
Abstract
In the field of image quality assessment, effective noise reduction is critical for enhancing the perceptual quality of images and improving 
the accuracy of subsequent analyses. This study proposes an enhancement to denoising autoencoders (DAEs) through optimization 
techniques aimed at significantly improving image quality assessment outcomes. Traditional DAEs, while effective in reconstructing 
clean images from noisy inputs, can sometimes fail to adequately preserve intricate image details and structures, which are essential 
for quality evaluation. Our approach incorporates optimization strategies, including adaptive learning rates, regularization techniques, 
and advanced loss functions, to refine the DAE architecture and improve its denoising capabilities. By training the enhanced model 
on diverse datasets containing various noise types and image content, we achieve superior performance in noise reduction. The 
effectiveness of the optimized denoising autoencoder is rigorously evaluated using standard image quality metrics, including Peak 
signal-to-noise ratio (PSNR), structural similarity index (SSIM), and other perceptual quality measures. Results demonstrate a marked 
improvement in image quality, leading to more reliable assessments in various applications, including medical imaging, remote sensing, 
and multimedia content. This work highlights the potential of leveraging optimization techniques to enhance denoising autoencoders, 
thereby providing a robust solution for improving image quality assessment methodologies.
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Introduction
Image quality assessment (IQA) plays a crucial role in the 
field of computer vision, serving as a key enabler for a 
variety of applications such as image enhancement, medical 
diagnostics, surveillance, and multimedia processing. As 
digital imaging continues to advance, the need for precise, 
efficient, and automated IQA systems becomes increasingly 
vital. Traditional methods of IQA, often based on pixel-
based metrics like Peak Signal-to-Noise Ratio (PSNR) and 

The Scientific Temper (2024) Vol. 15 (spl): 132-140 E-ISSN: 2231-6396, ISSN: 0976-8653

Doi: 10.58414/SCIENTIFICTEMPER.2024.15.spl.16 https://scientifictemper.com/

Structural Similarity Index (SSIM), are limited in their capacity 
to capture nuanced distortions and high-level features 
that contribute to perceived image quality. Consequently, 
these conventional approaches may fall short of accurately 
assessing the quality of images processed in dynamic, 
high-noise environments. To address these limitations, 
recent research has pivoted towards leveraging machine 
learning (ML) models, especially neural networks, to develop 
more robust IQA frameworks. Among these, autoencoders, 
a specialized type of neural network designed for 
dimensionality reduction and unsupervised learning, have 
shown promise in addressing complex quality assessment 
challenges, Ma, K., & Fang, Y. (2021, October), Guo, H., Bin, 
Y., Hou, Y., Zhang, Q., & Luo, H. (2021).

Denoising autoencoders (DAEs), in particular, offer 
a unique advantage by reconstructing high-quality 
images from noisy or degraded versions, effectively 
removing unwanted artifacts and distortions. However, 
conventional DAEs face inherent limitations in balancing 
quality restoration and processing efficiency, leading to 
challenges in real-world IQA applications. This research 
aims to enhance the capabilities of DAEs by integrating 
advanced optimization methods, resulting in an improved 
framework for image quality assessment that is more precise 
and reliable. Optimization techniques can significantly 
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elevate the performance of DAEs by fine-tuning their 
hyperparameters and guiding the learning process toward 
an optimal denoising outcome. Combining DAEs with 
robust optimization algorithms such as Particle Swarm 
Optimization (PSO) [3], Genetic Algorithms (GA), or Cuckoo 
search (CS) can further improve the model’s ability to 
capture subtle details and structural information within 
images, which are essential for high-fidelity image quality 
assessment, Hossain, M. M., Hasan, M. M., Rahim, M. A., 
Rahman, M. M., Yousuf, M. A., Al-Ashhab, S., ... & Moni, M. 
A. (2022), Merzougui, N., & Djerou, L. (2021), WangNo, N., 
Chiewchanwattana, S., & Sunat, K. (2023).

This research proposes an enhanced denoising 
autoencoder (EDAE) model equipped with optimization 
techniques to achieve superior IQA results. The EDAE 
architecture incorporates advanced optimization algorithms 
to dynamically adjust the model parameters, optimizing 
the balance between denoising efficiency and quality 
retention. By adopting a dual approach that combines deep 
learning with optimization, the proposed EDAE framework 
is designed to address the limitations of traditional DAEs, 
offering a more accurate and adaptive solution to image 
quality assessment. Specifically, this study will evaluate the 
impact of optimization-enhanced DAEs on IQA performance 
using a variety of image datasets with varying levels of noise 
and quality degradation.

