
Abstract
An essential part of early warning and fire incident prevention in video surveillance systems is fire detection. The present study presents 
methodology that integrates motion estimation methods with the state-of-the-art convolutional neural network (CNN) architecture, 
YOLOv5, to provide effective fire detection. The methodology combines motion estimation techniques to improve the detection of 
dynamic changes suggestive of fire in video frames by the YOLOv5 model. The model incorporates motion analysis techniques, such 
as optical flow, to capture the spatial context and temporal relationships that are essential for differentiating between fire incidents 
and background activities. The research makes use of annotated datasets that cover a range of fire scenarios as well as non-fire 
activities, which guarantees reliable training and assessment of the YOLOv5 model. The outcomes of the experiments show how well 
the suggested strategy works to achieve high detection accuracy and real-time processing capabilities. Comprehensive performance 
indicators and comparison analysis are used to confirm the model’s ability to accurately pinpoint flames in the presence of changing 
ambient variables and motion dynamics. By utilizing YOLOv5 and motion estimation algorithms, this research advances the field of fire 
detection technologies and provides a scalable and effective solution that can be integrated into emergency response frameworks, smart 
cities, and surveillance systems. The results highlight the possibility for improved situational awareness and proactive fire management 
through the integration of CNN architectures with motion analysis techniques. This abstract highlights the improvements in accuracy 
and real-time applicability of YOLOv5 with motion estimation methods for fire detection, outlining the research emphasis, methodology, 
experimental validation, and possible consequences.
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Introduction
In order to prevent and mitigate fire dangers as soon as 
possible and safeguard people and property, fire detection 
is a vital component of contemporary safety and security 
systems. This study examines different approaches and 
developments in the field of fire detection technology, with 
an emphasis on how computer vision techniques—such as 
convolutional neural networks (CNNs)—can be applied to 
increase the efficiency and accuracy of fire detection. It is 

The Scientific Temper (2024) Vol. 15 (4): 3290-3298 E-ISSN: 2231-6396, ISSN: 0976-8653

Doi: 10.58414/SCIENTIFICTEMPER.2024.15.4.38 https://scientifictemper.com/

impossible to exaggerate the significance of prompt fire.
Detection. The National Fire Protection Association (NFPA) 
reports that fires cause substantial damage and human 
casualties annually throughout the world. Conventional 
fire detection systems frequently depend on heat sensors, 
smoke detectors, or manual surveillance; these methods 
may not be as reliable in various conditions or have as low 
a false alarm rate (Chen et al., 2004). On the other hand, 
computer vision-based methods present a viable remedy 
by utilizing artificial intelligence to evaluate image data and 
instantly recognize patterns connected to fire.

In order to extract hierarchical features from input data 
and enable the model to distinguish between different 
objects, such as flames, smoke, and environmental variables 
suggestive of fire breakouts, a CNN’s architecture usually 
consists of numerous layers. This work aims to accomplish 
two main goals: firstly, it reviews the state-of-the-art CNN-
based fire detection techniques, encompassing model 
architectures, training approaches, and performance 
measures. Second, to suggest and assess methods that 
tackle current issues, such as integration with current fire 
safety, scalability to large-scale settings, and detection 
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accuracy in changing lighting circumstances. This research 
aims to contribute to the development of more robust 
and reliable fire detection systems that can minimize 
response times, reduce false alarms, and ultimately 
improve overall safety and security in both residential and 
commercial settings by pushing the boundaries of current 
fire detection(Muhammad et al., 2018). The theoretical 
underpinnings of CNNs, pertinent literature on fire detection 
techniques, experimental results and analysis, and future 
research directions to propel the field of computer vision-
based fire detection forward are covered in detail in the 
sections that follow in this paper. 

Object detection requires a few crucial steps

Detection head
YOLOv5’s detection head employs a number of convolutional 
layers and up-sampling methods to forecast bounding 
boxes, class probabilities, and confidence ratings. This 
head architecture makes it easier to precisely locate and 
categorize objects in variety of settings. 

Model variants
There are several sizes of YOLOv5, each with a different depth 
and computing requirements. Users can select a model 
version according to particular hardware limitations and 
performance needs thanks to this scalability.

