
Abstract
This paper presents a novel hybrid heuristic algorithm, termed improved grey wolf optimization and cuckoo search optimization (IGWO-
CSO), designed for multi-objective functions. This algorithm aims to optimize the allocation of flexible alternating current transmission 
systems (FACTS) controllers within power grids, with the objectives of minimizing active power system losses, voltage deviation, and 
operational costs of the system. In this research work, interline dynamic voltage restorers (IDVR) are utilized as flexible AC transmission 
system (FACTS) controllers. A comparative analysis is performed with other proposed heuristic optimization algorithms, including particle 
swarm optimization (PSO), cuckoo search optimization (CSO), grey wolf optimizer (GWO), improved grey wolf optimization (IGWO), 
and the combined IGWO-CSO algorithms, to confirm and validate the superiority of the proposed technique. The proposed scheme 
has undergone validation and has been implemented on a 30-bus IEEE electric power system. The numerical results were obtained 
using MATLAB. The simulation results indicate that the proposed algorithm demonstrates superior performance compared to all other 
algorithms in attaining the optimal global minimum solutions, characterized by the highest convergence rate.
Keywords: Interline dynamic voltage restorer, Hybrid IGWO-CSO, Multi-objective optimization, Mono-objective optimization, Power 
loss minimization.
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Introduction
The increase in worldwide electricity demand, driven by 
socio-economic advancements, coupled with limitations 
on the construction of power generation facilities and 
transmission infrastructure, has led to a notable disparity 
between power generation and consumption. As a result, 
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this led to inadequate performance of the power systems, 
including excessive power losses, congested lines, voltage 
instabilities, and issues related to reliability and stability. 
Additionally, numerous critical requirements exhibit 
high sensitivity to degradations in power quality. Heavy 
industries, radiation sources, nuclear installations, and 
hospitals can be classified as critical loads. The reliable 
on-site power supply of nuclear installations, along with 
the assurance of power quality, is critical in maintaining the 
safety of nuclear reactor operations and in safeguarding 
the public and the environment from radiation hazards. 
Consequently, the efficient utilization of the grids is essential 
to achieve high performance in electrical power systems 
(Gaur et al., 2018), (Singh et al., 2018). The implementation 
of reactive power compensation in transmission systems is 
effective in addressing these issues. Recently, the domain 
of reactive power compensation has gained significant 
importance. 

When properly planned, the performance of the 
power system can be significantly enhanced. This includes 
improvements to the voltage profile, reductions in power 
system losses, increases in permissible power transfer 
capability, and enhancements in the stability and reliability 
of the system (Muhammad et al., 2020), (Hema Sekhar et 
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al., 2020). The flexible alternating current transmission 
system (FACTS) is a widely utilized device for reactive 
power compensation. It encompasses power electronics-
based technologies that facilitate improved control of the 
alternating current system, thereby enhancing the overall 
performance of the power system. FACTS controllers 
facilitate the efficient utilization of current power generation 
and transmission systems, requiring considerably lower 
investment relative to the expenses associated with 
constructing new transmission and generation units (Guo 
et al., 2020), (Muhammad et al., 2021). The power transmitted 
through the transmission line is determined by three 
parameters: the impedance of the line, the voltages at 
both terminals and the phase angle difference between 
the buses at each end. FACTS controllers have a substantial 
impact on these parameters, which play a crucial role in 
regulating power flow, ensuring voltage remains within 
acceptable limits, minimizing power losses, and enhancing 
the power transfer capacity of current transmission lines(Lee 
et al., 2019),(Mitiku et al., 2021). Various methods have been 
utilized across the literature. To determine the suitable size 
and placement of FACTS controllers, they can be classified 
into four categories: analytical methods, conventional 
optimization-based methods, metaheuristic optimization 
methods, and hybrid methods. The optimal allocation of 
FACTS represents a nonlinear, multimodal, mixed-integer, 
and highly constrained problem.

Metaheuristic optimization techniques demonstrate 
high efficiency in addressing these issues, leading to 
their widespread application in determining the optimal 
allocation of FACTS controllers (Singh et al., 2020), (Singh et 
al., 2020). Recent studies have employed a range of meta-
heuristic methods to identify the optimal allocation of FACTS 
devices. Optimum placement and capacity of the IDVR 
using the multi-objective multi-verse optimizer technique. 
This approach aims to minimize three objective functions 
simultaneously: voltage deviation, active power loss, and 
the installation cost of the devices. The IDVR units were 
installed in the power system. The proposed methodology 
was executed on the IEEE 30 bus test system. The analysis 
of the results indicates that the installation of IDVR leads to 
the most significant reduction in active power losses and 
voltage deviation. This article introduces a robust and well-
established hybrid optimization approach that integrates 
the IGWO algorithm with the CSO algorithm, referred to as 
the IGWO-CSO hybrid technique. This technique has not 
been previously implemented or applied within electric 
power systems. The novel hybrid IGWO-CSO technique 
leverages the diversity of wolf behavior inherent in the 
IGWO technique to enhance the performance of the CSO 
algorithm. The search agents within the proposed algorithm 
exhibit a range of social and personal behaviors, which are 
designed to prevent local optima trapping and enhance 

