
Abstract
In the field of Human Resources (HR) analytics, effective feature selection is critical for improving the accuracy and efficiency of predictive 
models used for workforce management, talent retention, and performance evaluation. This paper proposes an improved feature selection 
approach that integrates optimization techniques such as particle swarm optimization (PSO) and gravitational search optimization 
(GSO) to enhance the performance of HR analytics. By leveraging the exploration-exploitation balance of PSO and the mass-based 
search capability of GSO, the proposed method efficiently identifies the most relevant features from large and complex HR datasets. The 
hybrid approach reduces dimensionality, minimizes computational costs, and boosts the accuracy of machine learning models used 
in HR analytics. Comparative analysis with traditional feature selection methods demonstrates that the proposed technique achieves 
superior results in terms of prediction accuracy, computational efficiency, and overall model performance. This study highlights the 
potential of advanced optimization techniques in driving data-driven decision-making processes in HR, offering a robust and scalable 
solution for managing and analyzing HR data more effectively.
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Introduction
Human resource (HR) analytics, also known as people analytics 
or talent analytics, is transforming how organizations 
manage and optimize their workforce. Traditionally, HR 
departments have focused on tasks like recruitment, payroll, 
and compliance, operating with limited involvement in 
strategic decision-making. However, the rapid digitalization 
and availability of workforce data have shifted HR’s role, 
enabling it to become a key driver of organizational 
performance. By systematically collecting, analyzing, and 
interpreting employee data, HR analytics provides insights 
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that help organizations make data-driven decisions to 
enhance recruitment, improve employee retention, foster 
engagement, and drive overall productivity, Navot, A. (2006).

HR analytics leverages a wide range of data sources, from 
internal records—such as employee performance, turnover 
rates, and training history—to external data like labor 
market trends and industry benchmarks. Using data mining, 
statistical analysis, and machine learning techniques, HR 
analytics reveals patterns, relationships, and trends that may 
otherwise go unnoticed. For example, predictive analytics 
can help organizations identify employees who might be 
at risk of leaving, while prescriptive analytics can provide 
actionable strategies to mitigate these risks. These insights 
empower HR departments to make proactive, rather than 
reactive, decisions, thus aligning HR strategy with broader 
business goals, Durairaj, M., & Poornappriya, T. S. (2020).

Importance of Feature Selection Techniques
Feature selection techniques play a crucial role in improving 
the classification accuracy of healthcare decision support 
systems by enhancing the quality of input data and reducing 
the dimensionality of feature space, Dash, M., & Liu, H. (1997), 
Nourmohammadi-Khiarak, J., Feizi-Derakhshi, M. R., Behrouzi, 
K., Mazaheri, S., Zamani-Harghalani, Y., & Tayebi, R. M. (2020).

Improved Model Performance
Healthcare decision support systems often deal with high-
dimensional data containing numerous features, some 
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of which may be irrelevant, redundant, or noisy. Feature 
selection helps in identifying the most informative and 
relevant subset of features, allowing machine learning 
models to focus on the most discriminative information. 
This results in improved model performance and better 
classification accuracy.

Reduced Overfitting
Including irrelevant or redundant features in the model 
can lead to overfitting, where the model captures noise or 
patterns specific to the training data but fails to generalize 
well to unseen data. Feature selection mitigates overfitting 
by excluding irrelevant or redundant features, thereby 
improving the model’s ability to generalize to new data 
instances and reducing the risk of erroneous predictions.

Enhanced Interpretability
In healthcare decision support systems, interpretability is 
often as important as accuracy, especially when providing 
explanations for clinical decisions. Feature selection helps 
in simplifying the model by selecting a smaller subset of 
features, which enhances the interpretability of the model 
and facilitates understanding by healthcare professionals 
and end-users.

Faster Model Training and Inference
Reducing the dimensionality of the feature space through 
feature selection leads to faster model training and inference 
times. With a smaller subset of features, computational 
resources are utilized more efficiently, resulting in quicker 
decision-making processes in real-time healthcare scenarios, 
where timely responses are crucial.

Mitigation of Data Imbalance
Healthcare datasets often suffer from class imbalance, 
where one class (e.g., rare diseases) is significantly 
underrepresented compared to others. Feature selection 
can help alleviate data imbalance by selecting features that 
are more informative for distinguishing between different 
classes, thereby improving the classification performance 
for minority classes.

Identification of Biomarkers and Risk Factors
Feature selection techniques enable the identification of 
biomarkers and risk factors associated with specific diseases 
or medical conditions. By selecting relevant features from 
heterogeneous healthcare data sources (e.g., electronic 
health records, medical imaging), feature selection aids 
in uncovering meaningful patterns and associations that 
contribute to better diagnosis, prognosis, and treatment 
planning.

