
Abstract
Virtual machine (VM) distribution in cloud computing plays a pivotal role in optimizing resource allocation and improving overall system
performance. This study proposes a novel approach for efficient VM distribution using a combination of support vector machine (SVM)
and the finest fit decreasing modifier (FFDM) algorithm. SVM is employed to classify and predict resource utilization patterns, ensuring
that VMs are allocated based on predicted workloads. The FFDM algorithm, a modified version of the traditional first fit decreasing
(FFD) algorithm, is then applied to optimize the packing of VMs onto physical servers by minimizing resource wastage and enhancing
load balancing. By integrating machine learning techniques with optimization algorithms, the proposed approach achieves a more
effective VM allocation strategy, leading to improved system efficiency, reduced energy consumption, and enhanced scalability in
cloud environments. Simulation results demonstrate the superior performance of the SVM-FFDM method compared to traditional VM
allocation techniques in terms of resource utilization and operational cost.
Keywords: Cloud computing, Virtual machine, Support vector machine, Finest fit decreasing modifier.

Distribution of virtual machines with SVM-FFDM approach in
cloud computing
D. Jayadurga*, A. Chandrabose

RESEARCH ARTICLE

© The Scientific Temper. 2024
Received: 10/09/2024				 Accepted: 22/09/2024			 Published: 16/10/2024

Edayathangudy G.S Pillay Arts and Science College (Autonomous)
(Affiliated to Bharathidasan University, Tiruchirappalli),
Nagapattinam, Tamil Nadu, India.
*Corresponding Author: D. Jayadurga, Edayathangudy G.S Pillay
Arts and Science College (Autonomous) (Affiliated to Bharathidasan
University, Tiruchirappalli), Nagapattinam, Tamil Nadu, India, E-Mail:
jayaddd23@gmail.com
How to cite this article: Jayadurga, D., Chandrabose, A. (2024).
Distribution of virtual machines with SVM-FFDM approach in
cloud computing. The Scientific Temper, 15(spl):107-113.
Doi: 10.58414/SCIENTIFICTEMPER.2024.15.spl.13
Source of support: Nil

Conflict of interest: None.

Introduction
The advent of cloud computing has revolutionized the
way organizations deploy, manage, and utilize their
computing resources. Among the critical components of
cloud architecture is the concept of virtualization, which
allows multiple virtual machines (VMs) to operate on a
single physical server. This abstraction layer enables efficient
resource allocation, scalability, and flexibility, making it a
cornerstone of modern IT infrastructure. The distribution of
virtual machines across physical servers is a pivotal aspect
that significantly influences the performance, reliability, and
cost-effectiveness of cloud services, Shi, F., & Lin, J. (2022),

The Scientific Temper (2024) Vol. 15 (spl): 107-113	 E-ISSN: 2231-6396, ISSN: 0976-8653

Doi: 10.58414/SCIENTIFICTEMPER.2024.15.spl.13	 https://scientifictemper.com/

Supreeth, S., Patil, K., Patil, S. D., Rohith, S., Vishwanath, Y., &
Prasad, K. V. (2022), Ullah, A., & Nawi, N. M. (2023), Ullah, A.,
Nawi, N. M., & Ouhame, S. (2022).

Virtual machines are software-defined instances that
emulate physical computers equipped with their own
operating systems and applications. The distribution
of VMs is essential for optimizing resource utilization
and ensuring that computational tasks are executed
efficiently. By strategically allocating VMs across a cloud
environment, providers can balance workloads, enhance
system performance, and minimize energy consumption.
This process involves the consideration of several factors,
including resource availability, application requirements,
user demands, and geographical locations of data centers,
Han, B., & Zhang, R. (2022), Belgacem, A. (2022).	

One of the primary motivations for the distribution of
VMs is the need for load balancing. In a cloud environment,
workloads can vary dramatically based on user activity, time
of day, or specific events. When a particular server becomes
overloaded, distributing VMs across less-utilized servers
can help maintain optimal performance levels and prevent
bottlenecks. Load balancing algorithms play a crucial role
in this process, employing various strategies such as round-
robin, least connections, and resource-based methods to
allocate VMs efficiently.