convergence speed. A time-varying strategy utilizing 
nonlinear time-varying coefficients has been implemented 
to balance the exploitation and exploration phases, thereby 
preventing the loss of diversity. The research contributions 
can be summarized as follows: This study introduces a hybrid 
IGWO-CSO technique designed to enhance the performance 
of the conventional GWO algorithm. The proposed 
algorithm has been implemented to enhance power system 
performance through the strategic allocation of FACTS 
devices. The allocation of the FACTS device, specifically the 
IDVR, is optimized to reduce real power losses within the 
power system, minimize bus voltage deviation, and lower 
overall system operating costs. 
The following outlines the main points of the article. 
• Simulations are conducted and analyzed in comparison 

with multiple optimization algorithms, including PSO, 
CSO, GWO, and IGWO, to validate the efficacy of the 
IGWO-CSO.

• The performance of the IGWO-CSO algorithm is 
validated by comparing the findings with those of other 
optimization techniques. 

• The IGWO-CSO methodology is implemented on IEEE 
30 bus systems, both with and without the optimal 
allocation of the IDVR device, to minimize voltage 
deviation, active power losses, and operational cost.

IDVR modeling
The schematic network configuration of a two-line or two-
feeder IDVR is illustrated in Figure 1. IDVR comprises two 
DVRs connected by a shared DC connection. The two IDVR 
DVRs are linked to two distinct feeds by series injection 
transformers. 
The IDVR comprises a control system, a voltage source 
inverter, and a filter. In Figure 1, 1bV  and 2bV  represent the 
bus voltages of feeder one and feeder 2, respectively. Load 
1 and Load 2 are identified as sensitive loads linked to feeder 
one and feeder 2, respectively. 1lV  and 2lV  represent the load 
voltages of load one and load 2, respectively. When a sag 
develops at load 1, the DVR 1 injects the voltages. 1injV  to 
ensure that 1lV  remains equal to 1sV .

Figure 1: Two feeder diagram of IDVR
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Inverter Modeling
Figure 1 illustrates that the voltage sources of two feeders, 1sV  
and 2sV , are represented by equations 1 and 2, respectively. 

1 1 1 1 1= + +s inj lV I Z V V     (1)

2 2 2 2 2   = + +s inj lV I Z V V            (2)

Note : ( injV = DVRV )

Neglecting losses in both feeders, equations (1) and (2) may 
be expressed as

1 1 1= −inj s lV V V     (3)

2 2 2= −inj s lV V V     (4)

From equations (3) and (4), the voltage injected by the IDVR 
is the difference between the supply and load voltages of 
the feeder. Therefore, the inverter voltage rating of the IDVR 
may be established if the extent of voltage sag requiring 
compensation by the IDVR is known. Figure 2 illustrates the 
single-line schematic of one of the feeders seen in Figure 
1. According to equations (3) and (4), if =s lV V , then =DVRV  
0, indicating that compensation is unnecessary. Voltage 
correction is necessary only if ≠s lV V
The IDVR will initiate voltage compensation when 

* <L sV V      (5)

Where ( )* 0.10*= −L L LV V V  

Therefore the DVRV  is given as

*= −DVR S LV V V     (6)

The voltage rating of the two voltage source inverters 
depicted in Figure 1 may be determined using equation 
(6). The voltage rating of the inverter may be obtained 
using equation (6) alone when the in-phase compensation 
approach is employed (P. Jayaprakash et al., 2014).

The load current exhibits a phase difference with the 
injected voltage; hence, the DVR must consistently inject 
both active and reactive power into the load. This study 
discusses voltage sag avoidance with the IDVR utilizing the 
in-phase voltage compensation approach. The selection 
of in-phase methods over other voltage compensation 
techniques is due to the lower inverter rating associated 
with in-phase compensation compared to methods such 
as energy-saving and quadrature compensation methods. 
According to Figure 3, the actual power of each DVR in the 
IDVR is

* cos= × × ∅DVR DVR LP V I    (7)

Where

DVRV : Voltage injected by the DVR

IL: Load Current

cos∅ = Power Factor

Therefore, using equations (6) and (7), the power and voltage 
rating of the inverter of IDVR can be determined.

Problem Formulation
This study minimizes three f itness functions while 
accounting for power system restrictions. The optimization 
of these fitness functions occurs in two forms: mono-
objective function and multi-objective function, as detailed 
in the subsequent subsections:

Mono-objective function
The active power losses, bus voltage deviation, and system 
operating cost are optimized individually using a mono-
objective function approach. The mathematical formulation 
of these objectives may be represented as:

Active power loss minimization (PL)
The minimization of active power losses within the power 
system can be expressed as follows.

