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Abstract

The widespread use of multimedia helps users to connect, create, and inform easily, but the consequences of inappropriate usage,
including altered content, deepfakes, and misleading material, are severely damaging. It can undermine trust, influence public opinion,
deceive people, go against Government rules and regulations, and even incite violence due to its inherent characteristic of being quick
and widespread. Spreadingillicitmaterial, committing cyberbullying,and harassing individuals are a few cases of multimedia misuse. An
integrated approach combining technology, digital literacy, critical thinking, guidelines, and timely legal reforms is the only possible
solution to curb the complexity of multimedia misuse. The observations made in this paper advocate for stronger legislative measures
and cross-disciplinary collaboration to address the evolving landscape of trust erosion.
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Introduction

Multimedia encompasses text, images, audio, video,
graphics, animations, AR/VR, and more (McGaughey, 2001).
It effectively captures user attention and reaches a wide
audience. Bob Goldstein coined the term “Multimedia” in
1966 for his performance art event “Lightworks” (Meyers,
2000). Multimedia faces challenges like plagiarism, content
misuse, harmful material, data distortion, and privacy
violations. Trust is eroded by disinformation, copyright
issues, technical limitations, and quality degradation
(Dwivedi&Pachauri,2023).Socialissueslikethedigital divide,
cultural exploitation, and content overload desensitize
audiences (Youvan, 2024). Emerging threats like deepfakes
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and Al-generated content further undermine trust (Lyu,
2024). Understanding these challenges and their solutions
is crucial.

Materials and Methods

This section outlines the methodology employed for the
preparation and conduct of the research presented in this
paper.

Keyword Selection and Resource Accumulation
Relevant keywords were identified to guide the collection of
material. Key terms such as “Al-generated content,” “deepfake
impact,” “deepfake detection,” “trust in synthetic media,”
“deepfake prevention,” and “multimedia authentication”
were used to search Google Scholar, the primary database
for content extraction. To ensure the rigor and validity of the
research, inclusion criteria were established: articles had to
be peer-reviewed journal or conference papers, government
reports, or government regulations, and published between
2000 and 2024. The distribution of included articles is
depicted in Figure 1.

Content Analysis

Applying the inclusion criteria, 241 articles were initially
selected. After careful examination, 116 articles and 24
legal instruments were ultimately chosen for organization,
analysis, and review. Key information was extracted
from each article, facilitating a comparative analysis. The
distribution of reference materials across different concerns,
as shown in Figure 2, indicates the primary research areas
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Figure 1: Reference Distribution by year

within the domain. A higher number of references correlates
with increased research activity in a specific area.

Information Obtained on Various Concerns

Issues Arising from Misuse of Multimedia

The misuse of multimedia technologies, including AR/VR
and biometric data collection, raises significant ethical
and societal concerns. These include unauthorized data
collection, privacy violations, and the potential for addiction.
“Always-on” devices inadvertently gather sensitive
information, necessitating safeguards like adjustable
immersion levels (Garcia et al., 2020; Kade, 2015; Royakkers
et al., 2018; Shahbodin et al., 2024; Slater et al., 2020).

The rise of deepfakes and misinformation undermines
public trust in digital platforms, emphasizing the need
for accuracy in journalism and ethical content practices
(Shirky, 2014). Cultural insensitivity in content creation
risks stereotypes, underscoring the importance of ethical
guidelines (Shahbodin et al., 2024). The rise of Al-powered
tools, such as deepfakes and chatbots, increases the risk of
identity theft and fraud (Irshad & Soomro, 2018).

The digital realm can intensify existing societal
challenges. For example, cyberbullying disproportionately
affects marginalized groups like women, individuals from
the LGBTQIA+ community, etc. (Maji & Abhiram, 2023) and

excessive screen time driven by engagement algorithms
negatively impacts mental health as it reduces face-to-face
interactions (Karim et al., 2020; Shabahang et al., 2022).

Media misinformation and biased reporting further erode
public trust, deepening polarization and undermining the
media’s role as the “fourth estate” (Michailidou & Trenz, 2021).