Training and optimization
YOLOv5 makes use of sophisticated training methods 
like progressive scaling, data augmentation procedures, 
and automated hyperparameter optimization. By using 
techniques, models become more resilient and have 
a better ability to generalize across different types of 
datasets. Input Processing: Prior to being fed into the model, 
images undergo pre-processing to normalize pixel value 
dimensions.

Feature extraction
The input image’s hierarchical features are extracted by the 
backbone network, which gathers spatial data necessary for 
object detection tasks. Bounding Box Prediction: For every 
class of identified objects in the image, the detection head 
predicts bounding boxes (coordinates), class probabilities, 
and confidence scores. Post-processing: The final collection 
of identified items is refined based on confidence scores 
by applying non-maximum suspension (NMS) to filter out 
redundant bounding boxes. YOLOv5 can be optimized for 
fire detection using particular datasets that show pictures or 
video frames of fires, smoke, and pertinent ambient factors. 
The model gains great accuracy and efficiency in identifying 
and localizing objects connected to fire by receiving training. 
YOLOv5, which offers state-of-the-art performance in terms 
of speed, accuracy, and scalability, represents a substantial 
leap in object identification utilizing CNN architectures. 

Its use in fire detection highlights its adaptability and 
possible influence on improving safety precautions and 
emergency response procedures. Convolutional Neural 
Networks (CNNs) are the main structural component of 
YOLOv5. With the help of these networks, which are made 
to automatically recognize patterns in visual data, the 
model can identify objects—including fires—using learned 
features as opposed to manually created criteria. To enhance 
its detecting skills in a variety of settings and sizes, YOLOv5 
makes use of specialist modules (such as SPP and PANet) 
and a sequence of convolutional layers.

Benefits of YOLOv5 in Fire Safety

Real-time Detection
YOLOv5 allows for real-time fire detection in static photos or 
video streams, even on devices with limited computational 
power. It does this by operating efficiently.

Accuracy
YOLOv5 has a high degree of precision in differentiating 
between fires and non-fire objects thanks to substantial 
training on a variety of datasets (Redmon et al., 2016).

Adaptability
The design can manage all kinds of fires and is flexible 
enough to adapt to different surroundings, guaranteeing 
reliable performance under trying circumstances.

Utilizing image processing techniques on visual data 
(such as photos or video frames) to detect the presence of 
flames or smoke is a common method of utilizing machine 
learning to detect fires. 

Acquisition of Datasets:
Compile a dataset of pictures or videos that show both non-
fire (normal scenes) and fire-related circumstances

The dataset ought to be varied and inclusive of various 
fire kinds, settings, and circumstances.
• Preparation: Pre-process the pictures or video frames 

to standardize them by doing things like resizing and 
normalizing pixel values.

• Model Selection: Select a suitable model for machine 
learning. CNNs, or convolutional neural networks, are 
widely utilized for image-based applications such as 
fire detection. 

• Training: Divide the dataset into test, validation, and 
training sets. Use the training set to train your model, 
aiming for performance metrics like F1-score, accuracy, 
precision, and recall. Using the validation set, validate 
your model and make any necessary hyperparameter 
adjustments to avoid overfitting.

• Evaluation: Examine how well your model performs on 
the test set to determine how accurate it is in identifying 
fires. 

• Deployment: After you’re happy with the performance, 
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use your model to start fires in situations that happen 
in real-time. If real-time detection is needed, integrate 
it with the proper sensors or cameras to record a live 
video stream. 

• Monitoring and improvement: Keep an eye on how well 
your model is working in practical applications. Gather 
input and information so that the model can be refined 
over time and made to fit differently.

• Problems: Variability in the dataset: Making sure it 
includes a variety of fire and non-fire settings. 

Block Diagram for Fire Detection
The steps involved in the fire detection using CNN in YOLOv5 
is explained in details using the block diagram and CNN 
architecture related work for fire detection (Figure 1).

CNN Architecture related work in YOLOv5 for Fire 
Detection (Table 1)
There are multiple processes involved in utilizing a CNN to 
detect fire in video. This is a general strategy that you can 
use (Figure 2):

Compiling and preparing the dataset

• Gather videos of fire and non-fire
Compile a collection of videos, both with and without fire 
sequences. Make sure there are a variety of non-fire (regular 
activities, scenes from nature) and fire scenarios.