( )2 2

1

min min [ 2 cos ]δ
=

= + −∑
NL

L k i j i j ij
k

p G V V VV           (8)

In this context, Gk denotes the conductance associated 
with the kth transmission line. NL signifies the total count 
of transmission lines in the system. Vi and Vj represent the 
voltage magnitudes at buses i and j, respectively. The term 
δ ij  Indicates the angular difference between the voltages 
at buses i and j.

Minimization of the bus voltage deviation (VD)
The decrease in bus voltage deviation improves the bus 
voltages, ensuring they stay within the permissible limits, 
which can be articulated as:

2

1

min min ( 1.0)       
=

= −∑
Nl

i
i

VD V      (9)

In this context, Vi represents the voltage magnitude at the ith 
bus, while Nl indicates the total count of load buses.

Minimization of the operating cost (OC)
This paper outlines that the operating cost (OC) comprises 
two components: the cost associated with energy losses and 
the cost attributed to the investment in FACTS controllers. 
The objective function necessitates the reduction of energy 
loss costs by mitigating active power losses through the 
implementation of FACTS devices while also minimizing the 
investment costs associated with these devices.
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min(CPL + CFACTS )     (10)

where,

CPL = (real power loss) × 0.09 × 365 × 24  (11)

CFACTS =  CIDVR      (12)

CIDVR = 0.0003S2 − 0.2691S + 188.22  (13)

In this context, CPL and CFACTS denote the annual energy losses 
and the installation cost of the FACTS controller, expressed 
in dollars. The value of 0.09 signifies the cost related to 
power losses, measured in dollars per kilowatt-hour. Figure 
365 represents the total number of days in a year, while 24 
indicates the number of hours in a day. CIDVR refers to the 
installation cost of the IDVR devices, measured in dollars per 
(KVAR). Lastly, S denotes the operating range of the FACTS 
devices, expressed in (MVAR).

Multi-objective Function 
In the mono-objective function form, the objective 
functions under consideration are optimized concurrently 
through their combination into One objective function F is 
presented in equation (14). 

F = w1 · J1 + w2 · J2 + w3 · J3    (14)

In this equation, w1, w2, and w3 represent the weight 
coefficients that quantify the contribution of each term 
within the fitness function.

1 2 3
_ _ _, ,  
_ _ _

= = =IDVR IDVR IDVR

base base base

PL VD OCJ J J
PL VD OC    (15)

In this context, PL_IDVR and PL_base represent the real power 
losses associated with the integration and non-integration of 
the FACTS controller into the power system. Similarly, VD_IDVR 
and VD_base denote the voltage deviations experienced 
with and without the installation of FACTS controllers. 
Furthermore, OC_IDVR and OC_base indicate the system 
operating costs incurred with and without the installation 
of FACTS controllers.

Constraints 
The constraints described below are applicable to the 
optimization problems under consideration.

( ) ( )
1

[ cos sin ] 0δ δ
=

− − + =∑i i

N

G D i j ij ij ij ij
j

P P VV G B
      (16)

( ) ( )
1

[ sin cos ] 0δ δ
=

− − + =∑i i

N

G D i j ij ij ij ij
j

Q Q VV G B
       (17)

_ _≤ ≤j min j j maxV V V             (18)

_ ≤ij ij maxS S                         (19)

In this context, PGi and PDi denote the active power 
generated and demanded at bus i, while QGi and QDi signify 
the reactive power generated and demanded at bus i. The 
variable N represents the total number. In the context of 
buses, Sij denotes the apparent power flow along the line 
connecting nodes i and j. The parameter Sij_max indicates 
the thermal limit of the line between nodes i and j. Gij and 
Bij represent the transfer conductance and inductance 
between bus i and bus j, respectively.

Basic Overview Of Optimisation Methods
The suggested technique is contrasted with the classic PSO 
algorithm, as well as the GWO, IGWO, and CSO algorithms, 
which are briefly in the subsequent subsections.

Particle Swarm Optimisation Technique
Particle Swarm Optimisation (PSO) is a metaheuristic 
optimization technique initially proposed by Kennedy 
and Eberhart. A swarm of particles adjusts their relative 
locations from one iteration to the next, enhancing the 
performance of the PSO algorithm in the search process. 
To get the optimal solution, each particle navigates towards 
its previous personal best position bestP  and the global best 
position bestg  inside the swarm (Zang Y et al., 2014). In the 
context of a minimization problem, one has

( ){ }( )* *

1,2, .= …

 = = 
 i

min
t k

best i i i
k k

P x f x f x   (20)

Where i { }1,2, ,∈ …… N and

( ) ( ){ }( )* * 1,2, .
1,2, ..