Feature Selection Techniques
Feature selection techniques are methods used to identify 
the most relevant subset of features from a larger set of 
features. These techniques are widely employed in various 

fields, including machine learning, data mining, and 
bioinformatics, to improve model performance, reduce 
dimensionality, and enhance interpretability.

Filter Methods
Filter-based feature selec tion methods operate 
independently of any specific machine learning algorithm 
and are typically based on statistical measures or scoring 
functions to rank or evaluate the relevance of features. These 
methods are computationally efficient and can be applied 
as a preprocessing step before model training, Siddiqi, M. 
A., & Pak, W. (2020), Jha, K., & Saha, S. (2021).

Correlation-based Feature Selection
Correlation-based feature selection assesses the relationship 
between each feature and the target variable or between 
pairs of features. For classification tasks, features with high 
correlation to the target variable are deemed informative 
and are retained, while irrelevant features are discarded. In 
cases of multicollinearity (high correlation between features), 
only one of the correlated features may be retained to avoid 
redundancy. Pearson correlation coefficient, Spearman 
rank correlation coefficient, or other similar metrics are 
commonly used to quantify the degree of correlation.

Information Gain
Information gain measures the reduction in entropy 
(uncertainty) of the target variable given the presence of 
a particular feature. Features that result in a significant 
reduction in entropy when included in the model are 
considered more informative and are selected. This method 
is particularly popular in decision tree-based algorithms, 
where features are selected based on their ability to split 
the dataset into pure subsets (homogeneous with respect 
to the target variable).

Chi-square Test
The chi-square test assesses the independence between 
each feature and the target variable in classification tasks. 

It calculates the chi-square statistic for each feature, 
which measures the difference between the observed and 
expected frequencies of each class label given the presence 
or absence of the feature. Features with high chi-square 
statistics (indicating significant association with the target 
variable) are retained, while features with low statistics are 
discarded.

Variance Thresholding
Variance thresholding removes features with low variance, 
assuming that features with little variation across instances 
contribute little information to the model. This method 
is particularly useful for datasets where most instances 
have the same value for a feature, as these features do not 
discriminate between instances and can be safely removed. 
Users can specify a threshold value below which features are 
considered low-variance and are subsequently discarded.
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Mutual Information
Mutual information measures the mutual dependence 
between two random variables (e.g., feature and target 
variable) and quantifies the amount of information obtained 
about one variable through the other. In feature selection, 
mutual information assesses the amount of information 
shared between each feature and the target variable. 
Features with high mutual information are considered more 
informative and are retained, while features with low mutual 
information are discarded.

Wrapper Methods
Wrapper-based feature selection methods assess the quality 
of feature subsets by directly evaluating their performance 
using a specific machine learning algorithm. These methods 
involve iterative search strategies to explore the space of 
possible feature subsets and an evaluation metric to assess 
the performance of each subset, Le, T. M., Vo, T. M., Pham, 
T. N., & Dao, S. V. T. (2020), Ghosh, M., Guha, R., Sarkar, R., & 
Abraham, A. (2020).

Forward Selection
Forward selection starts with an empty set of features and 
iteratively adds one feature at a time based on their individual 
performance. At each iteration, the algorithm evaluates the 
performance of all possible feature combinations by training 
a model with each combination and selecting the one that 
yields the best performance according to a predefined 
evaluation metric. The process continues until a stopping 
criterion is met, such as reaching a specified number of 
features or no improvement in performance. Forward 
selection tends to be computationally expensive, especially 
for datasets with a large number of features, as it requires 
training multiple models for each iteration.

Backward Elimination
Backward elimination starts with the full set of features and 
iteratively removes the least important feature based on 
their performance. At each iteration, the algorithm evaluates 
the performance of the current feature subset by training 
a model and then removes the feature that contributes the 
least to the model’s performance according to a predefined 
evaluation metric. The process continues until a stopping 
criterion is met, such as reaching a specified number of 
features or no improvement in performance. Backward 
elimination tends to be more computationally efficient 
than forward selection, especially for datasets with a large 
number of features, as it involves training fewer models.