Factors Contributing to Misuse

Disinformation/Misinformation

Misinformation is spread through manipulated images
and videos, which is facilitated by automated chatbots
and Al-generated or unverified content (Anthonysamy and
Sivakumar, 2022; Dufour et al., 2024). The use of emotionally
charged content further increases the sharing rate of such
content and thus aids polarization (Wan et al., 2024). Since
2023, there has been a notable rise in the prevalence of “echo
chambers,” small groups that amplify misinformation within
their closed networks (Dufour et al., 2024).

0% 20% 40% 60% 80% 100%

m Disinformation/Misinformation Deepfakes

= Journalism m Algorithms

Detection Techniques Mitigation Techniques

mOthers mlegal

Figure 2: Reference Distribution by Subject Area

Deepfakes

Deepfakes are fake media that spread false information
and impersonate individuals, thereby undermining trust
in multimedia platforms (Milliére, 2022). Generative
Adversarial Networks (GANs) are neural networks that
generate new media through a competitive process
between a generator and a discriminator (Masood et al.,
2022). Popular GAN architectures are DCGAN (Radford
et al.,, 2015), WGAN (Arjovsky et al., 2017), PGGAN (Karras
et al,, 2017), and StyleGAN (Karras et al., 2019). Diffusion
models create images by adding noise to a clear image
and then using a neural network to remove it step-by-step
(Lyu, 2024). Since 2021, systems like Midjourney and Stable
Diffusion have significantly improved image generation
(Kingma & Welling, 2014). Large Language Models (LLMs)
use transformers to generate human-like text (Lyu, 2024),
while Variational Autoencoders (VAEs) can swap faces while
preserving unique facial features. These technologies have
significantly improved image generation since 2021 (Kingma
& Welling, 2014).

Declining Journalism Standards

Sensationalism, clickbait, commercialization, and the blurred
lines between news and opinion erode journalistic standards
(Oyinloye et al., 2024; Youvan, 2024). Sensational headlines
and corporate influence prioritize profits over accuracy and
investigative journalism (Farid, 2023; Pepple & Acholonu,
2018). Lack of fact-checking spreads unverified information,
while algorithmic journalism risks bias and disinformation
(Dorr & Hollnbuchner, 2016; Jastaniyah, 2017; Martyn, 2009;
Pavlik, 2023; Thomson et al., 2020). Ethical decline due to
poor compensation and job insecurity further exacerbates
the issue (Herzog, 2021; Ruggiero et al., 2022).

Algorithmic Bias

Social media algorithms, such as those used by Facebook
and YouTube, can influence political polarization and public
trustin media. Personalization algorithms, which customize
content based on user behavior, can narrow information
scope (Kitchens et al., 2020). Recommendation systems,
such as collaborative filtering and content-based filtering,
can promote engaging content at the cost of diversity.
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Collaborative filtering can recommend content based on
user similarity (Sarwar et al., 2001), while content-based
filtering suggests content similar to past preferences (Fayyaz
et al., 2020). Engagement-based algorithms prioritize
content that generates high engagement, often favoring
sensational or polarizing content (Kitchens et al., 2020). For
example, Facebook’s promotion of partisan content, which
garners more engagement, can deepen ideological divides
(Bakshy et al., 2015).

Existing Legal Frameworks in India

India’s legal framework is complex, incorporating existing
laws and regulatory guidelines to address technology, free
expression, and societal safeguards. The Indian Evidence
Act (IEA)!, 1862, outlines the admissibility of electronic
evidence in court. Amendments to Section 65B have
broadened the definition of electronic records and relaxed
admissibility requirements in Section 63 of the Bharatiya
Sakshya Adhiniyam (BSA)?, 2023. The amendments include
semiconductor memory devices, expanded storage
methods, and a focus on reliability and authenticity. The
person in charge of the device or relevant activities can now
issue certificate requirements for electronic records.

The Ajit Mohan® case addressed the conflict between
the right of corporations to privacy and the government’s
responsibility to oversee digital activities and the Supreme
Court affirmed the authority of the legislative committee.
while in the Vitus* case the top court emphasized
individual privacy rights, finding excessive bail conditions
unconstitutional.