| = ……
= …

= =
i

min
t t t t
best ii N

k t

g x f x f x    (21)

In this context, ( )i  represents the index of a particle, ( )t  
signifies the current iteration number, ( )f defines the 
objective function to be optimized (minimized), ( )x refers 
to the position vector (or a potential solution), and ( )N  
Indicates the total number of particles in the swarm. The 
subsequent equations update at each iteration ( )1+t , the 
velocity ( )v  and location ( )x  of each particle i as follows:

1+t
iv =ω t

iv + ( ) ( )1 1 2 2  − + −
i

t t t t
best i best ic r p x c r g x   (22)

1 1+ += +t t t
i i ix x v      (23)

where ( )v  is the velocity vector, and ( )ω  is the inertia weight 
employed to equilibrate local exploitation and global 
exploration. 1r  and 2r  are random vectors uniformly 
distributed within the interval [ ]0,1 D , ( )D  where  represents 
the dimensionality of the search space or the size of the issue. 
The constants. 1c  and 2c , referred known as “acceleration 
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coefficients,” are positive values. An upper limit is often 
established for the velocity vector. The “velocity clamping” 
strategy was employed to prevent particles from reducing 
the search space and to ensure they take an appropriate 
step size to explore the whole search domain (Shahzad F et 
al., 2014). The “constriction coefficient” concept, introduced 
by Clerc and Kennedy (Clerc M et al., 2002), involves 
constricting velocities through theoretical observation 
and analysis of swarm dynamics. Upon examining Eq. (3), it 
is evident that the first segment referred to as the “inertia 
component,” signifies the preceding velocity, which endows 
the particles with the requisite momentum to traverse 
the search space (Yue Y et al., 2019). The second half, the 
“cognitive component,” refers to the inherent positivity 
associated with each particle. It encourages the particles to 
advance toward their previously identified optimal places 
in subsequent rounds. The third component, termed the 
“social component,” signifies the collective influence of 
the particles in achieving the global optimal solution (Xu 
G et al., 2019).

Grey Wolf Optimization Technique (GWO)
The GWO algorithm is a heuristic method inspired by the 
hunting habit of grey wolves. Grey wolves are recognized 
for their social organization and collaborative hunting 
techniques. The GWO algorithm simulates social behavior 
to address optimization challenges (Zhou Z et al., 2007). The 
GWO method relies on mathematically simple equations, 
facilitating implementation and comprehension. It is readily 
adaptable to various optimization challenges, enhancing its 
applicability across many domains. GWO can typically get 
the global answer without being ensnared in local optima 
(H. Faris et al., 2018). GWO necessitates a few parameters for 
optimization, rendering it more user-friendly. The algorithm 
consistently yields uniform results across several executions 
and iterations.

The GWO algorithm is founded on the hierarchical 
organization of grey wolves. Wolves are categorized into 
many categories according to their hierarchy and functions 
within the pack. The alpha group comprises the dominant 
wolves, tasked with making critical choices on hunting 
targets, picking sleeping locations, and defining wake-up 
times. The beta group comprises wolves that aid the alpha 
wolves in decision-making and various activities. The 
delta and omega groupings signify subordinate wolves 
within the hierarchy (Lu et al., 2016). The hunting habit of 
grey wolves is a multifaceted process comprising multiple 
stages. The steps of the GWO algorithm are abstracted 
and integrated into the optimization process. The method 
starts by initializing a population of possible solutions 
denoted by the placements of wolves. The ranks of the 
wolves in the alpha, beta, delta, and omega categories 
represent the optimal, suboptimal, tertiary, and least 
favorable potential solutions, respectively.

The GWO algorithm simulates the three primary steps of 
the hunting process: surrounding the prey, hunting, and 
attacking the prey. In the encircling phase, the wolves 
synchronize their actions to encircle the prey, reflecting 
the exploration and exploitation of the search space 
inside the algorithm (Celtek et al., 2020). During the 
hunting phase, the wolves aggregate around the prey, 
symbolizing the convergence of solutions toward the best 
outcome. Ultimately, during the offensive phase, the wolves 
modify their locations to seize the prey, illustrating the 
enhancement and sophistication of the solutions. The grey 
wolf can unpredictably alter its location throughout its hunt 
using Equations (24) and (25). The surrounding prey can be 
articulated as follows:

( ) ( )pD C.X t X t    = −    (24)

( ) ( )1 .  + = −PX t X t A D    (25)

In this context, t denotes the iteration value, A and C signify 
the coefficients, p X  the position of the hunt, and 𝑋 indicates 
the position of a wolf. The A and C are calculated using 
Equations (26) and (27):

12 .= −A a r a       (26)

C= 22 .   a r      (27)

The parameter progressively falls from 2 to 0 over t iterations, 
whereas 1 r  and 2r  are random vectors within the range of 
[0, 1]. The alpha, beta, and delta subspecies of grey wolves 
possess exceptional hunting skills. They are aware of the 
present whereabouts of their target. Consequently, the top 
three solution choices are documented, and the remaining 
wolves can adjust their placements in relation to the optimal 
search agents utilizing Equations (28)–(30).