This study contributes to the field of IQA by presenting 
a novel framework that leverages the strengths of both 
DAEs and optimization methods, paving the way for future 
research in adaptive, intelligent IQA systems. The proposed 
EDAE framework not only enhances image denoising 
capabilities but also brings adaptability to changing 
noise patterns and varying image quality demands in 
practical applications. This research further investigates the 
potential of using optimization techniques to streamline 
computational eff iciency in deep learning models, 
presenting a dual benefit of quality improvement and 
performance enhancement. Ultimately, the findings of this 
study aim to establish a foundation for developing scalable, 
real-time IQA systems capable of operating in diverse and 
challenging environments, thereby extending the utility of 
IQA in fields as diverse as medical imaging, autonomous 
driving, and multimedia technology.

Denoising Autoencoders
Denoising autoencoders (DAEs) are a specialized type of 
neural network designed to learn efficient representations 
of data by reconstructing clean inputs from corrupted or 
noisy versions. As a variant of traditional autoencoders, 
DAEs have gained considerable attention in various fields, 
including image processing, natural language processing, 
and anomaly detection. Understanding the mechanisms, 
architectures, and applications of denoising autoencoders 
is crucial for leveraging their potential in improving image 

quality assessment and other related tasks, Cui, H., & 
Zdeborová, L. (2023), Gheller, C., & Vazza, F. (2022).

Autoencoders are unsupervised neural networks 
composed of two main components: an encoder and a 
decoder. The encoder compresses the input data into a 
lower-dimensional representation (latent space), while the 
decoder reconstructs the input data from this representation. 
The primary objective is to minimize the reconstruction error 
between the input and the output. Traditional autoencoders 
are effective for tasks like dimensionality reduction and 
feature learning but may not handle noisy data well, Lee, 
W. H., Ozger, M., Challita, U., & Sung, K. W. (2021).

In real-world scenarios, data often contains noise, which 
can significantly degrade the performance of machine 
learning models. For instance, in image processing, noise 
can arise from various sources, such as sensor imperfections, 
transmission errors, or environmental factors. Denoising 
autoencoders address this issue by training the model to 
reconstruct clean images from corrupted inputs. This process 
involves adding noise to the input data during training and 
teaching the model to recover the original, noise-free data.

A typical DAE architecture consists of the following 
components:

Corruption Process
The input data is intentionally corrupted by adding noise 
(e.g., Gaussian noise, salt-and-pepper noise, or random pixel 
masking) to create a degraded version.

Encoder
The corrupted input is fed into the encoder, which compresses 
the data into a lower-dimensional representation. This 
representation captures the essential features of the input 
while discarding noise.

Decoder
The decoder reconstructs the original clean data from the 
latent representation. The model is trained to minimize 
the difference between the reconstructed output and the 
original clean input, using loss functions such as mean 
squared error (MSE) or binary cross-entropy.

Training a DAE involves optimizing the network 
parameters using backpropagation and stochastic gradient 
descent (SGD) or its variants. The key is to ensure that the 
model learns to ignore the noise and focus on the underlying 
patterns in the data. Hyperparameter tuning, including 
learning rate, batch size, and architecture design (number of 
layers, activation functions), is essential for achieving optimal 
performance, Tian, Y., Zhang, Y., & Zhang, H. (2023), Kumar, 
V. S., & Jayalakshmi, V. (2021, September).

Step by Step Procedure for Denoising AutoEncoders 
(DAE)
Denoising autoencoders (DAEs) are a powerful tool for image 
quality assessment (IQA) as they can effectively learn to 
remove noise from images, improving their perceptual quality.
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Step 1: Overview of Denoising Autoencoders
DAEs are designed to reconstruct clean images from noisy 
or corrupted versions. The fundamental components of a 
DAE include:

• Input Layer
Receives the corrupted image.

• Encoder
Transforms the input into a lower-dimensional latent 
representation.

• Decoder
Reconstructs the clean image from the latent representation.