The Hajam® and Anu Kumari® Cases explored the legal
implications of social media posts, particularly WhatsApp
statuses. The Supreme Court underscored the importance
of free speech, ruling that non-hateful posts don’t warrant
criminal charges. In Anu Kumari, the court highlighted the
seriousness of the allegations and denied anticipatory bail.

India addresses multimedia misuse through a multi-
faceted legal framework, though gaps remain in tackling
emerging challenges like deepfakes and algorithmic
manipulation. Relevant legislation is outlined in Table 1.

1 The Indian Evidence Act, 1862 (IEA). (1860). Ministry of Law and

Justice, Government of India, Act No. 1 of 1872

2 Bharatiya Sakshya Adhiniyam, 2023 (BSA). (2023). Ministry of Law
and Justice, Government of India, Act No. 47 of 2023

3 Ajit Mohan & Ors. v. Legislative Assembly, National Capital
Territory of Delhi & Ors., Writ Petition (C) No. 1088 of 2020,
Supreme Court of India, 2020

4 Vitus, F. v. Narcotics Control Bureau & Ors., Criminal Appeal No.
of 2024, Supreme Court of India, 2024.

5 Hajam, J. A. v. State of Maharashtra & Anr., Criminal Appeal No.
886 of 2024, Supreme Court of India, 2024

6 Anu Kumari v. State of Punjab & Ors., Civil Revision No. 721 of
2004 (O&M), High Court of Punjab and Haryana, 2012.

Table 1: Legal Landscape Addressing Misuse of Multimedia in India

Legislation Relevant Sections Key Provisions

Promotion of
enmity, defamation,
prejudicing national

IPC Sections: 153A,

Indian Penal Code 153B, 295A, 416,

(IPC)?, 1860 and

. 500, 505, 177,157; integration,
Bharatiya Nyaya ! . ligi
Sanhita (BNS)® BNS Sections: 196, outraging religious
2023 ! 197,299, 356, 353, sentiments,

201,212 cheating, mischief,
misinformation
Computer-related
offenses, Publishing/
Information Sections 66,67, transmitting .
Technology (IT) 69A 79 obscene material,
Act®, 2000 ! blocking access to

online content (66A
struck down'?)

Protection of
Children from
Sexual Offences
(POCSO0) Act'', 2012

Child pornography,
storage of such
material

Sections 13,14, 15

Bribery, undue
influence,
intimidation, false
statements in

Representation of

the People Act'?, Sections 123, 125

1951 election manifestos,
class enmity.
Copyright

Indian Copyright Sections 13, 14,15,  protection,

Act'3, 1957 62,63 infringement
penalties

Constitution of Article 21 Right to Privacy

India™

Infringement
of trademarks,
punishments

Trade Marks Act'®,

1999 Sections 29, 52

7 The Indian Penal Code, 1860 (IPC). (1860). Ministry of Law and
Justice, Government of India, Act No. 45 of 1860.

8 Bharatiya Nyaya Sanhita, 2023.(2023). Ministry of Law and Justice,
Government of India, Act No. 45 of 2023

9 Information Technology Act, 2000. (2000). Ministry of Electronics
and Information Technology, Government of India

10 Shreya Singhal v. Union of India, Writ Petition (Criminal) No. 167
of 2012, Supreme Court of India, 2015.

11 Protection of Children from Sexual Offences Act, 2012. (2012).
Ministry of Women and Child Development, Government of
India

12 Representation of the People Act, 1951. (1951). Ministry of Law
and Justice, Government of India, Act No. 43 of 1951

13 The Copyright Act, 1957, Section 14. (1957). Ministry of
Commerce and Industry, Government of India

14 India. (1950). The Constitution of India. [Dehra Dun:
Photolithographed at the Survey of India Offices, 195] [Pdf]
Retrieved from the Library of Congress, https://www.loc.gov/
item/57026883/

15 India. (1999). The Trade Marks Act, 1999. [Act No. 47 of 1999.]
Retrieved from India Code: https://www.indiacode.nic.in/
bitstream/123456789/1993/1/A1999-47.pdf
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The Medical Council Code of Ethics Act!®, SEBI Act'?,
Environmental Protection Act'®, Consumer Protection Act?®,
Bar Council of India Regulations??, Chartered Accountants
Act?!, Companies Act??, Press Information Bureau (PIB)
Fact Check Unit, and Press Council of India (PCI) are all laws
aimed at promoting ethical practices in healthcare, financial
market transparency, environmental protection, consumer
protection, professional integrity, corporate governance,
and journalistic ethics.

