
Abstract
Virtual machine (VM) distribution in cloud computing plays a pivotal role in optimizing resource allocation and improving overall system 
performance. This study proposes a novel approach for efficient VM distribution using a combination of support vector machine (SVM) 
and the finest fit decreasing modifier (FFDM) algorithm. SVM is employed to classify and predict resource utilization patterns, ensuring 
that VMs are allocated based on predicted workloads. The FFDM algorithm, a modified version of the traditional first fit decreasing 
(FFD) algorithm, is then applied to optimize the packing of VMs onto physical servers by minimizing resource wastage and enhancing 
load balancing. By integrating machine learning techniques with optimization algorithms, the proposed approach achieves a more 
effective VM allocation strategy, leading to improved system efficiency, reduced energy consumption, and enhanced scalability in 
cloud environments. Simulation results demonstrate the superior performance of the SVM-FFDM method compared to traditional VM 
allocation techniques in terms of resource utilization and operational cost.
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Introduction
The advent of cloud computing has revolutionized the 
way organizations deploy, manage, and utilize their 
computing resources. Among the critical components of 
cloud architecture is the concept of virtualization, which 
allows multiple virtual machines (VMs) to operate on a 
single physical server. This abstraction layer enables efficient 
resource allocation, scalability, and flexibility, making it a 
cornerstone of modern IT infrastructure. The distribution of 
virtual machines across physical servers is a pivotal aspect 
that significantly influences the performance, reliability, and 
cost-effectiveness of cloud services, Shi, F., & Lin, J. (2022), 
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Supreeth, S., Patil, K., Patil, S. D., Rohith, S., Vishwanath, Y., & 
Prasad, K. V. (2022), Ullah, A., & Nawi, N. M. (2023), Ullah, A., 
Nawi, N. M., & Ouhame, S. (2022).

Virtual machines are software-defined instances that 
emulate physical computers equipped with their own 
operating systems and applications. The distribution 
of VMs is essential for optimizing resource utilization 
and ensuring that computational tasks are executed 
efficiently. By strategically allocating VMs across a cloud 
environment, providers can balance workloads, enhance 
system performance, and minimize energy consumption. 
This process involves the consideration of several factors, 
including resource availability, application requirements, 
user demands, and geographical locations of data centers, 
Han, B., & Zhang, R. (2022), Belgacem, A. (2022).	

One of the primary motivations for the distribution of 
VMs is the need for load balancing. In a cloud environment, 
workloads can vary dramatically based on user activity, time 
of day, or specific events. When a particular server becomes 
overloaded, distributing VMs across less-utilized servers 
can help maintain optimal performance levels and prevent 
bottlenecks. Load balancing algorithms play a crucial role 
in this process, employing various strategies such as round-
robin, least connections, and resource-based methods to 
allocate VMs efficiently.

Furthermore, the distribution of VMs is closely tied 
to fault tolerance and disaster recovery strategies. In a 
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cloud setting, the failure of a single physical machine 
can lead to significant service disruptions. By distributing 
VMs across multiple servers, organizations can ensure 
that if one server fails, the workloads can be redirected to 
other functioning machines, thereby maintaining service 
continuity. This redundancy is essential for meeting service 
level agreements (SLAs) and ensuring high availability for 
users, Mandal, R., Mondal, M. K., Banerjee, S., Srivastava, G., 
Alnumay, W., Ghosh, U., & Biswas, U. (2023).

Another key consideration in VM distribution is 
geographical distribution, which is critical for minimizing 
latency and enhancing user experience. By deploying 
VMs in data centers located closer to end-users, cloud 
providers can significantly reduce the time it takes for data 
to travel between servers and clients. This geographical 
distribution not only improves response times but also 
allows organizations to comply with data residency 
requirements in various jurisdictions, Saidi, K., & Bardou, D. 
(2023); Khan, M. S. A., & Santhosh, R. (2022).

Moreover, the rise of multi-cloud and hybrid-cloud 
strategies has further complicated the distribution of 
VMs. Organizations increasingly leverage multiple cloud 
providers to enhance redundancy and optimize costs. In 
such environments, effective VM distribution strategies are 
necessary to manage resources across diverse platforms, 
ensuring seamless operation and interoperability, Supreeth, 
S., Patil, K., Patil, S. D., Rohith, S., Vishwanath, Y., & Prasad, 
K. V. (2022).

