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Early detection of fire and smoke using motion estimation
algorithms utilizing machine learning
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Abstract

An essential part of early warning and fire incident prevention in video surveillance systems is fire detection. The present study presents
methodology that integrates motion estimation methods with the state-of-the-art convolutional neural network (CNN) architecture,
YOLOVS5, to provide effective fire detection. The methodology combines motion estimation techniques to improve the detection of
dynamic changes suggestive of fire in video frames by the YOLOv5 model. The model incorporates motion analysis techniques, such
as optical flow, to capture the spatial context and temporal relationships that are essential for differentiating between fire incidents
and background activities. The research makes use of annotated datasets that cover a range of fire scenarios as well as non-fire
activities, which guarantees reliable training and assessment of the YOLOv5 model. The outcomes of the experiments show how well
the suggested strategy works to achieve high detection accuracy and real-time processing capabilities. Comprehensive performance
indicators and comparison analysis are used to confirm the model’s ability to accurately pinpoint flames in the presence of changing
ambient variables and motion dynamics. By utilizing YOLOv5 and motion estimation algorithms, this research advances the field of fire
detection technologies and provides a scalable and effective solution that can be integrated into emergency response frameworks, smart
cities, and surveillance systems. The results highlight the possibility forimproved situational awareness and proactive fire management
through the integration of CNN architectures with motion analysis techniques. This abstract highlights the improvements in accuracy
and real-time applicability of YOLOv5 with motion estimation methods for fire detection, outlining the research emphasis, methodology,
experimental validation, and possible consequences.
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Introduction

In order to prevent and mitigate fire dangers as soon as
possible and safeguard people and property, fire detection
is a vital component of contemporary safety and security
systems. This study examines different approaches and
developments in the field of fire detection technology, with
an emphasis on how computer vision techniques—such as
convolutional neural networks (CNNs)—can be applied to
increase the efficiency and accuracy of fire detection. It is

impossible to exaggerate the significance of prompt fire.
Detection. The National Fire Protection Association (NFPA)
reports that fires cause substantial damage and human
casualties annually throughout the world. Conventional
fire detection systems frequently depend on heat sensors,
smoke detectors, or manual surveillance; these methods
may not be as reliable in various conditions or have as low
a false alarm rate (Chen et al., 2004). On the other hand,
computer vision-based methods present a viable remedy
by utilizing artificial intelligence to evaluate image data and
instantly recognize patterns connected to fire.
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In order to extract hierarchical features from input data
and enable the model to distinguish between different
objects, such as flames, smoke, and environmental variables
suggestive of fire breakouts, a CNN's architecture usually
consists of numerous layers. This work aims to accomplish
two main goals: firstly, it reviews the state-of-the-art CNN-
based fire detection techniques, encompassing model
architectures, training approaches, and performance
measures. Second, to suggest and assess methods that
tackle current issues, such as integration with current fire
safety, scalability to large-scale settings, and detection
accuracy in changing lighting circumstances. This research
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aims to contribute to the development of more robust
and reliable fire detection systems that can minimize
response times, reduce false alarms, and ultimately
improve overall safety and security in both residential and
commercial settings by pushing the boundaries of current
fire detection(Muhammad et al., 2018). The theoretical
underpinnings of CNNs, pertinent literature on fire detection
techniques, experimental results and analysis, and future
research directions to propel the field of computer vision-
based fire detection forward are covered in detail in the
sections that follow in this paper.

Object detection requires a few crucial steps

Detection head

YOLOv5's detection head employs a number of convolutional
layers and up-sampling methods to forecast bounding
boxes, class probabilities, and confidence ratings. This
head architecture makes it easier to precisely locate and
categorize objects in variety of settings.

Model variants

There are several sizes of YOLOvV5, each with a different depth
and computing requirements. Users can select a model
version according to particular hardware limitations and
performance needs thanks to this scalability.

Training and optimization

YOLOvV5 makes use of sophisticated training methods
like progressive scaling, data augmentation procedures,
and automated hyperparameter optimization. By using
techniques, models become more resilient and have
a better ability to generalize across different types of
datasets. Input Processing: Prior to being fed into the model,
images undergo pre-processing to normalize pixel value
dimensions.