Recursive Feature Elimination (RFE)
Recursive feature elimination (RFE) is a wrapper-based 
feature selection method that selects features by recursively 
considering smaller and smaller feature subsets until the 
desired number of features is reached. RFE starts with the 
full set of features and trains a model to rank the importance 

of each feature. At each iteration, the least important 
feature(s) are removed from the current feature subset, and 
the process repeats until the desired number of features is 
reached. The performance of the feature subset is evaluated 
using a predefined evaluation metric at each iteration, and 
the subset with the best performance is selected. RFE is 
particularly useful when the number of features is much 
larger than the number of instances, as it helps prevent 
overfitting by iteratively eliminating irrelevant features.

Bidirectional Search
Bidirectional search combines forward selection and 
backward elimination to iteratively add and remove features 
from the feature subset. The algorithm starts with an empty 
set of features and adds features one at a time using forward 
selection. After adding each feature, the algorithm evaluates 
the performance of the current feature subset and removes 
the least important feature using backward elimination if 
necessary. The process continues until a stopping criterion 
is met, such as reaching a specified number of features or no 
improvement in performance. Bidirectional search aims to 
strike a balance between the efficiency of forward selection 
and the effectiveness of backward elimination.

Embedded Methods
Embedded methods integrate feature selection directly into 
the model training process, where feature importance is 
learned as part of the model construction. These methods 
are typically specific to certain learning algorithms that 
inherently perform feature selection during training, 
Mahendran, N., & PM, D. R. V. (2022), Chen, C. W., Tsai, Y. H., 
Chang, F. R., & Lin, W. C. (2020).

Lasso (L1 Regularization)
Lasso, short for Least Absolute Shrinkage and Selection 
Operator, is a linear regression technique that penalizes 
the absolute size of coefficients in the regression model. 
The L1 regularization term added to the standard linear 
regression objective function encourages sparse solutions 
by forcing some coefficients to be exactly zero. As a 
result, Lasso inherently performs feature selection by 
shrinking the coefficients of irrelevant features to zero, 
effectively removing them from the model. The strength 
of regularization is controlled by a hyperparameter 
(lambda or alpha), which determines the trade-off between 
model simplicity and accuracy. Lasso is particularly useful 
when dealing with high-dimensional datasets where 
feature selection is crucial for model interpretability and 
generalization.

Decision Trees
Decision trees are non-parametric models that recursively 
partition the feature space into regions based on feature 
values. During the construction of a decision tree, features 
are selected at each node to split the data into subsets 
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that are as pure (homogeneous with respect to the target 
variable) as possible. Features that lead to the most 
significant reduction in impurity (e.g., Gini impurity or 
entropy) are selected for splitting, implicitly ranking the 
importance of features. Once the decision tree is trained, 
feature importance can be inferred from the frequency 
with which a feature is used for splitting across all nodes 
in the tree. Decision tree-based models, such as Random 
Forests and Gradient Boosted Trees, extend this concept 
to ensemble learning, where multiple decision trees are 
combined to further improve feature selection and model 
performance.

Random Forest Feature Importance
Random Forest is an ensemble learning technique that 
constructs multiple decision trees using bootstrapped 
samples of the dataset and random subsets of features. The 
importance of a feature in a Random Forest model is assessed 
based on the decrease in node impurity (e.g., Gini impurity 
or entropy) caused by splitting on that feature across all 
trees in the forest. Features that result in greater reductions 
in impurity are deemed more important and are assigned 
higher feature importance scores. Random Forest feature 
importance provides a robust and interpretable measure of 
feature relevance, taking into account interactions among 
features and their collective impact on model performance.

Elastic Net
Elastic Net is a linear regression technique that combines 
L1 (Lasso) and L2 (Ridge) regularization penalties to 
overcome some limitations of Lasso, such as instability and 
inconsistency in variable selection. Similar to Lasso, Elastic 
Net encourages sparsity in the solution by penalizing the 
absolute size of coefficients (L1 penalty). Additionally, Elastic 
Net includes an L2 penalty term that penalizes the square 
of the coefficients, which helps to handle multicollinearity 
and stabilize the selection of correlated features. By tuning 
the mixing parameter between L1 and L2 penalties, Elastic 
Net allows for flexible control over the trade-off between 
sparsity and model accuracy.

Gravitational Search Optimization (Gso)
Gravitational Search Optimization (GSO) is a metaheuristic 
optimization algorithm inspired by the laws of gravity and 
motion in physics. It simulates the interactions between 
masses (representing candidate solutions) within a search 
space, where masses exert gravitational forces on each other 
to guide the search process towards promising regions, 
Guha, R., Ghosh, M., Chakrabarti, A., Sarkar, R., & Mirjalili, S. 
(2020), Kumar, S., & John, B. (2021) [11] [12].

Step 1
Initialize a population of N masses (candidate solutions) 
randomly within the search space. Each mass represents a 
potential solution to the optimization problem.