1 1 1. , . , .α α β β δ δ= − = − = −D C X X D C X X D C X X   (28)

1 1 2 2 3 3. , . , .  α α β β δ δ= − = − = −X X A D X X A D X X A D   (29)

( ) 1 2 31  
3

+ +
+ =

X X XX t     (30)

During the exploitation phase, the value diminishes, thereby 
narrowing the range of variation of A. When A assumes 
random values within the range of [−1, 1], the search agent’s 
subsequent position will be located anywhere between its 
present position and the target. Comprehensive information 
on GWO is available in (Mirjalili et al. 2014).

Improved grey wolf optimization (IGWO) Algorithm
IGWO aims to reduce the disparity between exploration and 
exploitation inside the GWO algorithm (Kamboj et al., 2016). 
The IGWO method is derived from the behavior of wolves 
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and the dimension-learning-based hunting (DLBH) seen 
in nature. Wolves (N: number of wolves) are first scattered 
randomly inside the search region defined by the limits 
[ ,i jl u ], as indicated in equation (31).

[ ] ( ) [ ] [ ]0,1 , 1, , 1,  = + −ij j j j j gX I rand x u l i N jg D  (31)

( ) { }1 2, ,  = ………i i i iDX t X X X denotes  thi  p osi t ion in  the 
point inside iteration (D = dimension). The population is 
represented in a matrix with N rows and D columns. During 
the moving phase, the IGWO calculates the subsequent 
position of the wolf ( ) iX t . In this calculation, IGWO utilizes the 
various neighbors of the wolf alongside a randomly chosen 
wolf from the matrix ( )iR t . The radius between the present 
position ( ) jX t  and the candidate’s position ( ) ( )1 .− +j GWO iX t R t  is 
calculated using equation (32).

( ) ( ) ( )1−= − +i j j GWOR t X t X t   (32)

( ) ( ) ( ) ( )( ) ( ) ( ){ }| , ,= ≤i j i j j i jN t X t D X t X t R t X t gMatrix   (33)

The ( ) iN t
 
is the neighbor of ( ).jX t It is calculated by equation 

(33). Here iD  is the Euclidean distance between ( )jX t  and 
( )iX t  as shown in equation (33).

( ) ( ) [ ] ( ) ( )( )( ), , , ,0,1    = + −iDLH d i d n d r dX t X t rand x X t X t  (34)

( ), 1+iDLH dX t  is the new position of the DLH-based model, 
calculated using equation (35). Here, n is the number of 
wolves and d denotes the dimension

( ) ( ) ( ) ( )
( )

  ,

,

1 ,  ( 1 ( 1
1

1                                       
 + + < + + =  +  

i GWO i GWO iDLH d
i

iDLH d

X t if f X t f X t
X t

X t otherwise
        (35)

Cuckoo Search Optimisation
Cuckoo Search optimization is a widely utilized meta-
heuristic approach that simulates the breeding parasitism 
behavior of cuckoos(Shehab et al., 2017), (Alkhateed et al., 
2019). During the iterative process, the innovative candidate 
solution is generated via Levy flight as described in equation 
(36).

( ) ( )1
ë

0.01.ë  µγ= − − + = + −i i i g i i gY Y Y Y levy Y Y Y
v

  (36)

In the above equation (no) ë  represents the levy f light 
exponent, iY  represents thi  solution + represents entry-
wise multiplications,  gY  represents global optimal solution,

0γ >  represents step scaling size, u and v denote arbitrary 
numbers, and they are satisfied by normal distribution 
means 

( ) ( )2 20, , 0,  ˆ ˆσ σu uuN vN    (37)

            (38)

In equation (no) ( ).τ  represents Gamma function
In addition, Cuckoo search exploits detection operators to 
put find nests through probability aP  in equation no (39)

( ). ,  

,                    

 + − > =  
  

i j k a
i

i

Y m Y Y if p p
Y

Y else
   (39)

In equation no P [ ] 0,1∈  describes a random number   j kY and Y  
represents the candidate solutions from the population, 
accordingly.