Feature extraction

The inputimage’s hierarchical features are extracted by the
backbone network, which gathers spatial data necessary for
object detection tasks. Bounding Box Prediction: For every
class of identified objects in the image, the detection head
predicts bounding boxes (coordinates), class probabilities,
and confidence scores. Post-processing: The final collection
of identified items is refined based on confidence scores
by applying non-maximum suspension (NMS) to filter out
redundant bounding boxes. YOLOvV5 can be optimized for
fire detection using particular datasets that show pictures or
video frames of fires, smoke, and pertinent ambient factors.
The model gains great accuracy and efficiency in identifying
and localizing objects connected to fire by receiving training.
YOLOVS5, which offers state-of-the-art performance in terms
of speed, accuracy, and scalability, represents a substantial
leap in object identification utilizing CNN architectures.
Its use in fire detection highlights its adaptability and

possible influence on improving safety precautions and
emergency response procedures. Convolutional Neural
Networks (CNNs) are the main structural component of
YOLOV5. With the help of these networks, which are made
to automatically recognize patterns in visual data, the
model can identify objects—including fires—using learned
features as opposed to manually created criteria. To enhance
its detecting skills in a variety of settings and sizes, YOLOv5
makes use of specialist modules (such as SPP and PANet)
and a sequence of convolutional layers.

Benefits of YOLOVS5 in Fire Safety

Real-time Detection

YOLOVS5 allows for real-time fire detection in static photos or
video streams, even on devices with limited computational
power. It does this by operating efficiently.

Accuracy

YOLOV5 has a high degree of precision in differentiating
between fires and non-fire objects thanks to substantial
training on a variety of datasets (Redmon et al., 2016).

Adaptability

The design can manage all kinds of fires and is flexible
enough to adapt to different surroundings, guaranteeing
reliable performance under trying circumstances.

Utilizing image processing techniques on visual data
(such as photos or video frames) to detect the presence of
flames or smoke is a common method of utilizing machine
learning to detect fires.

Acquisition of Datasets:

Compile a dataset of pictures or videos that show both non-

fire (normal scenes) and fire-related circumstances

The dataset ought to be varied and inclusive of various
fire kinds, settings, and circumstances.

- Preparation: Pre-process the pictures or video frames
to standardize them by doing things like resizing and
normalizing pixel values.

« Model Selection: Select a suitable model for machine
learning. CNNs, or convolutional neural networks, are
widely utilized for image-based applications such as
fire detection.

« Training: Divide the dataset into test, validation, and
training sets. Use the training set to train your model,
aiming for performance metrics like F1-score, accuracy,
precision, and recall. Using the validation set, validate
your model and make any necessary hyperparameter
adjustments to avoid overfitting.

«  Evaluation: Examine how well your model performs on
the test set to determine how accurateitis in identifying
fires.

«  Deployment: After you're happy with the performance,
use your model to start fires in situations that happen
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in real-time. If real-time detection is needed, integrate
it with the proper sensors or cameras to record a live
video stream.

« Monitoring and improvement: Keep an eye on how well
your model is working in practical applications. Gather
input and information so that the model can be refined
over time and made to fit differently.

Problems: Variability in the dataset: Making sure it
includes a variety of fire and non-fire settings.

Block Diagram for Fire Detection

The stepsinvolved in the fire detection using CNN in YOLOvV5
is explained in details using the block diagram and CNN
architecture related work for fire detection (Figure 1).

CNN Architecture related work in YOLOV5 for Fire
Detection (Table 1)

There are multiple processes involved in utilizing a CNN to
detect fire in video. This is a general strategy that you can
use (Figure 2):

Compiling and preparing the dataset

e Gather videos of fire and non-fire

Compile a collection of videos, both with and without fire
sequences. Make sure there are a variety of non-fire (regular
activities, scenes from nature) and fire scenarios.

e Labeling
Indicate whether or not there is a fire in each frame.