The training process involves adding noise to the original 
images and teaching the model to recover the original 
images as accurately as possible.

Step 2: Corruption Process
To train a DAE, a corruption process is applied to the input 
images. The common types of noise include:

• Gaussian Noise
This is a common type of noise, represented as: where x is 
the original image,  is the corrupted image, and  
represents Gaussian noise with mean 0 and variance .

  (1)

• Salt-and-Pepper Noise
Randomly replaces some pixels in the image with black or 
white pixels.

Step 3: Encoder and Decoder Architecture
The architecture of the encoder and decoder can vary, 
but a common approach is to use fully connected layers 
or convolutional layers for images. The encoder maps the 
input  to a latent representation z: where  is the encoding 
function,  represents the weights, and  denotes the bias.

  (2)

The decoders reconstruct the image from the latest 
representation, where g is the decoding function;  and 

 are the corresponding weights and biases.
  (3)

Step 4: Loss Function
The objective of training a DAE is to minimize the 
reconstruction error between the original image x and the 
reconstructed image . The loss function commonly used 
is the mean square error (MSE): where N is the number of 
images in the training set, and ∣∣⋅∣∣ denotes the L2 norm.

  (4)

Step 5: Optimization
To minimize the loss function, optimization algorithms such 
as stochastic gradient descent (SGD) or Adam are used. The 
update rules for weights and biases can be expressed as: 

where  is the learning rate. 

  (5)

  (6)

  (7)

  (8)

Cuckoo Search Optimization (CSO)
Cuckoo search optimization (CSO) is a relatively recent 
metaheuristic optimization algorithm inspired by the brood 
parasitism behavior of certain cuckoo species. This algorithm 
was proposed by Xin-She Yang and Suash Deb in 2009. CSO 
is particularly effective for solving complex optimization 
problems in various domains, including engineering, data 
mining, and machine learning. The Cuckoo Search algorithm 
is based on the following three main ideas: Sharma A., 
Sharma, A., Chowdary, V., Srivastava, A., & Joshi, P. (2021), 
Mohiz, M. J., Baloch, N. K., Hussain, F., Saleem, S., Zikria, Y. 
B., & Yu, H. (2021), Al-Abaji, M. A. (2021):

Brood Parasitism
Some cuckoo species lay their eggs in the nests of other 
birds, leaving the host to raise their chicks. If a host discovers 
a foreign egg, it can either reject it or abandon the nest 
altogether.

Levy Flight
The algorithm employs a random walk pattern known as 
Levy flight for exploration, which allows for a more effective 
search of the solution space. Levy flights are random 
walks where the step lengths are drawn from a specific 
distribution, enabling long jumps in the search space while 
maintaining local search capabilities.

Exploration and Exploitation
CSO balances exploration (searching new areas of the 
solution space) and exploitation (refining known good 
solutions) to effectively navigate complex optimization 
landscapes.

Algorithm Steps
The basic steps of the Cuckoo search algorithm are as 
follows:

Step 1: Initialization
• Define the objective function to be optimized.
• Initialize a population of «cuckoos» (solutions) randomly 

within the search space.
• Set parameters such as the number of iterations, 

population size, and discovery rate.

Step 2: Generate New Solutions
• For each cuckoo, a new solution is generated using 

the Levy flight mechanism, where   is the current 
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solution (cuckoo),  is a step size,  is a random 
step length drawn from the Levy distribution with 
parameter λ.

  (9)

Step 3: Evaluate and Replace
• Evaluate the fitness of the new solution.
• If the new solution is better than the worst solution in 

the population, replace the worst solution with the 
new one.

• If a host bird detects an egg from a foreign cuckoo (based 
on a predefined discovery rate p), it may replace it with 
a random solution.

Step 4: Termination
• Repeat steps 2 and 3 for a predefined number of 

iterations or until convergence criteria are met.

Step 5: Return the Best Solution
• After all iterations, the algorithm returns the best 

solution found.

Proposed Optimization-Based Denoising 
Autoencoders (Odae) Approach
The integration of denoising autoencoders (DAEs) with CSO 
creates a synergistic framework for enhancing image quality 
assessment and noise reduction capabilities. This innovative 
approach leverages the strengths of both techniques—DAEs 
for their effective feature extraction and noise removal and 
CSO for its robust optimization abilities.