The Digital Personal Data Protection Act??, 2023, and
the Information Technology Act Rules?, 2011, address
privacy and consumer protection. The Consumer Protection
Act, 2019, and the Environment Protection Act also have
relevant provisions. Social media platforms’ data practices
may be indirectly regulated by the Digital Personal Data
Protection Act, 2023. The Digital India Act addresses
concerns like algorithmic bias, internet privacy, and content
regulation. Understanding these laws can help individuals
and organizations avoid legal repercussions and ensure
responsible information sharing.

Existing laws provide a foundation, but challenges
remain. The lack of specific regulations for deepfakes
and limited algorithmic accountability hinders progress.
International cooperation is needed to address cross-
border cybercrime. A comprehensive approach, including
legislative reforms and digital literacy, is crucial to restore
trust in the digital realm.

Technological Approaches for Detection

To combat misinformation and deepfakes, various
techniques are employed:

Text Analysis

Transformer-based models like BERT and RoBERTa capture
word context and semantics for text-based tasks (Ayetiran
& Ozgébek, 2024).

16 Indian Medical Council Code of Ethics. (n.d.). Medical Council

of India

17 Securities and Exchange Board of India (SEBI) Act, 1992. (1992).
Ministry of Corporate Affairs, Government of India

18 Environment Protection Act, 1986. (1986). Ministry of
Environment, Forest and Climate Change, Government of
India

19 Consumer Protection Act, 2019. (2019). Ministry of Consumer
Affairs, Food & Public Distribution, Government of India

20 Bar Council of India Regulations. (n.d.). Bar Council of India

21 The Chartered Accountants Act, 1949. (1949). Ministry of
Corporate Affairs, Government of India

22 The Companies Act, 2013. (2013). Ministry of Corporate Affairs,
Government of India

23 Digital Personal Data Protection Act, 2023. (2023, August 11).
Gazette of India, 22 of 2023.

24 Government of India. (2011). The Information Technology
(Reasonable Security Practices and Procedures and Sensitive
Personal Data or Information) Rules, 2011. Gazette of India.

Image Analysis

Convolutional Neural Networks (CNNs) like ResNet are used
for image analysis to learn complex features and detect
image manipulations (Abukari et al., 2023; Ghai et al., 2021).

Audio Analysis

WaveNet and MFCC+CNN are used for audio analysis, while
LSTMs capture temporal dependencies (Ayetiran & Ozgobek,
2024).

Video Analysis

13D and X3D extend 2D CNNs into 3D for video analysis (Hu

et al., 2021b). LSTM-CNN Hybrid models combine CNNs

and LSTMs for enhanced video-based fake news detection

(Ayetiran & Ozgodbek, 2024).

« Multi-modal analysis models like EANN and MVAE
combine text and image features, factoring in
event-specific biases using variational autoencoders
(Ayetiran & Ozgdbek, 2024). SpotFake and SAFE
measure similarities between text and images (Ayetiran
& Ozgoébek, 2024). The Emotion-Aided Multi-task
Framework uses emotional analysis from text, audio,
and video to boost accuracy, especially for emotionally
charged content (Kumari et al., 2023).

+  Knowledge-Enhanced Models: VisualBERT incorporates
external knowledge from large-scale knowledge graphs
for improved fake news detection (Gao et al., 2024a).

« Pixel-Level Analysis: Techniques such as Pixel-Level
Disparities (Li et al., 2020), Saturated Pixel Analysis
(McCloskey & Albright, 2019), Co-occurrence Matrices
(Nataraj et al., 2019), Photo Response Non- Uniformity
(PRNU) Pattern (Koopman et al., 2018), Hybrid Spatial
and Frequency Analysis (Liu et al., 2021; Masi et al., 2020),
Local Motion Features (Wang et al., 2020b), Corneal
Specular Highlight (Hu et al., 2021a), and Frequency
Spectrum Analysis (Barni et al., 2020; Frank et al., 2020)
can be used to analyze individual pixels.