Step 2
Define an objective function  that evaluates the fitness 
of each candidate solution x based on the optimization task 
at hand. The objective function maps each solution  to a 
real-valued fitness score representing its quality. 

Step 3

•	 Gravitational Force Calculation
The gravitational force  acting on each mass  is 
calculation based on the Newtonian law of gravity, 
considering the interaction between the mass  and all 
other masses in the population. The gravitational force  
acting on mass  is given by:

 	 (3.1)

G is the gravitational constant.  are the masses 
of masses  and  respectively.  is the distance between 
masses  and .  is the unit vector pointing from mass  
to mass .

Step 4

•	 Acceleration Calculation
The acceleration  experienced by each mass  is 
computed by dividing the gravitational force acting on it 
by its mass :

 	 (3.2)

Step 5
Velocity and Position Update: The velocity  and position  
of each mass  are updated based on its current velocity, 
acceleration, and position:

	 (3.3)

	 (3.4)
Where  is the time step. The updates are performed 

iteratively until a termination criterion is met, such as a 
maximum number of iterations or convergence.

Step 6

•	 Solution Evaluation and Selection
Evaluate the fitness of each updated solution  using the 
objective function . Select the best solutions based on 
their fitness scores for the next iteration.

Step 7

•	 Termination
Repeat steps 3 to 6 until a termination criterion is met, such 
as reaching a maximum number of iterations or achieving a 
satisfactory solution quality.

Procedure for GSO based Feature Selection Method
Procedure GSO_Feature_Selection(dataset, population_
size, max_iterations):
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    Initialize: 
        - Randomly generate an initial population of candidate 
feature subsets (masses).
        - Set gravitational constant G.
        - Set parameters for acceleration calculation, such as 
time step Δt.
        - Set termination criterion (e.g., maximum number of 
iterations).
    Repeat for each iteration until termination criterion is met:
        For each mass in the population:
            Compute fitness value of the feature subset using a 
classification algorithm:
                - Train a classifier (e.g., GBT, RF) using the features 
in the subset.
                - Evaluate the classifier’s performance (e.g., accuracy, 
F1-score) on the dataset.
                - Assign the fitness value to the mass based on the 
classifier’s performance.
        Calculate gravitational forces and accelerations:
            For each mass in the population:
                For each other mass in the population:
                    Compute distance between masses.
                    Compute gravitational force between masses 
using Newton’s law of gravity.
                    Compute acceleration experienced by each mass.
        Update velocities and positions of masses:
            For each mass in the population:
                Update velocity using acceleration and time step.
                Update position using velocity and time step.
        Evaluate and select new solutions:
            For each updated mass:
                Compute fitness value of the feature subset using 
the classifier.
        Select best solutions:
            Select the best-performing feature subsets based on 
their fitness values.
        Termination:
            If termination criterion is met (e.g., maximum number 
of iterations), stop the algorithm.
    Return the best-performing feature subset found during 
the optimization process.

Particle Swarm Optimization (Pso)
Particle Swarm Optimization (PSO) can be adapted for 
feature selection by representing each particle as a binary 
vector indicating the presence or absence of features. The 
PSO algorithm then optimizes this binary vector to find the 
optimal subset of features that maximizes a predefined 
objective function, Kılıç, F., Kaya, Y., & Yildirim, S. (2021), Hu, 
Y., Zhang, Y., & Gong, D. (2020) [13] [14].

Step 1

•	 Initialization
Initialize a population of particles, each representing a 

potential feature subset, randomly within the search space. 
Each particle is represented by a binary vector  of size D, 
where D is the number of features in the dataset. Each element 

 is the binary vector indicates the presence (1) or absence 
(0) of the j-th feature in the subset represented by particle 

Step 2

•	 Objective Function
Define an objective function  that evaluates the fitness 
of each particle’s feature subset based on the optimization 
task at hand. The objective function maps each solution  
to a real valued fitness score representing its quality. For 
feature selection, the objective function typically measures 
the performance of a classification algorithm trained on 
the selected feature subset. Common performance metrics 
include accuracy, F1-score, or area under the ROC curve (AUC).

Step 3

•	 Velocity Update
The velocity  of each particle  is updated based on its 
current velocity, its best previous position , and the global 
best position  found by any particle in the swarm:

(3.5)
Where  is the inertia weight that controls the impact of 

the previous velocity.   and  are acceleration coefficients 
representing cognitive and social components, respectively. 

 and  are random vectors sampled uniformly from the 
range [0,1].  denotes element-wise multiplication. 