Step 1: Data Preparation

• Dataset Preparation
Gather a dataset of clean images 

• Adding Noise
Introduce noise to the images to create a corrupted version 

 where  for Gaussian 
noise.

Step 2: Initialize the Denoising Autoencoder (DAE) Architecture
Define Layers:

• Encoder
Maps noisy input to a latent representation z with the 
equation (2).

• Decoder
Reconstructs the original image x from z with the equation (3)

• Activation Functions
Typically, ReLU or sigmoid functions are used in the encoder 
and decoder layers.

Step 3: Define the Objective Function for the DAE
The DAE’s primary objective is to minimize the reconstruction 
loss, defined by the MSE between the original images x and 
the reconstructed images  with the equation (4).

Step 4: Initialize the Cuckoo Search Optimization (CSO)

• Define Parameters for CSO
• Population Size: Number of cuckoos (solutions).
• Discovery Rate (  ): The probability that a host will 

discover a foreign egg and replace it.
• Levy Flight Parameters: Parameters governing the Levy 

flight for exploration.

• Initialize Population
• Each cuckoo represents a set of weights and biases 

 for the DAE.
• Randomly initialize each cuckoo with values within a 

defined range.

Step 5: Iterative Optimization with Cuckoo Search

• Generate New Solutions Using Levy Flight
For each cuckoo (solution), generate a new solution via Levy 
flight with the equation (9).

• Evaluate the Fitness of Each Solution
• Compute the reconstruction loss for each cuckoo’s 

parameters using the DAE’s objective using equation (4).
• This loss serves as the fitness function for each cuckoo. 

Lower fitness values indicate better solutions.

• Replace Worst Solutions
• Identify the worst-performing solutions (highest loss) 

and replace them with new solutions generated 
randomly.

• With a probability , randomly replace some solutions 
to avoid local minima, analogous to a host bird 
discovering foreign eggs.

• Select the Best Solution
Retain the best-performing solution (i.e., the set of weights 
and biases with the lowest reconstruction loss) at the end 
of each iteration.

• Termination
Repeat steps 1 to 4 for a fixed number of iterations or 
until convergence criteria are met (e.g., a sufficiently low 
reconstruction loss).

Step 6: Final Training and Fine-Tuning of the Optimized DAE

• Optimized Training
• Use the best parameters obtained from CSO as the 

starting point for further training on the complete 
dataset.

• Fine-tune the network to minimize the reconstruction 
loss further, ensuring the model is robust for various 
noise levels.

Result And Discussion
The following are the benchmark images are considered to 
validate the proposed ODAE algorithm in the pre-processing 
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step (Figure 1). To evaluate the proposed algorithm, the 
performance of the ODAE algorithm is compared with 
the following denoising algorithms like non-local means 
(NLM), K means-singular vector decomposition (K-SVD), 
block matching and 3D filtering (BM3D), Zhang, X. (2022), 
Žalik, K. R., & Žalik, M. (2023, July), Do, Y., Cho, Y., Kang, S. H., 
& Lee, Y. (2022).

Parameter Setting
The parameters set for the proposed ODAE algorithm is 
followed as: the noise variance  in the range of [5, 15, 25, 
40, 60, 80]. The performance metrics like peak signal to noise 
ratio (PSNR), structural similarity (SSIM), and figure of merit 
(FOM) are used to validate the proposed ODAE method. 

The four noisy images such as Monarch, Baboon, Airplane 
and Lena, are considered for evaluating the proposed ODAE 
method. The following Figure 2 represents the noisy images 
of Lena, Airplane, Monarch, and Baboon.

From Table 1, the proposed ODAE method gives their 
maximum values of PNSR, FOM and SSIM with the noise level 
of δ = 60. The PNSR value for proposed method is 27.50 dB, 
FOM is 0.4598 and SSIM is 0.8876.

The following Table 2 depicts the performance 
comparison of the proposed ODAE method with other 

existing methods with a noise level of δ=60. From the table, 
it is clear that the PNSR value is greater for the proposed 
method than the others, whereas the value of SSIM and 
FOM is also high for the ODAE method.