Data Pre-processing

e Frame extraction

Take individual video frames and combine them into a huge
set of pictures.

e Normalization
Set each frame’s pixel values to a standard scale, usually
ranging from 0 to 1.

TRAINING
GITHUB (ML
IMAGE/VIDEO DATA ON CNN
MODEL LIB 5
‘ HYPERPARAMETER
‘ TENSOR BOARD

MODEL

e N
HIGH USING OPTIMIZER
ACC cY VALIDATION

SET

Figure 1: Block diagram of fire detection system

CNN Architecture Selection

Select or create a CNN architecture that is appropriate for
classifying video frames. Popular options consist of: 3D
Convolutional Networks: Handle simultaneous processing
of spatial and temporal data. 2D CNNs + LSTM: Employ a
combination in which LSTMs model temporal dependencies
and 2D CNNs extract spatial features.

CNN + Optical flow
To capture motion, use CNNs for spatial characteristics and
add optical flow data. Training of the Model

Split Data
Separate the dataset into test, validation, and training

Augmentation
Use techniques like random harvests and flips to add
variation and robustness to data.

Instruction

Use the training set to instruct the CNN To prevent
overfitting, keep an eye on the validation set’s performance.
size, regularization strategies, and learning rate.

Test set evaluation

Assess the accuracy, precision, recall, and F1-score of the
trained model using the test set.

Thresholding
Establish a limit for the output likelihood of the model to
identify a frame as having fire.

Deployment inference
Classify frames in live videos using the learned model.

Integration

Apply the model to a broader fire detection system, like a
fire monitoring program.

Real-time constraints

If real-time detection is required, take into account the
competing demands and adjust the hardware and model
accordingly.

The many layers of the well-known object recognition
model YOLOVS5, which is built on CNNs, have varied functions
in processing input data and extracting features required
for identifying things in films, including fires. The main
components of the YOLOVS5 architecture, which is specially
designed for fire detection, are broken down here along
with their functions:

CSPDarknet53, the backbone network

Goal

The feature extractor is the backbone network or
CSPDarknet53.

Function
It extracts hierarchical characteristics at several scales by



3293 Early Fire Detection Using YOLOv5

processing the supplied video frames. Ensuring the capture
of both local and global context in image frames is crucial
for the accurate separation of fires.

Features

Activation functions (such ReLU), batch normalization, and
convolutional layers, which are meant to learn, usually make
up the backbone.

Layers Around the Neck

Goal
YOLOV5's neck layers, like PANet’s, combine functionality
from several backbone network tiers.

Function

By combining features from various network scales or levels,
they improve feature representation. This enhances the
ability tolocate and identify fires in video frames of different
sizes and orientations.

Features

To create strong feature maps for later detection, neck
layers frequently incorporate procedures like feature
concatenation, skip connections, and spatial pyramid
pooling (Figure 3).

Head Divisions

Goal
YOLOvS5's head layers are made up of layers that are particular
to detection.

Function

Based on the fused features, they produce predictions for
confidence scores, bounding boxes, and object classes
(including fire).

Features

Activation functions and output layers come next, with head
layers usually consisting of convolutional layers with limited
spatial dimensions.

Loss Function

Goal

The loss function computes the difference between the
ground truth annotations and the anticipated outputs.
Examples of such loss functions are CloU and Focal loss,
which are exclusive to YOLOVS.

Table 1: Comparison of different Yolo Version for best result for
Fire Detection

S.No Algorithm mAP (%) FPS Size (MB)
1 YOLOv3 757 52 235

2 YOLOv4 82.7 54 244

3 YOLOvV5 91.6 71 14

Table 2: Dataset categories for detection

S.No Fireimages  Fireimages  Nonfireimages  Videos

1 Training 127 80 02

Function

It directs the training procedure by penalizing erroneous
guesses and motivating the model to increase its precision
and accuracy in fire detection localization.

Features

By combiningtermsforconfidenceestimation, classification,
and bounding box regression, the loss function optimizes
the model to precisely identify fires while reducing false
positives and negatives. 5. Reprocessing

Goal: Refinement of output predictions is the goal of
post-processing

Qualities

Post-processing procedures are crucial for enhancing the
accuracy and dependability of fire detection, particularly in
dynamic video situations where several fires may occur in
close proximity to one another. Every layer in the YOLOvV5
architecture is essential for analyzing video frames and
extracting pertinent information.