+ Artifact Analysis: Techniques like Local Patch Artifacts
(Chai et al.,, 2020), Artifact-Based Detection (Nirkin et
al.,, 2020), and Texture and Artifact Detection (TAD) can
be used to identify specific artifacts or inconsistencies
in images.

« Traditional machine learning models, such as Support
Vector Machines (SVM), Random Forests, and Naive
Bayes (Malik et al., 2022), classify deepfakes based on
specific attributes.

- Deep learning methods: CNNs extract features from
images or videos to classify them as real or fake
(Guarnera et al., 2020; Guo et al., 2020; Wang et
al., 2020a). While recurrent neural networks (RNN)
analyze temporal dependencies in video sequences
(de Lima et al., 2020; Sabir et al., 2019). GANs generate
synthetic data for training or analyzing the structure
of deepfakes (Marra et al., 2019; Zhang et al., 2019).
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Other deep learning techniques include Cross Layer
Refinement Network (CLRNet) (Tariq et al., 2020), Sliced
Spatio-Temporal Network (SSTNet) (Wu et al., 2020),
Hierarchical Memory Network (HMN) (Fernando et
al., 2019), Gram-Net (Liu et al., 2020), Fake Detection
Fine-tuning Network (FDFtNet) (Jeon et al., 2020),
FakeLocator (Huang et al., 2022), Manipulation Tracing
Network (ManTra-Net) (Wu et al., 2019), OC-FakeDect
(Khalid & Woo, 2020), Siamese Network with Triplet
Loss (Agarwal et al., 2020a; Mittal et al., 2020), Multi-task
Learning (Nguyen et al., 2019), Attention Map Estimation
(Dang et al., 2020), and Octave Convolution (OctConv)
(Chen et al., 2019; Yu et al., 2020).

« Biologicaland Behavioural Analysis: These techniques use
physiological and behavioral cues to detect deepfakes.
Facial analysis including lip-sync inconsistencies
(Korshunov & Marcel, 2018), Layer-by-Layer Neuron
Behaviour (Wang et al., 2019), eye blinking (Li et al.,
2018), Deep Face Recognition Systems (Nhu et al.,
2018), and head pose and landmark analysis (Yang et
al., 2019a; Yang et al., 2019b), and physiological signal
analysis, such as heart rate analysis (DeepRhythm
and MMSTR) (Li & Lyu, 2019; Qi et al., 2020), remote
photoplethysmography (rPPG) (Ciftci et al., 2020a;
Ciftci et al., 2020b), Heart Rate Detection (Fernandes
et al,, 2019; Qi et al., 2020), and skin color changes due
to heartbeat (Hernandez-Ortega et al., 2020; Qi et al.,
2020), are useful in identifying deepfakes.

« Contextual and feature-based techniques focus on
the context and specific features of the image/video.
Techniques like Face-Context Discrepancy (Nirkin
et al., 2020), Facial and Head Movement Patterns
(Agarwal et al.,, 2019; Agarwal et al., 2020b), Facial Key
Point Detection (Zhang et al., 2017), Fixed Size Faces
Detection (Li & Lyu, 2019), and Modality Dissonance
Score (MDS) (Chugh et al., 2020) are used to detect
anomalies. Additionally, techniques like Localization
of Manipulated Regions (Huang et al., 2022) and
variations in face sizes (Coccomini et al., 2024) can also
be employed.

« Preprocessing and Quality Measures: Techniques like
Dataset Preprocessing Techniques (Chen & Yang, 2021),
Image Preprocessing Techniques (Xuan et al., 2019),
No-Reference (NR), Full-Reference (FR) Quality Measures
(Concas et al., 2024), and Impact of Compression and
Detection under Compression (Galvan et al., 2013; Gao
et al., 2024b) are used to prepare and process data to
enhance detection accuracy.

Forensic and Device-based Approaches: Forensic
Localization Dataset (Songsri-in & Zafeiriou, 2019) and
DCT Coefficient Analysis (Battiato & Messina, 2009) are
used to identify manipulated media. Analyzing facial
features, patterns in audio and video, inconsistencies in
lighting, shading, and other visual cues like the absence

of background noise or echoes can also be helpful.
Device-based signatures such as Media Signature
Encoding (Baracchi et al., 2024) and Watermarking (Yu
etal., 2021) are embedded into media files to track their
origin and detect tampering. GAN Watermarking (Fei
et al,, 2022) is a technique that uses GANs to embed
robust watermarks.