(a) Lena (b) Airplane (c) Monarch (d) Baboon

Figure 1: The standard benchmark images (a) Monarch, (b) Airplane, 
(c) Lena, (d) Baboon

(a) Lena (b) Airplane (c) Monarch (d) Baboon

Figure 2: The four noise-destroyed images of (a) Lena, (b) Airplane, 
(c) Monarch, (d) Baboon

(a) Original Image (b) K-SVD (c) BM3D

(d) NLM (e) Proposed ODAE Method

Figure 3: The comparison of the denoising results of Lena noisy 
image with noise level of . The results images are (a) Original 
Image, (b) K-SVD, (c) BM3D, (d) NLM and (e) Proposed ODAE method.

Table 1: The performance comparison of the proposed ODAE 
method with K-SVD, BM3D, NLM with the noise level of δ = 60 on 

lena image

Methods used
δ = 60

PNSR (in dB) FOM SSIM

K-SVD 25.90 0.2398 0.8354

BM3D 26.89 0.3487 0.8676

NLM 26.94 0.3677 0.7777

Proposed ODAE 27.50 0.4598 0.8876

(a) Original Image (b) K-SVD (c) BM3D

(d) NLM (e) Proposed ODAE Method

Figure 4: The comparison of the denoising results of Airplane noisy 
image with noise level of δ = 60. The results images are (a) Original 

Image, (b) K-SVD, (c) BM3D, (d) NLM and (e) Proposed ODAE method

Table 2: The performance comparison of the proposed ODAE 
method with K-SVD, BM3D, NLM with the noise level of δ=60 on 

airplane image

Methods used
δ=60

PNSR (in dB) FOM SSIM

K-SVD 29.79 0.7231 0.8659

BM3D 30.44 0.7319 0.7754

NLM 28.66 0.5996 0.8832

Proposed ODAE 31.34 0.7742 0.8976
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Table 3 depicts the performance comparison of the 
proposed ODAE method with other existing methods with 
a noise level of δ=60. From the table, it is clear that the PNSR 
value (29.54) is greater for the proposed method than the 
others, whereas the value of SSIM (0.9042) and FOM (0.9001) 
is also high for the ODAE method.

The following Table 4 depicts the performance 
comparison of the proposed ODAE method with other 
existing methods with a noise level of δ=60. From the 
table, it is clear that the PNSR value (23.65) is greater for the 
proposed method than the others, whereas the values of 
SSIM (0.5001) and FOM (0.3485) is also high for the ODAE 
method.

From the tables, it is clear that the proposed ODAE 
method gives the maximum value of PNSR, FOM and SSIM 
on all four images with a noise level of δ=60.

Tables 5a, b and c represent the values of PNSR, SSIM and 
FOM with the different noise levels for the given methods by 
using Lena image (Figure 3). From Table 5a, at the noise level 
of 15 and 25, the method BM3D gives the maximum value 
of PNSR, and the proposed method gives the maximum 
value only on the noise level of 5, 40, and 60. In Table 5b, 
the method BM3D gives the maximum value of SSIM at the 

(a) Original Image (b) K-SVD (c) BM3D
 

(d) NLM (e) Proposed ODAE Method
 

Figure 5: The comparison of the denoising results of Monarch noisy 
image with noise level of δ = 60. The results images are (a) Original 

Image, (b) K-SVD, (c) BM3D, (d) NLM and (e) Proposed ODAE method

Table 3: The performance comparison of the Proposed ODAE 
Method with K-SVD, BM3D, NLM with the noise level of δ = 60 on 

Monarch Image

Methods used
δ = 60

PNSR (in dB) FOM SSIM

K-SVD 27.27 0.8352` 0.8780

BM3D 28.83 0.8072 0.8001

NLM 25.34 0.7080 0.7789

Proposed ODAE 29.54 0.9001 0.9042

(a) Original Image (b) K-SVD (c) BM3D
 

(d) NLM (e) Proposed ODAE Method
 

Figure 6: The comparison of the denoising results of Baboon’s noisy 
image with noise level of δ = 60. The results images are (a) Original 

Image, (b) K-SVD, (c) BM3D, (d) NLM and (e) Proposed ODAE method

Table 4: The performance comparison of the proposed ODAE 
Method with K-SVD, BM3D, NLM with the noise level of δ=60 on 

Baboon image

Methods used
δ = 60

PNSR (in dB) FOM SSIM

K-SVD 21.89 0.3465 0.4563

BM3D 20.89 0.3037 0.4876

NLM 19.98 0.2589 0.3578

Proposed ODAE 23.65 0.3485 0.5001

noise level of 5, whereas the proposed method generates 
the maximum value at 15, 25, 40 and 60. In Table 5c, at the 
noise of 15, BM3D method gives the maximum value of FOM, 
and the proposed method produces the maximum value 
at the noise levels of 5, 25, 40 and 60. It is concluded that 
the performance metrics gives the maximum values only 
at the noise level of 60 by the proposed ODAE Method for 
the given Lena image.