Step 4

•	 Position Update
The position  of each particle  is updated based on its 
current position and velocity:

 	 (3.6)

Where  ensures that the binary vector  remains 
within the valid range [0,1].

Step 5

•	 Global Best Update
Update the global best position  found by any particle 
in the swarm:

 	 (3.7)

Step 6

•	 Termination
Repeat steps 3 to 5 until a termination criterion is met, such 
as reaching a maximum number of iterations or achieving a 
satisfactory solution quality.

Procedure for PSO based Feature Selection Method 
Procedure PSO_Feature_Selection(dataset, population_size, 
max_iterations):
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    Initialize: 
        - Randomly generate an initial population of particles, 
each representing a potential feature subset.
        - Set parameters for PSO, including inertia weight (w), 
cognitive coefficient (c1), and social coefficient (c2).
        - Set termination criterion (e.g., maximum number of 
iterations).
    Repeat for each iteration until termination criterion is met:
        For each particle in the population:
            Evaluate the fitness of the feature subset represented 
by the particle:
                - Train a classifier (e.g., SVM, Decision Trees) using 
the features in the subset.
                - Evaluate the classifier’s performance (e.g., accuracy, 
F1-score) on the dataset.
                - Assign the fitness value to the particle based on 
the classifier’s performance.
        Update particle velocities and positions:
            For each particle in the population:
                Update velocity using previous velocity, cognitive 
and social components:
                    v_i(t+1) = w * v_i(t) + c1 * r1 * (p_i(t) - x_i(t)) + c2 * 
r2 * (p_best(t) - x_i(t))
                Update position using velocity:
                    x_i(t+1) = x_i(t) + v_i(t+1)
        Update personal best positions:
            For each particle in the population:
                If the fitness of the current position is better than 
the personal best fitness:
                    Update personal best position to the current 
position.
        Update global best position:
            Determine the particle with the best fitness in the 
entire population.
            Update global best position to the personal best 
position of that particle.
        Termination:
            If termination criterion is met (e.g., maximum number 
of iterations), stop the algorithm.
    Return the best-performing feature subset found during 
the optimization process.

Proposed Metaheuristic Fusion of Gravitational 
Search and Particle Swarm Optimization (GSPSO) 
Based Feature Selection Method
The proposed metaheuristic fusion of Gravitational Search 
Optimization (GSO) and Particle Swarm Optimization (PSO), 
known as GSPSO, for feature selection in the healthcare 
domain aims to improve the accuracy and efficiency 
of healthcare decision support systems. This method 
leverages the complementary strengths of both GSO and 
PSO to identify optimal subsets of features from medical 
datasets, which can subsequently be used for tasks such 
as disease diagnosis, patient risk prediction, and treatment 

recommendation. Healthcare datasets often contain a 
large number of features, including patient demographics, 
clinical variables, and medical test results. Selecting relevant 
features is crucial for building accurate predictive models 
and decision support systems in healthcare. GSPSO offers 
a powerful approach to efficiently search through the vast 
feature space and identify subsets of features that are most 
informative for healthcare-related tasks.

GSO is known for its ability to efficiently explore 
the search space and identify promising regions using 
gravitational forces. PSO excels at exploiting known good 
solutions and fine-tuning the search process based on 
particle velocities and positions. The fusion of GSO and PSO 
in GSPSO leverages the exploration capabilities of GSO and 
the exploitation capabilities of PSO to enhance the feature 
selection process.

Each particle in the GSPSO algorithm represents a 
potential feature subset, encoded as a binary vector 
indicating the presence or absence of each feature. The 
objective function evaluates the fitness of each particle’s 
feature subset based on its performance in healthcare-
related tasks, such as disease classification or patient 
outcome prediction. Gravitational forces from GSO 
influence the particle velocities in PSO, guiding particles 
towards promising regions of the feature space. Particle 
velocities and positions are updated iteratively based 
on the gravitational forces and the cognitive and social 
components in PSO.

Step 1: Initialization 
Initialize a population of particles, each representing a 
potential feature subset, randomly within the search space. 
Each particle is represented by a binary vector  of size 
D, where D is the number of features in the dataset. Each 
element  of the binary vector indicates the presence (1) 
or absence (0) of the j-th feature in the subset represented 
by particle i.

Step 2: Objective Function
Define an objective function  that evaluates the fitness 
of each particle’s feature subset based on the optimization 
task at hand. The objective function maps each solution  
to a real-valued fitness score representing its quality. For 
feature selection, the objective function typically measures 
the performance of a classification algorithm trained on 
the selected feature subset. Common performance metrics 
include accuracy, F1-score, or area under the ROC curve (AUC).