- Transferability analysis studies the ability of deepfake
detection models to generalize across different datasets
and domains (Barni et al., 2019)

«  While these approaches show promise, the rapid
evolution of generative technologies challenges their
effectiveness (Lyu, 2024).

e Strategic Mitigation Methods

« Enhance algorithmic transparency in personalization
and recommendation systems (Pariser, 2012).

« Prioritize Digital Literacy Education among users to
recognize misinformation, cyber-crime, and deepfakes
(Wan et al., 2024).

e Strengthen Regulatory Frameworks

- Foster collaborative fact-checking initiatives, like Full
Fact, use hybrid systems combining human oversight
and ML for real-time verification (Nekmat, 2020).
Collaboration between fact-checkers and media
platforms can address misinformation (Graves, 2018).

« Enhance platform accountability by demanding strict
content moderation policies (Anwar & Fong, 2012; Lazer
etal., 2018).

e Restoring journalistic integrity
« Technological and cognitive literacy, along with social-
emotional skills, can help reduce misinformation’s
impact (Gaillard et al., 2021; Pal et al., 2019).
To effectively mitigate the misuse of multimedia, a
comprehensive approach, combining these strategies and
adapting to evolving technologies, is necessary.

Discussion

The erosion of trust in multimedia is driven by deepfakes,
misinformation/disinformation, algorithmic bias, and
declining journalistic standards, which align with prior
research. Deepfakes are powered by GANs and diffusion
models, which pose significant threats (Arjovsky et al., 2017;
Radford et al., 2015). While transformer-based models show
promise in their effectiveness in detecting deepfakes, it
is often limited by the adaptability of generative models
(Li et al.,, 2020; Nataraj et al., 2019). Algorithms foster echo
chambers and filter bubbles, which amplify misinformation
and political polarization (Bakshy et al., 2015; Kitchens et
al., 2020). Hybrid systems are one example of advanced
detection methods that can offer potential solutions
(Hassan et al., 2017; Nekmat, 2020). Commercialization
and sensationalism are major contributors to declining
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journalistic standards, and they proportionally erode public
trust (Oyinloye et al., 2024; Pepple and Acholonu, 2018).
While fact-checking and effective training can help rebuild
trust (Cavaliere, 2020; Graves, 2018), India’s legal framework
needs adaptation to address challenges such as deepfakes
and algorithmic bias.

Thus a multi-faceted approach that has legislative
reforms, technological advancements in detecting harmful
content, and media literacy is essential for restoring trust in
multimedia.

Conclusion

The corrosive nature of false information erodes trust,
distorts public opinion, and thwarts decision-making. Major
contributing factors are deepfakes, declining journalistic
standards driven by sensationalism and commercialization,
and algorithmic bias, which amplify misinformation and
polarization.

A systematic approach combining legislation, education,
international cooperation, media literacy, and advancements
in detection technology is crucial. Independent reporting,
increasing accountability, and ethical journalism are also
essential.

Future research should prioritize algorithms that
promote diversity, user control, transparency, and advanced
detection techniques, including deep learning and hybrid
models, which can combat fake news and privacy issues.
Ethical considerations are paramount in multimedia
practices, and therefore, professionals must uphold the
highest standards to ensure a credible and reliable digital
environment.

Future Scope

While progress has been made in detecting and mitigating
misinformation and deepfakes, challenges remain. Real-
time detection, cross-modal analysis, ethical considerations,
user behavior, and international cooperation require
further exploration. Future research should focus on Al’s
impact on journalism standards, sustainable business
models for ethical journalism, audience trust metrics, and
leveraging blockchain, IoT, and deep learning forimproved
recommendation systems and fake content detection.
Addressing the misuse of multimedia necessitates a
comprehensive approach. This includes strengthening legal
frameworks, promoting digital literacy, and fostering ethical
practices. International cooperation is crucial to combat
cross-border issues like deepfakes and misinformation.
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