• Labeling
Indicate whether or not there is a fire in each frame.

Data Pre-processing

• Frame extraction
Take individual video frames and combine them into a huge 
set of pictures.

• Normalization
Set each frame’s pixel values to a standard scale, usually 
ranging from 0 to 1.

CNN Architecture Selection
Select or create a CNN architecture that is appropriate for 
classifying video frames. Popular options consist of: 3D 
Convolutional Networks: Handle simultaneous processing 
of spatial and temporal data. 2D CNNs + LSTM: Employ a 
combination in which LSTMs model temporal dependencies 
and 2D CNNs extract spatial features.

CNN + Optical flow
To capture motion, use CNNs for spatial characteristics and 
add optical flow data. Training of the Model

Split Data
Separate the dataset into test, validation, and training

Augmentation
Use techniques like random harvests and flips to add 
variation and robustness to data.

Instruction
Use the training set to instruct the CNN To prevent 
overfitting, keep an eye on the validation set’s performance. 
size, regularization strategies, and learning rate. 

Test set evaluation
Assess the accuracy, precision, recall, and F1-score of the 
trained model using the test set.

Thresholding
Establish a limit for the output likelihood of the model to 
identify a frame as having fire.

Deployment inference
Classify frames in live videos using the learned model. 

Integration
Apply the model to a broader fire detection system, like a 
fire monitoring program.

Real-time constraints
If real-time detection is required, take into account the 
competing demands and adjust the hardware and model 
accordingly.

The many layers of the well-known object recognition 
model YOLOv5, which is built on CNNs, have varied functions 
in processing input data and extracting features required 
for identifying things in films, including fires. The main 
components of the YOLOv5 architecture, which is specially 
designed for fire detection, are broken down here along 
with their functions:

CSPDarknet53, the backbone network

Goal
The feature extractor is the backbone network or 
CSPDarknet53.

Function
It extracts hierarchical characteristics at several scales by Figure 1: Block diagram of fire detection system
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processing the supplied video frames. Ensuring the capture 
of both local and global context in image frames is crucial 
for the accurate separation of fires.

Features
Activation functions (such ReLU), batch normalization, and 
convolutional layers, which are meant to learn, usually make 
up the backbone.

Layers Around the Neck

Goal
YOLOv5’s neck layers, like PANet’s, combine functionality 
from several backbone network tiers.

Function
By combining features from various network scales or levels, 
they improve feature representation. This enhances the 
ability to locate and identify fires in video frames of different 
sizes and orientations.

Features
To create strong feature maps for later detection, neck 
layers frequently incorporate procedures like feature 
concatenation, skip connections, and spatial pyramid 
pooling (Figure 3).

Head Divisions

Goal
YOLOv5’s head layers are made up of layers that are particular 
to detection.

Function
Based on the fused features, they produce predictions for 
confidence scores, bounding boxes, and object classes 
(including fire).

Features
Activation functions and output layers come next, with head 
layers usually consisting of convolutional layers with limited 
spatial dimensions. 

Loss Function

Goal
The loss function computes the difference between the 
ground truth annotations and the anticipated outputs. 
Examples of such loss functions are CIoU and Focal loss, 
which are exclusive to YOLOv5.

Function
It directs the training procedure by penalizing erroneous 
guesses and motivating the model to increase its precision 
and accuracy in fire detection localization.

Features
By combining terms for confidence estimation, classification, 
and bounding box regression, the loss function optimizes 
the model to precisely identify fires while reducing false 
positives and negatives. 5. Reprocessing
Goal: Refinement of output predictions is the goal of 
post-processing 

Qualities
Post-processing procedures are crucial for enhancing the 
accuracy and dependability of fire detection, particularly in 
dynamic video situations where several fires may occur in 
close proximity to one another. Every layer in the YOLOv5 
architecture is essential for analyzing video frames and 
extracting pertinent information. 