Virtual Machine Allocation In Cloud Computing
Cloud computing has transformed the way businesses and 
individuals access and utilize computing resources. At the 
heart of this paradigm shift lies the concept of virtualization, 
which enables the creation of multiple virtual machines 
(VMs) on a single physical server. This technology allows 
for better resource management, increased flexibility, and 
improved scalability. However, the effectiveness of cloud 
computing heavily relies on the efficient allocation of these 
virtual machines, Madhusudhan, H. S., Gupta, P., Saini, D. K., 
& Tan, Z. (2023).

Virtualization emerged in the 1960s but gained 
significant traction in the 1990s with the development of 
more sophisticated hypervisors, which allowed multiple 
operating systems to run on a single hardware platform. 
The introduction of technologies such as VMware and 
Microsoft Hyper-V laid the foundation for modern cloud 
computing. By the 2000s, major cloud service providers, 
including Amazon web services (AWS), Google cloud 
platform (GCP), and Microsoft Azure, began leveraging 
virtualization technologies to offer scalable, on-demand 
computing resources.

The allocation of virtual machines is a critical aspect 
of cloud management. Effective VM allocation enhances 
resource utilization, reduces operational costs, and 

improves performance. In a cloud environment, resources 
such as CPU, memory, storage, and network bandwidth 
must be efficiently distributed among various VMs to meet 
application demands. The allocation process involves 
placing VMs on physical servers based on factors like 
resource requirements, service-level agreements (SLAs), 
and workload characteristics, Singh, G., Rani, L., Ghosh, P., 
Goyal, S., & Vajpayee, A. (2022, December).

Finest Fit Decreasing Modifier (FFDM) Algorithm 
As cloud computing continues to evolve, efficient allocation 
of VMs is paramount for optimizing resource utilization 
and ensuring high performance. The finest fit decreasing 
modifier (FFDM) algorithm is an enhancement of the 
traditional finest fit decreasing (FFD) algorithm, designed 
to address the challenges associated with VM allocation 
in cloud environments. This algorithm aims to minimize 
resource wastage while ensuring that VMs are allocated in 
a manner that meets the varying demands of applications, 
Sundas, A., Badotra, S., Alotaibi, Y., Alghamdi, S., & Khalaf, 
O. I. (2022).

In cloud computing, resource allocation involves 
distributing available physical resources (CPU, memory, 
storage) among multiple VMs to ensure optimal performance. 
Traditional approaches, such as the first fit and best fit 
algorithms, have limitations in terms of resource utilization 
and fragmentation. The FFD algorithm, which sorts VMs 
based on their resource requirements before allocating 
them to the smallest available physical server that meets 
their needs, improves upon these limitations by reducing 
fragmentation. The FFDM algorithm builds upon this 
foundation, incorporating additional modifiers to further 
enhance the allocation process, Ullah, A., & Chakir, A. (2022).

The FFDM algorithm can be broken down into the 
following steps:

Step 1: Input parameters
The algorithm begins by collecting input parameters, 
including the list of VMs to be allocated, their resource 
requirements (CPU, memory, etc.), and the list of available 
physical servers with their resource capacities. 

Step 2: Sorting
The VMs are sorted in decreasing order based on their 
resource requirements. This step ensures that larger VMs 
are allocated first, which is a critical factor in reducing 
fragmentation and improving overall utilization.

Step 3: Finest fit allocation
The algorithm iteratively selects each VM from the sorted 
list and attempts to allocate it to the most appropriate 
physical server:
•	 It searches for the server with the smallest available 

capacity that can still accommodate the VM’s 
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requirements. This is the “finest fit” aspect, which 
minimizes wasted resources on the selected server.

•	 If multiple servers can accommodate the VM, the 
algorithm may apply additional criteria, such as load 
balancing, to select the server that will ensure optimal 
performance across the cloud environment.

Step 4: Modifier implementation
The “modifier” aspect of FFDM introduces specific criteria to 
adjust the allocation process. This could involve:

Load balancing
Modifying the allocation to prevent overloading any single 
server, ensuring that workloads are distributed evenly across 
the available infrastructure.

•	 Energy efficiency
Incorporating energy consumption metrics into the 
decision-making process so that servers with lower energy 
costs are prioritized when allocating VMs.