CNN architecture for fire and Smoke detection

Convolutional neural networks (CNNs) can automatically
learn and extract relevant features from visual data. They
are commonly employed for fire detection in photos and
videos(Ren etal., 2015) and YOLO (Redmon etal., 2016). CNN
architectures intended for fire detection typically include

Table 3: Results of fire detection

Epoch  GPU_mem  box_loss obj_loss cls_loss mAP
0/59 0.914G 0.1064 0.003233 00.029
1/59 0.919G 0.08236 0.02655 00.118
2/59 0.919G 0.02963 0.02655 00.225
57/59 0.919G 0.01418 0.01418 00.7

58/59 0.919G 0.01304 0.01304 00.768
59/59 0.919G 0.01394 0.01393 00.783

Table 4: Dataset categories for fire and smoke detection

S.No  Type Train Val Test
1 Smoke Only 3412 278 312
2 Smoke with Fire 3233 301 298
3 Non-Smoke 2476 304 331
4 Fire only 1789 231 256
5 Foggy Images 120 68 45
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Figure 2: CNN architecture for detection of fire and smoke
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Figure 4: Results of object loss for detection of fire and smoke
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Figure 5: Results of class loss for detection of fire and smoke
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Figure 6: Graph of box loss for detection of fire and smoke
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Figure 7: Screenshot of the process of fire and Smoke detection with different losses
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Fig. 8 The confusion matrix of the real and predicted categories
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Figure 10: Screenshot of the result of fire detection

Table 5: Results of fire detection

Epoch GPU_mem  box_loss obj_loss cls_loss mAP
0/89 0.914G 0.0275 0.03233 0.011 0.078
1/89 0.919G 0.02176 0.02155 0.012 0.109
2/89 0.919G 0.04111 0.02055 0.016  0.289
87/89 0.919G 0.01487 0.01113 0.819
88/89 0.919G 0.01233 0.01267 0.833
89/89 0.919G 0.01309 0.01206 0.828

multiple layers, each of which serves a distinct purpose. The
many layers that are frequently employed in CNNs for fire
detection are broken down in detail below: The input layer
receives the input frame from the video or image. The size
of the input image or frame determines the input layer’s
dimensions (height, width, number of color channels, etc.).
CNNs are mostly composed of convolutional layers (Figures
4-10 and Tables 2-5).

CNN architecture for detection of fire In contrast, recall
is a false positive observation ratio, as previously shown in
research. With 1.2% false positives and 91% accuracy, our
recommended model performed admirably. Equations (1)
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and (2) can be used to obtain the mean precision and recall
rates of our proposed method: A precision-recall curve is a
graph that results from plotting the accuracy ratio against
the recall rate (P-R plot). The model’s FM score may also be
used to gauge its efficacy. Another criterion used in this
investigation was the average accuracy of each detection
(AP).

. TP
Precision = ——......(1) (1
TP +FP
TP
Recall =—.....(2) (2)
TP + FP

The following is a definition for the FM score:
FM = 2 x precision x recall

precision + recall
AP = Precision (Recall)d(Recall) 1

Conclusion

This study used deep CNN models and the YOLOV5 object
detector to construct a fire detection system. Fire image
datasets with various fire situations were used to train the
suggested fire detection system. It used films and pictures
to detect fire. For the purpose of training and validating
the model, we produced a dataset for fire detection that
had 3233 fire photos and also some videos. We conducted
experiments to assess the suggested system’s performance,
both quantitatively and qualitatively, by contrasting it with
other well-known one-stage object detectors. With 89%
MAP, the assessment and testing results demonstrated
that the YOLOv5 model outperformed other YOLO versions
and was robust on our fire detection dataset. Because of its
effectiveness and versatility, the suggested fire detection
approach enables researchers to detect fires at an early
stage. Furthermore, other methods can be applied to
understand chemical-based fire with high accuracy.
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