Hybrid IGWO-CSO Optimisation
The hybrid approach alternates the stages from both IGWO 
and CSO. The optimal solutions from IGWO can impact the 
subsequent generation in CSO, improving the exploration 
phase. Following specific iterations in IGWO, the algorithm 
transitions to CSO for the exploration of novel regions. The 
optimal position of the alpha wolf may direct the newly 
established nests in CSO. Developing a hybrid method 
that integrates improved grey wolf optimization (IGWO) 
with cuckoo search optimization (CSO) may yield a more 
efficient solution for complex optimization  challenges. 
The combination of IGWO and CSO improves the advantages 
of both methods to improve optimization efficiency. IGWO 
Inspired by the social hunting dynamics of grey wolves, 
IGWO emulates its leadership structure (alpha, beta, and 
delta wolves) to identify optimal solutions. The alpha wolf 
directs the group, while beta and delta wolves provide 
support. This hierarchy affects the wolves’ progression 
toward the optimal solution. IGWO (Ting T et al. 2015) 
equilibrates exploration (investigating new territories) and 
exploitation (enhancing familiar advantageous locations) 
by constantly adjusting coefficients. The enhancement of 
conventional GWO (P.Hu et al. 2020; Guptha S et al., 2019) 
may incorporate approaches such as adaptive parameters 
or hybrid procedures that augment solution variety. Cuckoo 
Search Optimization (CSO), inspired by the brood parasitism 
of some cuckoo species, entails depositing eggs in the 
nests of other avian species and improving these nests 
according to fitness  criteria. The use of CSO facilitates a 
more comprehensive exploration of the search space, which 
is essential for circumventing local optima. The systematic 
methodology of IGWO facilitates enhanced solution refining. 
The integration of two algorithms yields a more resilient 
optimization approach, adept at addressing complex and 
multimodal challenges efficiently.

Mathematical Model of IGWO-CSO Hybrid 
Optimisation method

Fitness function
Define a Function ( )f x  that quantifies the quality of solutions, 
where x  describes potential solutions
Positional update for IGWO-CSO Method
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. .= + −new old old
i i best iX X A C X X

  (40)

Where 
=new

iX  New Position of the i  –th wolf.
=old

iX Current position of the  i  –th wolf
=bestX  position of the best wolf (alpha).

A and C are mentioned as Coefficient vectors controlling 
exploration and exploitations
A= 12 . ,−a r a where a decreases linearly from 2 to 0
C= 22.r  where 1r and 2r  describes random numbers in the 
range [0,1]
The update for a nest’s location is provided by:

. ()α= +new bestX X Levy     (41)

Where

newX mentions New Position of the nest

bestX describes position of the best nest found so far.
  α Represents scaling factor 
 ()Levy  descibes Levy Flight behaviour

The hybrid model proficiently integrates the exploitation 
capabilities of IGWO with the exploration capabilities of CSO. 
• Wolves Update: Employ the leadership structure 

to enhance solutions according to prevailing best 
estimates.

• Nests Update: Employ Lévy flights to investigate the 
search space utilizing the optimal solutions identified 
by IGWO.

• Dynamic Switching: Adaptively alternate between the 
two methodologies to sustain variety and enhance 
convergence.

The conventional cuckoo search optimization is 
formulating the static nest upgrade problem as articulated 
in several types of publications. Hybrid IGWO and CSO 
algorithm employs an averaging-based method for nest 
upgrading. The output of CS comprises optimal values 
derived from equations.

( )1 1 1  α λ+ = + ⊕t t
i ix x levy    (42)

( ) 1 λλ −=levy t      (43)

 whereas the community hierarchy selection is determined 
by fitness.wherever 1α =X st hunt agent, β =X  2nd hunt 
agent and δ =X 3rd hunt agent. Figure 2 illustrates the flow 
chart of the hybrid IGWO and CSO algorithm.

In the hybrid model, the procedures from both IGWO 
and CSO are interchanged. The optimal solutions from IGWO 
can impact the subsequent generation in CSO, improving 
the exploration phase. After certain iterations in IGWO, the 
algorithm transitions to CSO for the exploration of novel 
regions. The optimal position of the alpha wolf may direct 
the new nests established in the CSO. The hybrid IGWO-

CSO method, by integrating these mathematical models, 
can proficiently balance exploration and exploitation, 
resulting in enhanced performance in intricate optimization 
challenges. This method allows adaptive search techniques 
that utilize the advantages of both algorithms.

Simulation Results
In order to assess the efficiency and flexibility of the IGWO-
CSO approach, the IEEE 30 bus system(Kanaan et al. 2020) has 
been studied to determine the optimal siting and capacity 
of the IDVR. The effectiveness of the proposed IGWO-CSO 
method is evaluated with PSO, GWO, IGWO, IGWO-CSO, and 
CSO algorithms in order to determine its performance in 
the optimal allocation of IDVR. The optimization problem 
is formulated in two cases: (1) mono-objective optimization 
and (2) multi-objective optimization. The optimization issues 
are implemented as follows.

IEEE 30 bus system
The tested IEEE 30 bus system has six generators and 41 
transmission lines. The overall active and reactive load 
demands of the system are 250.16 MW and 160.54 MVAR, 
respectively.

Mono-objective optimization 
Each objective function is indicated in Eqs. (8)–(13) performs 
independently on the IEEE 30-bus system with IDVR.