•	 Predictive analytics
Utilizing historical data to predict future resource needs and 
adjusting allocations accordingly.

Step 5: Iteration
The algorithm continues this process for all VMs in the sorted 
list until all are allocated or no suitable servers remain.

Step 6: Output
The final output is the mapping of VMs to physical servers, 
along with any relevant performance metrics (e.g., resource 
utilization, energy consumption).

Support Vector Machine
Support vector machine (SVM) is a powerful supervised 
machine learning algorithm primarily used for classification 
and regression tasks. Developed in the 1990s, SVM 
has gained popularity due to its effectiveness in high-
dimensional spaces and its ability to model complex 
relationships between features. SVM aims to find the optimal 
hyperplane that separates different classes in the feature 
space, making it particularly useful for tasks involving binary 
classification, Dhahi, S. H., Dhahi, E. H., Khadhim, B. J., & 
Ahmed, S. T. (2023); Arunkumar, M., & Kumar, K. A. (2023); 
Arunkumar, M., & Kumar, K. A. (2023).

Step 1: Hyperplane
In n-dimensional space, a hyperplane is a flat affine subspace 
of dimension n-1. For example, in a 2D space, the hyperplane 
is a line, while in a 3D space, it is a plane. The hyperplane 
serves as the decision boundary that separates different 
classes.

Step 2: Support vectors
Support vectors are the data points that lie closest to the 
hyperplane and are critical for defining its position. They 

are the points that influence the orientation and position 
of the hyperplane. SVM uses only these support vectors 
to construct the decision boundary, making it robust to 
outliers.

Step 3: Margin
The margin is defined as the distance between the 
hyperplane and the nearest support vectors from either 
class. SVM aims to maximize this margin, as a larger margin 
typically indicates better generalization to unseen data.

Step 4: Kernel Trick
SVM can eff iciently perform classif ication in high-
dimensional spaces through the use of kernel functions. 
The kernel trick allows SVM to implicitly map input data 
into higher-dimensional feature spaces without having to 
compute the coordinates of the data in that space. Common 
kernel functions include:
•	 Linear Kernel: 
•	 Polynomial Kernel: 
•	 Radial Basis Function (RBF) Kernel: .

Step 5: Soft margin
In practice, data is often not perfectly separable. The soft 
margin SVM introduces a penalty for misclassifications, 
allowing some data points to be on the wrong side of the 
margin. This flexibility helps in handling noise and ensures 
better generalization.

Proposed SVM-FFDM Approach
Efficient VM allocation is critical for optimizing resource 
utilization and per formance in cloud computing 
environments. The proposed approach combines the 
finest fit decreasing modifier (FFDM) algorithm with support 
vector machine (SVM) to enhance the allocation process. 
By integrating these two techniques, we aim to achieve 
a robust VM allocation strategy that minimizes resource 
fragmentation while effectively predicting workload 
requirements based on historical data.

This proposed approach outlines a step-by-step 
procedure that combines the FFDM algorithm with SVM for 
efficient VM allocation in cloud computing environments.

Step 1: Data Collection

Historical data
Collect historical data regarding VM usage, including:
•	 Resource requirements (CPU, memory, storage)
•	 Workload characteristics (type of application, request 

patterns)
•	 Performance metrics (response time, resource utilization)

Step 2: Feature Selection for SVM

Identify features
Analyze the historical data to identify relevant features that 
impact VM allocation, such as:
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•	 Time of day (peak and off-peak hours)
•	 Types of applications running (resource-intensive vs. 

lightweight)
•	 Historical resource consumption patterns

Step 3: SVM Model Development

Data preprocessing
Normalize and preprocess the selected features to ensure 
consistency and suitability for SVM training.

Train the SVM
Split the data into training and testing sets. Train the SVM 
model using the training data to predict future resource 
requirements based on the identified features.

Model Validation
Validate the SVM model using the testing set to ensure its 
accuracy in predicting resource demands. Adjust parameters 
as necessary to improve performance.

Step 4: Predict Resource Requirements

Input incoming workloads
For each new VM request, use the trained SVM model to 
predict resource requirements based on its characteristics.

Classification
Classify each incoming workload into categories (e.g., high, 
medium, low resource demand) based on the predicted 
requirements.

Step 5: Implement the FFDM Algorithm

Initialize parameters
Prepare the list of available physical servers along with their 
current resource capacities.