Step 3: Velocity Update (using a fusion of GSO and PSO)
Compute the gravitational force  acting on each particle 
 using GSO equations (3.1). Compute the velocity  of 

each particle  using PSO equations, incorporating the 
gravitational force:
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Where  is the gravitational force acting on particle  
calculated using equation (3.1).   is the mass of the particle 
, which can be set to a constant or dynamically adjusted.

Step 4: Position Update
The position  of each particle  is updated based on its 
current position and velocity using the equation (3.6).

Step 5: Global Best Update
Update the global best position  using the equation (3.7) 
found by any particle in the swarm

Step 6: Termination
Repeat steps 3 to 5 until a termination criterion is met, such 
as reaching a maximum number of iterations or achieving a 
satisfactory solution quality.

The GSPSO-based feature selection method combines 
the exploration capabilities of GSO with the exploitation 
capabilities of PSO to efficiently explore the search 
space and converge towards promising feature subsets. 
By incorporating gravitational forces into the velocity 
update equation of PSO, GSPSO enhances the search 
process and improves the quality of selected feature 
subsets. Parameter tuning, including the inertia weight w, 
cognitive coefficient ​, and social coefficient ​, is crucial 
for the performance of GSPSO-based feature selection. 
Additionally, termination criteria and initialization strategies 
are important considerations for applying GSPSO to feature 
selection tasks.

Procedure for Proposed GSPSO based Feature 
Selection Method 
Procedure GSPSO_Feature_Selection(dataset, population_
size, max_iterations):
    Initialize: 
        - Randomly generate an initial population of particles, 
each representing a potential feature subset, within the 
search space.
        - Set parameters for GSO (gravitational constant, mass, 
gravitational force calculation).
        - Set parameters for PSO (inertia weight, cognitive and 
social coefficients).
        - Set termination criterion (e.g., maximum number of 
iterations).
    Repeat for each iteration until termination criterion is met:
        For each particle in the population:
            Evaluate the fitness of the feature subset represented 
by the particle:
                - Train a classifier (e.g., GBN, RF, SVM) using the 
features in the subset.
                - Evaluate the classifier’s performance (e.g., accuracy, 
F1-score) on the dataset.
                - Assign the fitness value to the particle based on 
the classifier’s performance.
        Calculate gravitational forces:

            For each particle in the population:
                Compute gravitational forces acting on the particle 
based on GSO equations.
        Update particle velocities and positions using PSO:
            For each particle in the population:
                Update velocity using PSO equations, incorporating 
gravitational forces:
                    Compute velocity update based on PSO equations 
with gravitational force component.
                Update position using velocity:
                    Update position based on the calculated velocity, 
ensuring it remains within the valid range [0,1].
        Update personal best positions:
            For each particle in the population:
                If the fitness of the current position is better than 
the personal best fitness:
                    Update personal best position to the current 
position.
        Update global best position:
            Determine the particle with the best fitness in the 
entire population.
            Update global best position to the personal best 
position of that particle.
        Termination:
            If termination criterion is met (e.g., maximum number 
of iterations), stop the algorithm.
    Return the best-performing feature subset found during 
the optimization process.

Result And Discussions

Performance Metrics
Table 1 gives the performance metrics used in this research 
work to evaluate the performance of the proposed GSPSO 
feature selection method.

Table 2 depicts the Classification Accuracy (in %) 
obtained for the HR dataset using original dataset, Proposed 
GSPSO method, GSA, GA, ABC and PSO method processed 
datasets using GBT, RF and SVM. Figure 1 gives the graphical 

Table 1: Performance Metrics

Metrics Equation
Accuracy

True Positive Rate (TPR)

False Positive Rate (FPR)

Precision

Specificity 1-FPR
Miss Rate 1- TPR
False Discovery Rate 1- Precision



128	 Jayalakshmi and Prabakaran	 The Scientific Temper. Vol. 15, special issue 

representation of the Classification Accuracy (in %) obtained 
for the HR dataset using original dataset, Proposed GSPSO 
method, GSA, GA, ABC and PSO method processed datasets 
using GBT, RF and SVM. From the Table 2 and Figure 1, it 
is clear that the Proposed GSPSO with GBT gives better 
accuracy than the existing feature selection methods.