Installation of IDVR.
The IDVR device’s optimal parameters for minimizing the 
active power losses and voltage division of the IEEE 30 
bus system are illustrated in Table no 1, which is based on 
various proposed techniques. In the event that the sole 

Figure 2: Flow chart of IGWO - CSO
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objective function is to minimize total active power losses, 
the installation of the IDVR resulted in a reduction of the total 
real power losses from 7.48 to 6.85 MW, with high capacities 
values, as compared to the IGWO-CSO technique (Table 1).

The IDVR is proposed to be located at bus 8 and line 12, 
with a capacity of -77.114 MVAR and -0.653 of the reactance 
of the connected line. Table 1 illustrates that the objective 
values are subpar due to the non-optimal location of 
IDVR. In contrast, the objective values are higher for the 
non-optimal IDVR location and dimensions than for the 
optimized location. The PL value is 6.657, 6.642, and 6.341 
MW, respectively, as determined by the GWO, PSO, and IGWO 
algorithms. In contrast, the optimal location for the IGWO-
CSO and IGWO generates 6.442 and 6.442 MW, respectively.

Additionally, Table 1 illustrates that the installation of the 
IDVR based on the IGWO-CSO is effective in minimizing the 
voltage deviation of the system as the individual objective 
function. The greatest results are achieved by the IGWO 
and CSO algorithms, which reduce the voltage deviation 
from 0.0342 to 0.0120 p.u. in comparison to the GWO and 
PSO algorithms. The IDVR’s most suitable location is at bus 
7 and line 14, which is connected to buses 7 and line 14 and 

has a reactance of -0.7 and a magnitude of -89.565 MVAR. 
Conversely, the PSO algorithm recommended that the 
UPFC be situated at bus 5 and line 39, which is connected 
between buses 5 and 30, with a magnitude of -89.56 MVAR 
and -0.7 of the reactance of the connected line. This location 
yielded the highest voltage deviation value (0.0124 p.u.). 
The optimal solution of all algorithms to minimize the OC 
based on the location of the IDVR is illustrated in Table no. 
The OC is reduced to 4.567*106 $ by installing the IDVR using 
the IGWO-CSO, IGWO, and CSO algorithms. Conversely, the 
IDVR’s optimal location and size, as determined by the PSO 
and GWO techniques, yielded the highest OC values of 
4.628*106 and 4.651*106 $, respectively. As demonstrated in 
Figures 3,4 and 5, the IGWO-CSO technique shows the best 
results throughout the optimization process. The IGWO-CSO 
algorithm identifies global optima with a reduced number of 
iterations when compared to alternative algorithms. Figure 
3 indicates that the IGWO algorithm was nearly confined to 
a local optimum. The PSO and GWO algorithms encountered 
a local optimum and failed to reach the optimal global 
minimum values for PL, VD, and OC, as illustrated in Figures 
3-6, respectively.

Table 1: The optimal solution of all algorithms for active power losses and voltage deviation at the installation of IDVR

Items PL  is the only objective function VD is the only objective function

Without IDVR 7.48MW 0.0342 p.u

IDVR

ALGORITHMS LOC. Size PL(MW) VD(pu) LOC Size VD(pu) PL(MW)

PSO bus
line

6
30

-65.145
0.0162

6.6427 0.0160 bus
line

8
31

-89.565
0.3

0.0124 6.8212

GWO bus
line

11
12

-79.124
-0.7

6.6571 0.0150 bus
line

7
7

-90
0.3

0.0123 6.8130

IGWO bus
line

8
12

-79.225
-0.634

6.6421 0.0140 bus
line

7
14

-89.565
-0.7

0.0120 6.5620

CSO bus
line

11
10

-61.632
-0.7

6.4423 0.0170 bus
line

7
14

-89.565
-0.7

0.0120 6.5619

IGWO-CSO bus
line

8
12

-77.114
-0.653

6.6421 0.0140 bus
line

7
14

-89.565
-0.7

0.0120 6.5620

Table 2: The optimal solution of all algorithms for minimization of OC at installation of IDVR only

Operational Cost (OC) is the only objective function

                                    Without IDVR   4.7861*106 $

IDVR

ALGORITHMS LOC. Size OC($) PL(MW) VD(pu)

PSO bus
line

11
20

-15.0724
-0.1536

4.6281*106 6.0368 0.0161

GWO bus
line

10
16

-26.5421
0.3254

4.6121*106 6.0368 0.0161

IGWO bus
line

8
10

-19.2126
-0.7

4.5561*106 6.0368 0.0161

CSO bus
line

8
10

-19.2126
-0.7

4.5561*106 5.9012 0.0153

IGWO-CSO bus
line

8
10

-19.2126
-0.7

4.5561*106 6.1652 0.0184
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Figure 3: Convergence curves of all algorithm for the IDVR 
only in the system for minimization of real power losses

Figure 4: Convergence curves of all algorithms for the IDVR only in 
the system for minimization of voltage deviation

Figure 5: Convergence curves of all algorithms for the installation of 
IDVR in the system for the minimization of OC.