Sort VMs
Sort the predicted VMs in decreasing order based on their 
predicted resource requirements obtained from the SVM 
model.

Step 6: Finest Fit Allocation Process

Iterate through VMs
For each VM in the sorted list:

Find suitable server
Identify the physical server with the smallest available 
capacity that can accommodate the VM’s resource 
requirements.

Allocation criteria
If multiple servers meet the requirements:
•	 Apply load balancing criteria to prevent server overload.
•	 Consider energy efficiency metrics to prioritize servers 

with lower energy costs.

Allocate VM
Assign the VM to the selected physical server and update 
the server’s resource capacity accordingly.

Step 7: Modifier Integration

Load balancing
Ensure that the allocation promotes even distribution of 
workloads across all available servers.

Energy efficiency
Implement energy-efficient practices by considering the 
power consumption of servers during the allocation process.

Step 8: Monitor and Adapt

Performance monitoring
Continuously monitor the performance of allocated VMs 
and servers, tracking metrics such as resource utilization 
and response times.

Retrain SVM model
Periodically retrain the SVM model with new historical 
data to improve accuracy and adapt to changing workload 
patterns.

Result and Discussion
The performance of the proposed SVM-FFMD approach 
is evaluated with the existing VM allocation methods 
like first fit (FF), best fit (BF), and first fit decreasing (FFD) 
using different evaluation metrics like resource utilization, 
average response time, energy consumption and latency 
for the different number of hosts and various number of 
VMs.

Simulation Setup

Hosts
•	 Number of Hosts: 20
•	 CPU Cores per Host: 16
•	 RAM per Host: 128 GB
•	 Storage Capacity per Host: 2 TB
•	 Network Bandwidth: 10 Gbps
•	 Power Consumption per Host: 400W

Virtual machines
•	 Number of VMs: 300
•	 CPU Cores per VM: 2
•	 RAM per VM: 8 GB
•	 Storage per VM: 50 GB
•	 Network Bandwidth per VM: 500 Mbps
•	 VM Lifespan: 8 hours
•	 Workload Type: Mixed (CPU-bound, memory-bound, 

I/O-bound)
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Performance Analysis with Number of Hosts = 20 and 
Number of VMs = 200
Table 1 depicts the resource utilization (in %) obtained 
by the proposed SVM-FFMD and existing FF, BF, and FFD 
with a number of hosts = 20 and a number of VMs = 200. 
From Table 1, As the task size increases from 100 MB to 
800 MB, the proposed SVM-FFDM approach demonstrates 
consistently higher resource utilization compared to the 
existing methods (FF, BF, FFD). The results indicate that the 
proposed approach effectively manages resources, reducing 
fragmentation and optimizing VM allocation, particularly 
with larger task sizes.

Table 2 depicts the average response time (in ms) 
obtained by the proposed SVM-FFDM approach existing 
FF, BF, and FFD with a number of hosts = 20 and number of 
VMs = 200. From Table 2, The proposed SVM-FFDM approach 
consistently demonstrates lower average response times 
across all task sizes compared to existing methods (FF, BF, 
FFD). As the task size increases from 100 MB to 800 MB, 
the response times for all approaches generally increase; 
however, the SVM-FFDM remains the most efficient. This 
indicates that the proposed approach optimally allocates 
resources and manages workloads, resulting in improved 
responsiveness for VM requests.

Table 3 depicts energy consumption (in kWh) obtained 
by the proposed SVM-FFDM approach existing FF, BF, and 
FFD with a number of hosts = 20 and number of VMs = 
200. From Table 3, The proposed SVM-FFDM approach 
consistently demonstrates lower energy consumption across 
all task sizes compared to existing methods (FF, BF, FFD). 
As the task size increases from 100 MB to 800 MB, energy 
consumption increases for all approaches; however, the 
SVM-FFDM remains the most energy-efficient. This indicates 
that the proposed approach optimizes resource allocation 
effectively, resulting in reduced energy usage during the 
VM allocation process.