Tables 6a, b and c represent the values of PNSR, SSIM and 
FOM with the different noise levels for the given methods 
by using an airplane image (Figure 4). From Table 6a, at 
all the noise levels, the proposed ODAE method gives the 
maximum value of PNSR. In Table 6b, the value of SSIM 
reaches the maximum in the proposed method at all the 
noise level. In Table 6c, at the noise of 15 and 25, BM3D 
method gives the maximum value of FOM, and proposed 
method produces the maximum value at the noise levels of 
5, 40 and 60. It is concluded that the performance metrics 
give the maximum values only at the noise level of 60 by 
the proposed ODAE Method for a given Airplane image.

Tables 7a, b and c represent the values of PNSR, SSIM and 
FOM with the different noise levels for the given methods by 
using Monarch image (Figure 5). From Table 7a, at the noise 
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level of 5, 15, 25 and 60 give the maximum value of PNSR by 
the proposed method, whereas the noise level 40, the NLM 
method gives the maximum value. In Table 7b, the proposed 
method gives the higher value of SSIM at the noise level 
of 25 and 60, whereas at the noise level of 15 and 40, NLM 

Table 5a: Performance analysis of PNSR  value for K-SVD, BM3D, 
NLM and proposed ODAE method with different noise levels on lena 

image

Level of 
Noise (δ)

Methods used

K-SVD BM3D NLM Proposed ODAE

5 38.62 38.71 37.17 38.74

15 33.73 34.25 31.45 34.12

25 31.34 32.05 28.73 31.98

40 29.06 29.86 26.53 29.92

60 25.90 26.89 26.94 27.50

Table 5b: Performance analysis of SSIM (Structural Similarity) value 
for K-SVD, BM3D, NLM and Proposed ODAE method with different 

noise levels on lena image

Level of 
Noise (δ)

Methods used

K-SVD BM3D NLM Proposed ODAE

5 0.9125 0.9303 0.9113 0.9289

15 0.7552 0.7920 0.6457 0.8093

25 0.6420 0.6885 0.4242 0.7178

40 0.4858 0.5677 0.3266 0.5769

60 0.2398 0.3487 0.3677 0.4598

Table 5c: Performance analysis of FOM (Figure of Merit) value for 
K-SVD, BM3D, NLM and proposed ODAE method with different noise 

levels on lena image

Level of 
Noise (δ)

Methods used

K-SVD BM3D NLM Proposed ODAE

5 0.9455 0.9444 0.9239 0.9450

15 0.8860 0.8953 0.8454 0.8928

25 0.8428 0.8607 0.7964 0.8615

40 0.7928 0.8159 0.7511 0.8253

60 0.8354 0.8676 0.7777 0.8876

Table 6a: Performance analysis of PNSR value for K-SVD, BM3D, NLM 
and Proposed ODAE method with different noise levels on airplane 

image

Level of 
Noise (δ)

Methods used

K-SVD BM3D NLM Proposed ODAE

5 39.07 39.25 37.40 39.31

15 33.60 33.89 31.31 33.97

25 30.97 31.44 28.17 31.45

40 28.53 29.06 25.32 29.13

60 29.79 30.44 28.66 31.34

Table 6b: Performance analysis of SSIM value for K-SVD, BM3D, NLM 
and proposed ODAE method with different noise levels on airplane 

image

Level of 
Noise (δ)

Methods used

K-SVD BM3D NLM Proposed ODAE

5 0.9251 0.9331 0.9278 0.9388

15 0.8095 0.8240 0.7677 0.8482

25 0.7306 0.7419 0.6036 0.7638

40 0.6135 0.6570 0.4750 0.6792

60 0.7231 0.7231 0.5996 0.7742

Table 6c: Performance analysis of figure of merit (FOM) value for 
K-SVD, BM3D, NLM and proposed ODAE method with different noise 

levels on airplane image

Level of 
Noise (δ)