Figure 6: Convergence curves for minimization of the multi-
objective optimization problem for IDVR alone installation

Table 3: The optimal Solution of all optimization techniques for minimizing the multi-objective optimization problem during the installation of 
IDVR only

PL, VD and OC Values

                            Without IDVR 7.48MW&0.0342p.u&4.7662*106$

IDVR

ALGORITHMS LOC. Size OC($) PL(MW) VD(pu) F

PSO bus
line

7
30

-22.864
-0.7 4.6721*106 5.7264 0.0132 0.8432

GWO bus
line

7
30

-27.228
-0.7 4.6610*106 5.7319 0.0132 0.8519

IGWO bus
line

5
12

-28.322
-0.7 4.7042*106 5.7310 0.0132 0.8431

CSO bus
line

5
12

-28.4255
-0.7 4.6612*106 5.7321 0.0124 0.8431

IGWO-CSO bus
line

8
11

-28.5332
-0.7 4.7042*106 5.7310 0.0166 0.8431

Multi-objective Optimization
This article presents the implementation of multi-objective 
functions through the proposed techniques aimed at 
minimising active power losses, voltage deviation, and 
system operating costs concurrently in IDVR installations. 
The multi-objective function is crucial for the performance 
of the optimization technique process, as it ensures the 
identification of the global minimum. The resolution of 
this issue is contingent upon the optimal evaluation of the 

proposed fitness function. Consequently, the IGWO-CSO 
algorithm has been implemented through a multi-objective 
function (F) as defined in Eq. (14) to assess the optimal 
capacity and placement of the IDVR in this case study. These 
values ensure a balance between PL, VD, and OC values 
while minimizing the capacity of the IDVR device installation, 
in contrast to all cases presented in Table 3. This section 
details the installation of the IDVR within the IEEE 30-bus 
system, aimed at minimizing the specified multi-objective 
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function. Table no 3 presents the minimum value of the PL, 
which is 5.7310 MW. The resolution of this issue involves 
the installation of the IDVR within the system utilizing 
the IGWO and IGWO-CSO algorithms. The IGWO-CSO 
technique attained optimal global solutions in comparison 
to alternative algorithms by implementing IDVR at bus 5 and 
line 12, with a capacity of -28.5332 MVAR and a connected 
line reactance of -0.7. The optimal IDVR setting, determined 
using the IGWO-CSO algorithm, resulted in a reduction of the 
system’s bus voltage deviation to 0.0132 pu and operating 
costs to 4.7042×106 $. 

The GWO and PSO algorithms encountered a local 
optimum for the function F, with the GWO attaining the 
maximum OC value and the PSO algorithm reaching the 
maximum PL value. A visual demonstration of the optimal 
placement of IDVR within the system, utilizing the IGWO-
CSO technique, is presented in Tables 1, 2, and 3.

Conclusion
Meta-heuristic algorithms have been widely applied for the 
allocation of interline dynamic voltage restorers (IDVR). The 
GWO algorithm is widely recognized for its straightforward 
implementation, minimal variable adjustments required, 
and rapid convergence to the optimal solution. Despite these 
advantages, it experiences a reduction in diversity, which 
leads to entrapment in local optima. This paper presents 
a novel hybrid algorithm, referred to as the IGWO-CSO 
algorithm, designed to resolve the limitations associated 
with the standard GWO algorithm. The proposed method 
employed an improved version of the CSO technique to 
enhance both the accuracy and efficiency of the traditional 
GWO algorithm. The IGWO-CSO algorithm has been utilized 
on the IEEE 30 bus power systems to ascertain the optimal 
location and size of the IDVR. The FACTS are distributed 
to reduce active power loss, minimize voltage deviation, 
and lower the operating costs of the power system. The 
objectives have been optimized in both single and multi-
objective formats. The simulation results demonstrated 
the effectiveness of the new approach, specifically the 
IGWO-CSO technique, in optimizing both single and multi-
objective functions. The locations of FACTS devices and their 
ratings have been determined concurrently. The findings 
indicate that the optimal allocation of the FACTS device, 
specifically the IDVR, results in a reduction of power loss 
and voltage deviation, in addition to lowering the system 
operating cost. Furthermore, the non-optimized location 
results in suboptimal objective values for both single and 
multi-objective optimization. The PSO, GWO, CSO, and 
IGWO algorithms were employed to validate the proposed 
method. The numerical results and conversion curves 
demonstrated that the IGWO-CSO technique outperformed 
the other comparable algorithms. The simulation clearly 
demonstrates that the IGWO-CSO approach exhibits a 
markedly superior convergence profile compared to all other 

algorithms. The proposed algorithm efficiently identifies 
the optimal global value while avoiding the issue of local 
optimum trapping.
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