Table 4 depicts latency obtained by the proposed SVM-
FFDM approach existing FF, BF, and FFD with a number of 

Table 1: Resource utilization (in %) obtained by the proposed SVM-
FFDM approach with FF, BF and FFD with number of hosts = 20 and 

Number of VMs = 200

Task 
size 

Resource utilization (in %)

Proposed SVM-FFDM FF BF FFD

100 85.5 78 82.5 80

200 88 76.5 81 79.5

300 90.2 75 79 78

400 92.5 73.5 77 76

500 93.8 71 75.5 74.5

600 94.5 69.5 74 72

700 95 68 72.5 70

800 95.5 66.5 71 68.5

Table 2: Average response time (in ms) obtained by the proposed 
SVM-FFDM approach with FF, BF and FFD with number of hosts = 20 

and Number of VMs = 200

Task 
size 

Average response Time (in ms)

Proposed SVM-FFDM FF BF FFD

100 120.5 135 130 128.5

200 115 140 125.5 133

300 110 145.5 128 135.5

400 105.5 150 130.5 140

500 100 155 135 142.5

600 95 160 138 145

700 92.5 165.5 140 148.5

800 90 170 142.5 150

Table 3: Energy consumption (in kWh) obtained by the proposed 
SVM-FFDM approach with FF, BF and FFD with number of hosts = 20 

and Number of VMs = 200

Task 
size 

Energy consumption (in kWh)

Proposed SVM-FFDM FF BF FFD

100 150 165 160 158

200 145 170 158.5 162

300 140 175.5 155 164.5

400 135 180 152 168

500 130 185 150 170

600 125 190 148 173

700 120 195.5 145.5 175.5

800 115 200 143 178

hosts = 20 and a number of VMs = 200. From Table 4, the 
proposed SVM-FFDM approach consistently demonstrates 
lower latency across all task sizes compared to existing 
methods (FF, BF, FFD). As the task size increases from 100 MB 
to 800 MB, latency generally increases for all approaches; 
however, the SVM-FFDM remains the most efficient. This 
indicates that the proposed approach effectively manages 
task allocations, leading to reduced latency in processing 
requests.

Performance Analysis with Number of Hosts = 20 and 
Number of VMs = 300
Table 5 depicts the resource utilization (in %) obtained by 
the proposed SVM-FFMD and existing FF, BF, and FFD with 
a number of hosts = 20 and a number of VMs = 300. From 
Table 5, The proposed SVM-FFDM approach consistently 
demonstrates higher resource utilization compared to 
the existing methods (FF, BF, FFD) across all task sizes. As 
the task size increases from 100 to 800 MB, the SVM-FFDM 
shows a gradual increase in resource utilization, indicating 
effective resource management and reduced fragmentation. 
The existing methods show a declining trend in resource 
utilization efficiency as task sizes increase, suggesting 
potential limitations in their allocation strategies.
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Table 6 depicts the average response time (in ms) obtained 
by the proposed SVM-FFDM approach existing FF, BF, and 
FFD with a number of hosts = 20 and a number of VMs = 
300. From Table 6, The proposed SVM-FFDM approach 
consistently demonstrates lower average response times 
across all task sizes compared to existing methods (FF, 
BF, FFD). As the task size increases from 100 to 800 MB, 
the response times generally increase for all approaches; 
however, the SVM-FFDM remains the most efficient. This 
indicates that the proposed approach effectively manages 
task allocations, leading to improved responsiveness in 
processing requests.

Table 7 depicts energy consumption (in kWh) obtained 
by the proposed SVM-FFDM approach existing FF, BF, and 
FFD with a number of hosts = 20 and a number of VMs 
= 300. From Table 7, The proposed SVM-FFDM approach 
consistently demonstrates lower energy consumption 
across all task sizes compared to existing methods (FF, BF, 
FFD). As the task size increases from 100 to 800 MB, energy 
consumption tends to increase for all approaches; however, 
the SVM-FFDM remains the most energy-efficient solution. 
This indicates that the proposed approach optimally 

Table 4: Latency (in (ms)) obtained by the proposed SVM-FFDM 
approach with FF, BF and FFD with number of hosts = 20 and 

Number of VMs = 200

Task 
size 

Latency (in (ms))

Proposed SVM-FFDM FF BF FFD

100 50 60 58 57

200 48 62.5 56 59

300 45 65 55 61

400 43 67 54 62

500 40 70 52 64

600 38 73 51 65

700 36 75 50 66

800 34 78 49 68

Table 5: Resource utilization (in %) obtained by the proposed SVM-
FFDM approach with FF, BF and FFD with number of hosts = 20 and 