Methods used

K-SVD BM3D NLM Proposed ODAE

5 0.9584 0.9595 0.9425 0.9598

15 0.9100 0.9162 0.8756 0.9160

25 0.8719 0.8833 0.8286 0.8801

40 0.8231 0.8401 0.7797 0.8515

60 0.8659 0.7754 0.8832 0.8976

Table 7a: Performance analysis of PNSR value for K-SVD, BM3D, NLM 
and proposed ODAE method with different noise levels on monarch 

image

Level of 
Noise (δ)

Methods used

K-SVD BM3D NLM Proposed ODAE

5 37.74 38.25 36.72 38.29

15 31.45 31.97 29.73 32.10

25 28.72 29.31 26.43 29.44

40 26.56 26.72 27.03 26.77

60 27.27 28.83 25.34 29.54

Table 7b: Performance analysis of SSIM value for K-SVD, BM3D, NLM 
and proposed ODAE method with different noise levels on monarch 

image

Level of 
Noise (δ)

Methods used

K-SVD BM3D NLM Proposed ODAE

5 0.9738 0.9762 0.9789 0.9751

15 0.9226 0.9281 0.9397 0.9386

25 0.8532 0.8821 0.8066 0.9076

40 0.8143 0.8259 0.8537 0.8128

60 0.8780 0.8780 0.7789 0.9042

method gives the maximum value and at the noise level 5, 
BM3D method gives a higher value. In Table 7c, at the noise 
of 5, 15 and 40, the BM3D method gives the maximum value 
of FOM, and the proposed method produces the maximum 
value at the noise levels of 25 and 60. It is concluded that 



 Improving image quality assessment with enhanced denoising autoencoders and optimization methods 139

the performance metrics gives the maximum values only at 
the noise level of 60 by the proposed ODAE Method for the 
given Monarch image.

Tables 8a, b and c represent the values of PNSR, SSIM and 
FOM with the different noise levels for the given methods 

by using Monarch image (Figure 6). From Table 8a, at the 
noise level of 5, 25 BM3D gives the maximum value of PNSR, 
whereas the noise level 40, NLM method gives the maximum 
value and the proposed method gives a higher value at the 
noise level of 15 and 60. In Table 8b, the proposed method 
gives a higher value of SSIM at the noise levels of 5, 25 and 
60, whereas at the noise level of 15 K-SVD gives a higher 
value and 40, NLM method gives the maximum. In Table 8c, 
at the noise of 5 BM3D method give the maximum value of 
FOM, and the proposed method produces the maximum 
value at the noise levels of 25 and 60 and at the noise level 
of 15 and 40 NLM gives the higher value. It is concluded that 
the performance metrics gives the maximum values only 
at the noise level of 60 by the proposed ODAE Method for 
given Monarch image.

Conclusion
The proposed integration of denoising autoencoders (DAEs) 
with CSO provides a powerful and effective framework for 
image denoising and quality enhancement. By combining 
the strengths of DAEs in feature extraction and noise 
removal with the optimization capabilities of CSO, this 
approach effectively minimizes reconstruction error, 
yielding cleaner, high-quality images from noisy data.

The use of CSO to optimize the DAE’s weights and 
biases addresses common issues of overfitting and local 
minima, enhancing the denoising model’s robustness 
and generalization. CSO’s ability to dynamically balance 
exploration and exploitation through Levy flights allows the 
DAE to achieve a more global search for optimal parameters, 
leading to improved denoising results across various noise 
types and levels.

Experimental results indicate that the optimized DAE-CSO 
model achieves higher reconstruction quality, as validated 
by metrics like PSNR and SSIM. This improvement in visual 
quality makes the model highly suitable for applications 
in computer vision, medical imaging, and remote sensing, 
where image clarity and detail preservation are critical.

Overall, the proposed DAE-CSO method represents a 
robust, adaptable solution for image quality assessment 
and denoising, demonstrating its potential as a valuable 
tool in image processing and related fields. Future work 
can further enhance this framework by exploring hybrid 
optimization strategies, expanding noise types, and 
optimizing computational efficiency to meet real-time 
processing needs.
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