Table 3 depicts the True Positive Rate (in %) obtained 
for the HR dataset using original dataset, Proposed GSPSO 
method, GSA, GA, ABC and PSO method processed datasets 
using GBT, RF and SVM. Figure 2 gives the graphical 
representation of the True Positive Rate (in %) obtained 
for the HR dataset using original dataset, Proposed GSPSO 
method, GSA, GA, ABC and PSO method processed datasets 
using GBT, RF and SVM. From the Table 3 and Figure 2, it is 
clear that the Proposed GSPSO with GBT gives better true 
positive rate than the existing feature selection methods.

Table 4 depicts the False Positive Rate (in %) obtained 
for the HR dataset using original dataset, Proposed GSPSO 
method, GSA, GA, ABC and PSO method processed datasets 
using GBT, RF and SVM. Figure 3 gives the graphical 
representation of the False Positive Rate (in %) obtained 
for the HR dataset using original dataset, Proposed GSPSO 
method, GSA, GA, ABC and PSO method processed datasets 

Table 2: Classification Accuracy (in %) obtained for the HR dataset 
using original dataset, Proposed GSPSO method, GSA, GA, ABC and 

PSO method processed datasets using GBT, RF and SVM

Feature Selection Methods
Classification Accuracy (in %) by 
Classification Techniques

GBT RF SVM

Original Dataset 55.38 45.63 43.32

Proposed GSPSO method 95.78 92.29 89.63

GSA 73.85 63.81 58.45

PSO 74.99 71.86 68.02

ABC 69.74 65.95 63.54

GA 68.68 62.65 61.45

Figure 1: Graphical representation of the Classification Accuracy 
(in %) obtained for the HR dataset using original dataset, Proposed 
GSPSO method, GSA, GA, ABC and PSO method processed datasets 

using GBT, RF and SVM

Table 3: True Positive Rate (in %) obtained for the HR dataset using 
original dataset, Proposed GSPSO method, GSA, GA, ABC and PSO 

method processed datasets using GBT, RF and SVM

Feature Selection Methods
True Positive Rate (in %) by 
Classification Techniques

GBT RF SVM

Original dataset 54.49 44.54 42.23

Proposed GSPSO method 95.59 91.38 89.72

GSA 75.81 72.95 69.13

PSO 74.96 64.92 59.56

ABC 68.86 64.86 62.63

GA 67.77 61.56 60.53

Figure 2: Graphical representation of the True Positive Rate (in %) 
obtained for the HR dataset using original dataset, Proposed GSPSO 
method, GSA, GA, ABC and PSO method processed datasets using 

GBT, RF and SVM

Table 4: False Positive Rate (in %) obtained for the HR dataset using 
original dataset, Proposed GSPSO method, GSA, GA, ABC and PSO 

method processed datasets using GBT, RF and SVM

Feature Selection Methods
False Positive Rate (in %) by 
Classification Techniques

GBT RF SVM

Original dataset 53.61 64.17 65.69

Proposed GSPSO method 5.94 6.41 9.54

GSA 22.42 30.18 33.47

PSO 27.53 33.62 34.47

ABC 38.82 44.51 45.84

GA 41.72 47.34 48.73

using GBT, RF and SVM. From the Table 4 and Figure 3, it is 
clear that the Proposed GSPSO with GBT gives reduced FPR 
than the existing feature selection methods.

Table 5 depicts the Precision (in %) obtained for the HR 
dataset using original dataset, Proposed GSPSO method, 
GSA, GA, ABC and PSO method processed datasets using 
GBT, RF and SVM. Figure 4 gives the graphical representation 
of the Precision (in %) obtained for the HR dataset using 
original dataset, Proposed GSPSO method, GSA, GA, ABC 
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and PSO method processed datasets using GBT, RF and SVM. 
From the Table 5 and Figure 4, it is clear that the Proposed 
GSPSO with GBT gives increased precision than the existing 
feature selection methods.

Table 6 depicts the Specificity (in %) obtained for the HR 
dataset using original dataset, Proposed GSPSO method, 
GSA, GA, ABC and PSO method processed datasets using 
GBT, RF and SVM. Figure 5 gives the graphical representation 
of the Specificity (in %) obtained for the HR dataset using 
original dataset, Proposed GSPSO method, GSA, GA, ABC 
and PSO method processed datasets using GBT, RF and SVM. 
From the Table 6 and Figure 5, it is clear that the Proposed 
GSPSO with GBT gives increased specificity than the existing 
feature selection methods.

Table 7 depicts the Miss Rate (in %) obtained for the HR 
dataset using original dataset, Proposed GSPSO method, GSA, 
GA, ABC and PSO method processed datasets using GBT, RF and 
SVM. Figure 6 gives the graphical representation of the Miss 
Rate (in %) obtained for the HR dataset using original dataset, 
Proposed GSPSO method, GSA, GA, ABC and PSO method 
processed datasets using GBT, RF and SVM. From the Table 7 
and Figure 6, it is clear that the Proposed GSPSO with GBT gives 
reduced miss rate than the existing feature selection methods.