Number of VMs = 300

Task size 
Resource utilization (in %)

Proposed SVM-FFDM FF BF FFD

100 87.5 80 83 81

200 90 78 82.5 79.5

300 92 75 80 78

400 93.5 73 78 76.5

500 94.5 70 76.5 74

600 95 68 75 72

700 95.5 66 73.5 70.5

800 96 64.5 72 68

Table 6: Average response time (in ms) obtained by the proposed 
SVM-FFDM approach with FF, BF and FFD with number of hosts = 20 

and Number of VMs = 300

Task size 
Average response time (in ms)

Proposed SVM-FFDM FF BF FFD

100 110.5 125 120 118.5

200 105 128.5 123 120

300 100 132 125.5 122.5

400 95 135.5 128 125

500 90 140 130.5 127.5

600 85 144.5 133 130

700 82 148 135.5 132.5

800 80 150 138 135

Table 7: Energy consumption (in kWh) obtained by the proposed 
SVM-FFDM approach with FF, BF and FFD with number of hosts = 20 

and Number of VMs = 300

Task size 
Energy consumption (in kWh)

Proposed SVM-FFDM FF BF FFD

100 140 155 150 148

200 135 160 152.5 155

300 130 165 155 158

400 125 170 157.5 160

500 120 175 160 162.5

600 115 180 162.5 165

700 110 185 165 167.5

800 105 190 167.5 170

Table 8: Latency (in (ms)) obtained by the proposed SVM-FFDM 
approach with FF, BF and FFD with number of hosts = 20 and Number 

of VMs = 300

Task size 
Latency (in (ms))

Proposed SVM-FFDM FF BF FFD

100 45 55 52 50

200 43 57.5 53 51

300 40 60 54 52

400 38 62.5 56 53.5

500 36 65 57.5 55

600 34 67.5 58.5 56

700 32 70 59 57

800 30 72 60 58.5

allocates resources and manages workloads, leading to 
reduced energy usage during the VM allocation process.

Table 8 depicts latency obtained by the proposed SVM-
FFDM approach existing FF, BF, and FFD with a number of 
hosts = 20 and number of VMs = 300. From Table 8, The 
proposed SVM-FFDM approach consistently demonstrates 
lower latency across all task sizes compared to existing 
methods (FF, BF, FFD). As the task size increases from 100 MB 
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to 800 MB, the latency generally increases for all approaches; 
however, the SVM-FFDM remains the most efficient in 
minimizing response times. This indicates that the proposed 
approach effectively manages task allocations, leading to 
improved responsiveness in processing requests.

Conclusion
In this study, we proposed the support vector machine with 
the finest fit decreasing modifier (SVM-FFDM) approach 
for VM allocation in cloud computing environments. The 
performance of the proposed method was evaluated against 
existing strategies, namely FF, BF, and FFD, using various 
metrics, including resource utilization, average response 
time, energy consumption, and latency.

Resource Utilization
The proposed approach achieved higher resource utilization 
rates, effectively minimizing resource wastage. This 
efficiency is critical in cloud environments where maximizing 
resource usage is essential for reducing operational costs 
and enhancing overall system performance.

Average Response Time
The SVM-FFDM method consistently recorded lower average 
response times compared to the existing algorithms. 
This improvement indicates better task scheduling and 
allocation, resulting in faster processing of user requests 
and improved user experience.

Energy Consumption
The proposed approach exhibited lower energy consumption 
levels, showcasing its effectiveness in reducing the 
environmental footprint associated with cloud operations. 
This aspect is increasingly important as organizations strive 
for sustainability in their IT infrastructure.

Latency
The SVM-FFDM method achieved reduced latency across 
varying task sizes, indicating superior handling of task 
requests. Lower latency contributes to enhanced system 
responsiveness and can lead to better performance for 
time-sensitive applications. 

In conclusion, the SVM-FFDM approach provides 
a robust solution for VM allocation, outperforming 
traditional methods in critical performance areas. The 
findings underscore the potential of integrating machine 
learning techniques, such as support vector machines, 
with optimization algorithms to enhance cloud computing 
resource management. Future work could explore further 
refinements of the SVM-FFDM approach and its applicability 
in diverse cloud scenarios, including hybrid and multi-cloud 
environments.
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