CNN architecture for fire and Smoke detection
Convolutional neural networks (CNNs) can automatically 
learn and extract relevant features from visual data. They 
are commonly employed for fire detection in photos and 
videos(Ren et al., 2015) and YOLO (Redmon et al., 2016). CNN 
architectures intended for fire detection typically include 

Table 1: Comparison of different Yolo Version for best result for 
Fire Detection

S. No Algorithm mAP (%) FPS Size (MB)

1 YOLOv3 75.7 52 235

2 YOLOv4 82.7 54 244

3 YOLOv5 91.6 71 14

Table 2: Dataset categories for detection

S. No Fire images Fire images Non fire images Videos

1 Training 127 80 02

Table 3: Results of fire detection

Epoch GPU_mem box_loss obj_loss cls_loss mAP

0/59 0.914G 0.1064 0.003233 00.029

1/59 0.919G 0.08236 0.02655 00.118

2/59 0.919G 0.02963 0.02655 00.225

. . . . .

. . . . .

57/59 0.919G 0.01418 0.01418 00.7

58/59 0.919G 0.01304 0.01304 00.768

59/59 0.919G 0.01394 0.01393 00.783

Table 4: Dataset categories for fire and smoke detection

S. No Type Train Val Test

1 Smoke Only 3412 278 312
2 Smoke with Fire 3233 301 298
3 Non-Smoke 2476 304 331
4 Fire only 1789 231 256
5 Foggy Images 120 68 45
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Figure 2: CNN architecture for detection of fire and smoke

Figure 3: Results of mAP

Figure 4: Results of object loss for detection of fire and smoke

Figure 5: Results of class loss for detection of fire and smoke
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Figure 7: Screenshot of the process of fire and Smoke detection with different losses 

Fig. 8 The confusion matrix of the real and predicted categories
 

Figure 6: Graph of box loss for detection of fire and smoke
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Figure 9: Screenshot of precision-recall curve

Figure 10: Screenshot of the result of fire detection

multiple layers, each of which serves a distinct purpose. The 
many layers that are frequently employed in CNNs for fire 
detection are broken down in detail below: The input layer 
receives the input frame from the video or image. The size 
of the input image or frame determines the input layer’s 
dimensions (height, width, number of color channels, etc.). 
CNNs are mostly composed of convolutional layers (Figures 
4-10 and Tables 2-5).

CNN architecture for detection of fire In contrast, recall 
is a false positive observation ratio, as previously shown in 
research. With 1.2% false positives and 91% accuracy, our 
recommended model performed admirably. Equations (1) 

Table 5: Results of fire detection

Epoch GPU_mem box_loss obj_loss cls_loss mAP

0/89 0.914G 0.0275 0.03233 0.011      0.078

1/89 0.919G 0.02176 0.02155 0.012      0.109

2/89 0.919G 0.04111 0.02055 0.016       0.289

. . . . .            .

. . . . .              .

87/89 0.919G 0.01487 0.01113 0           0.819

88/89 0.919G 0.01233 0.01267 0           0.833

89/89 0.919G 0.01309 0.01206 0            0.828
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and (2) can be used to obtain the mean precision and recall 
rates of our proposed method: A precision-recall curve is a 
graph that results from plotting the accuracy ratio against 
the recall rate (P-R plot). The model’s FM score may also be 
used to gauge its efficacy. Another criterion used in this 
investigation was the average accuracy of each detection 
(AP).

Precision =
+

TP
TP FP

……(1)   (1)

Recall  =
+

TP
TP FP

…..(2)   (2)

The following is a definition for the FM score:
FM = 2 × precision × recall
          precision + recall
AP = Precision (Recall)d(Recall) 1

Conclusion
This study used deep CNN models and the YOLOv5 object 
detector to construct a fire detection system. Fire image 
datasets with various fire situations were used to train the 
suggested fire detection system. It used films and pictures 
to detect fire. For the purpose of training and validating 
the model, we produced a dataset for fire detection that 
had 3233 fire photos and also some videos. We conducted 
experiments to assess the suggested system’s performance, 
both quantitatively and qualitatively, by contrasting it with 
other well-known one-stage object detectors. With 89% 
mAP, the assessment and testing results demonstrated 
that the YOLOv5 model outperformed other YOLO versions 
and was robust on our fire detection dataset. Because of its 
effectiveness and versatility, the suggested fire detection 
approach enables researchers to detect fires at an early 
stage. Furthermore, other methods can be applied to 
understand chemical-based fire with high accuracy.
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