Table 8 depicts the False Discovery Rate (in %) obtained 
for the HR dataset using original dataset, Proposed GSPSO 
method, GSA, GA, ABC and PSO method processed datasets 
using GBT, RF and SVM. Figure 7 gives the graphical 
representation of the False Discovery Rate (in %) obtained 
for the HR dataset using original dataset, Proposed GSPSO 
method, GSA, GA, ABC and PSO method processed datasets 

Figure 3: Graphical representation of the False Positive Rate (in %) 
obtained for the HR dataset using original dataset, Proposed GSPSO 
method, GSA, GA, ABC and PSO method processed datasets using 

GBT, RF and SVM

Table 5: Precision (in %) obtained for the HR dataset using original 
dataset, Proposed GSPSO method, GSA, GA, ABC and PSO method 

processed datasets using GBT, RF and SVM

Feature Selection Methods
Precision (in %) by Classification 
Techniques

GBT RF SVM

Original dataset 66.81 53.92 46.76

Proposed GSPSO method 96.52 90.53 80.66

GSA 79.25 71.38 62.74

PSO 78.72 69.82 67.81

ABC 65.88 62.76 58.97

GA 60.52 61.53 57.85

Figure 4: Graphical representation of the Precision (in %) obtained 
for the HR dataset using original dataset, Proposed GSPSO method, 

GSA, GA, ABC and PSO method processed datasets using GBT, RF 
and SVM

Table 6: Specificity (in %) obtained for the HR dataset using original 
dataset, Proposed GSPSO method, GSA, GA, ABC and PSO method 

processed datasets using GBT, RF and SVM

Feature Selection Methods
Specificity (in %) by Classification 
Techniques

GBT RF SVM

Original dataset 46.39 35.83 34.31

Proposed GSPSO method 94.06 93.59 90.46

GSA 77.58 69.82 66.53

PSO 72.47 66.38 65.53

ABC 61.18 55.49 54.16

GA 58.28 52.66 51.27

Figure 5: Graphical representation of the Specificity (in %) obtained 
for the HR dataset using original dataset, Proposed GSPSO method, 

GSA, GA, ABC and PSO method processed datasets using GBT, RF 
and SVM
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using GBT, RF and SVM. From the Table 8 and Figure 7, it is 
clear that the Proposed GSPSO with GBT gives reduced FDR 
than the existing feature selection methods.

Conclusion
This study presents a novel approach integrating Particle 
Swarm Optimization (PSO) and Glowworm Swarm 
Optimization (GSO) for enhanced HR analytics, focusing 
on achieving high accuracy in employee classification 
and predictive modeling tasks. The combined PSO-GSO 
methodology is designed to optimize feature selection and 
parameter tuning, improving the model’s performance by 
enhancing its predictive and classification accuracy across 
various HR-related datasets. By leveraging the strengths 
of both PSO’s global exploration capabilities and GSO’s 
localized search efficiency, this hybrid approach achieves 
superior convergence and avoids common pitfalls, such as 
local minima, in optimization.

Performance metrics such as accuracy, precision, recall, 
false positive rate (FPR), miss rate, false discovery rate 
(FDR), and true positive rate (TPR) were used to evaluate 
the efficacy of the proposed PSO-GSO model. The results 
indicate that the model provides notable improvements, 
especially in minimizing error rates like the FPR and 
miss rate while maximizing the true positive rate. This 
translates into higher precision and recall, ensuring that the 
model accurately identifies relevant cases (e.g., potential 
employee turnover, performance risks, etc.) and reduces 
the likelihood of false alarms. Additionally, the low false 
discovery rate underscores the reliability of predictions, 
thus enhancing the credibility of the model in real-world 
HR applications.

The PSO-GSO approach’s balanced performance 
across these metrics suggests its utility in HR analytics for 
applications requiring both high accuracy and reliability. 
The model’s effectiveness in maintaining high accuracy, 
precision, and recall while minimizing error rates offers 
significant value for organizations aiming to adopt data-
driven HR strategies. Future work could expand on this 
framework by incorporating additional optimization 
algorithms and exploring hybrid approaches to further 
enhance predictive capabilities and interpretability in HR 
analytics applications. Ultimately, the proposed PSO-GSO 
model demonstrates a robust approach to optimizing HR 
analytics, empowering HR departments with actionable 
insights for strategic workforce management.
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