theorem 3.4: The non-trivial significant point 
(𝐶*, 𝑁*) is locally asymptotically stable if

I < 2F + E + H + G and E(F + H) > (I − F)𝜃
Proof: Consider the Jacobian K at (𝐶*, 𝑁*) 
connected with m and n of the IVP , 
which is provided by
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This matrix’s characteristic equation is given by
X2 − 𝑡𝑟𝑎𝑐𝑒(K)X + det (K) = 0

If the eigenvalues are negative or have negative real parts, 
the eigenvalues are negative.
𝑡𝑟𝑎𝑐𝑒(K) < 0 and det(K) > 0

And, according to the Routh-Hurwitz stability criterion, 
if the above conditions are met, the system will be locally 
asymptotically stable.

As a result, if our system of differential equations is locally 
asymptotically stable,

−E − 𝜃 − I + F < 0 and −(E + 𝜃)(I − F) + E(I + H) > 0
i.e. if I < 2F + E + H + G and E(F + H) > (I − F)𝜃

The Non-linear System
We now assume that E, the probability of a diabetic patient 
developing complications, is proportional to W(t) and N(t) 
and has the following form:

E = E(𝑡) = 𝛽 W(𝑡),	 .....................	 (1.4)
L(𝑡) 

Where 𝛽 is a real positive constant.
The IVP is now a non-linear system that can be written as

𝐶˙(𝑡) ε ƒ(𝐶, 𝑁) = (𝛽 − 𝜃)𝐶(𝑡) − 𝛽 𝐶(𝑡)2
 
, 𝑡 > 0, 𝐶(0) = 𝐶

L(𝑡) 	

L̇  (𝑡) ε N(W, L) = (I − F)L(𝑡)  − (I + H)𝐶(𝑡),𝑡 > 0, L(0) = L0	
(1.5)
For simplicity sake, we write W(𝑡) = W and L(𝑡)  = L. Hence, 
we may write
W (̇𝑡) ε M(W, 𝑁) = (𝛽 − 𝜃)W –𝛽/N W

2 
, 𝑡 > 0, W(0) = W

L̇  (𝑡)  ε N(W, L) = (I − F)L − (I + H)W,𝑡 > 0, L(0) = L0	
(1.6)
Taking W˙(𝑡) ε M(W, L) = 0 and L̇  (𝑡) ε N(W, L) = 0, we get 
a non-trivial critical point
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Note that W (̇𝑡) ε M(W, L) = 0 ⇒ (𝛽 − 𝜃)W* − 
𝛽/N* W*2 = 0
W*/L* =( 𝛽 – 𝜃)/ 𝛽 
Now W* > 0, L* > 0, 𝛽 > 0, therefore 𝛽 − 𝜃 > 0.

Numerical Simulation
We consider arbitrary values for the parameters as follows: 

I = 0.004, F = 0.000004, E = 0.05, H = 0.0009, G = 0.004,
𝜃 = F + H + G = 0.0049, 𝛽 = 0.006,

The condition for local stability is satisfied as

I = 0.004 < 2F + E + H + G = 0.0549
And E(F + H) =  0.0000452 > 𝜃(I − F) = 0.0000196

For validate the global constancy condition, we consider 
the case as 𝑡 → 0 that is for W + l ≤ w, i.e. W ≤ w and L ≤ w. 
We again consider the scrupulous case when w = 5000. Let 
L = 5800 and W = 0.00006. We see that the condition for 
global constancy is also satisfied as

000087.0
*

*00006.0()()(40000029.0)(
5800 21

2

2*

2
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Where w1 = 3 and w2 = −0.35.
Consider equation 

𝑑𝐷(𝑡) = 𝐷˙ (𝑡) = I 𝐷(𝑡) − (E + F)𝐷(𝑡) + G𝐶(𝑡)
𝑑𝑡

𝑑𝐶(𝑡) = 𝐶 (̇𝑡) = E𝐷(𝑡) − 𝜃𝐶(𝑡)
𝑑𝑡
We generate a graph for the equation using the initial values 
D(0)=3, C(0)=3, and the same parameter values but varying I.

When I = 0.004, the number of diabetics without 
complications drops to 1.35 (approximately) and the 
number of diabetics with complications rises to 2.755. 
(approximately). When I = 0.00004, we get the same result. 
However, when I = 0.0004, we see that both D(t) and W(t) 

Figure 1: Number of Diabetes with increasing count of I = 0.00004

Figure 2: Number of diabetes with increasing count of I = 0.0004

Figure 3: Number of diabetes with increasing count of I = 4.0

grow exponentially, with D(t) growing faster than W(t) (t). 
When we increase I to I = 4.0, we see that D(t) and W(t) grow 
more quickly. This finding suggests that as the population of 
diabetics without complications grows at a constant positive 
rate, the population of diabetics with complications grows 
significantly as well.

This finding is consistent with the real-world situation, 
demonstrating that our model is valid and in accordance 
with the real-world situation.

Conclusion
In this paper, we develop a mathematical model of the 
diabetic population and divide it into two groups: diabetics 
without complications and diabetics with complications. 
The Routh-Hurwitz Criterion and the Lyapunov function 
are used to establish local and global stability conditions. 
Numerical simulations are used to validate these conditions. 
Graphs are generated for the mathematical model, which 
shows that as the rate of diabetes increases, so does the 
number of diabetics with complications, and if this increase 
is at a positive integral rate, the population of diabetics with 
complications grows exponentially. Diabetes is sweeping 
the world as a global epidemic, and diabetes-related deaths 
are increasing at an alarming rate. Controllable factors that 
cause diabetes, such as unhealthy eating habits, obesity, and 
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inactive lifestyles, should be prioritized, and the importance 
of raising awareness about the negative impact of such 
factors cannot be overstated. More research is needed to 
reduce the cost and burden of this disease.
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