Furthermore, the distribution of VMs is closely tied
to fault tolerance and disaster recovery strategies. In a

108	 D. Jayadurga et al.	 The Scientific Temper. Vol. 15, special issue

cloud setting, the failure of a single physical machine
can lead to significant service disruptions. By distributing
VMs across multiple servers, organizations can ensure
that if one server fails, the workloads can be redirected to
other functioning machines, thereby maintaining service
continuity. This redundancy is essential for meeting service
level agreements (SLAs) and ensuring high availability for
users, Mandal, R., Mondal, M. K., Banerjee, S., Srivastava, G.,
Alnumay, W., Ghosh, U., & Biswas, U. (2023).

Another key consideration in VM distribution is
geographical distribution, which is critical for minimizing
latency and enhancing user experience. By deploying
VMs in data centers located closer to end-users, cloud
providers can significantly reduce the time it takes for data
to travel between servers and clients. This geographical
distribution not only improves response times but also
allows organizations to comply with data residency
requirements in various jurisdictions, Saidi, K., & Bardou, D.
(2023); Khan, M. S. A., & Santhosh, R. (2022).

Moreover, the rise of multi-cloud and hybrid-cloud
strategies has further complicated the distribution of
VMs. Organizations increasingly leverage multiple cloud
providers to enhance redundancy and optimize costs. In
such environments, effective VM distribution strategies are
necessary to manage resources across diverse platforms,
ensuring seamless operation and interoperability, Supreeth,
S., Patil, K., Patil, S. D., Rohith, S., Vishwanath, Y., & Prasad,
K. V. (2022).

Virtual Machine Allocation In Cloud Computing
Cloud computing has transformed the way businesses and
individuals access and utilize computing resources. At the
heart of this paradigm shift lies the concept of virtualization,
which enables the creation of multiple virtual machines
(VMs) on a single physical server. This technology allows
for better resource management, increased flexibility, and
improved scalability. However, the effectiveness of cloud
computing heavily relies on the efficient allocation of these
virtual machines, Madhusudhan, H. S., Gupta, P., Saini, D. K.,
& Tan, Z. (2023).

Virtualization emerged in the 1960s but gained
significant traction in the 1990s with the development of
more sophisticated hypervisors, which allowed multiple
operating systems to run on a single hardware platform.
The introduction of technologies such as VMware and
Microsoft Hyper-V laid the foundation for modern cloud
computing. By the 2000s, major cloud service providers,
including Amazon web services (AWS), Google cloud
platform (GCP), and Microsoft Azure, began leveraging
virtualization technologies to offer scalable, on-demand
computing resources.

The allocation of virtual machines is a critical aspect
of cloud management. Effective VM allocation enhances
resource utilization, reduces operational costs, and

improves performance. In a cloud environment, resources
such as CPU, memory, storage, and network bandwidth
must be efficiently distributed among various VMs to meet
application demands. The allocation process involves
placing VMs on physical servers based on factors like
resource requirements, service-level agreements (SLAs),
and workload characteristics, Singh, G., Rani, L., Ghosh, P.,
Goyal, S., & Vajpayee, A. (2022, December).

Finest Fit Decreasing Modifier (FFDM) Algorithm
As cloud computing continues to evolve, efficient allocation
of VMs is paramount for optimizing resource utilization
and ensuring high performance. The finest fit decreasing
modifier (FFDM) algorithm is an enhancement of the
traditional finest fit decreasing (FFD) algorithm, designed
to address the challenges associated with VM allocation
in cloud environments. This algorithm aims to minimize
resource wastage while ensuring that VMs are allocated in
a manner that meets the varying demands of applications,
Sundas, A., Badotra, S., Alotaibi, Y., Alghamdi, S., & Khalaf,
O. I. (2022).

In cloud computing, resource allocation involves
distributing available physical resources (CPU, memory,
storage) among multiple VMs to ensure optimal performance.
Traditional approaches, such as the first fit and best fit
algorithms, have limitations in terms of resource utilization
and fragmentation. The FFD algorithm, which sorts VMs
based on their resource requirements before allocating
them to the smallest available physical server that meets
their needs, improves upon these limitations by reducing
fragmentation. The FFDM algorithm builds upon this
foundation, incorporating additional modifiers to further
enhance the allocation process, Ullah, A., & Chakir, A. (2022).

The FFDM algorithm can be broken down into the
following steps:

Step 1: Input parameters
The algorithm begins by collecting input parameters,
including the list of VMs to be allocated, their resource
requirements (CPU, memory, etc.), and the list of available
physical servers with their resource capacities.

Step 2: Sorting
The VMs are sorted in decreasing order based on their
resource requirements. This step ensures that larger VMs
are allocated first, which is a critical factor in reducing
fragmentation and improving overall utilization.

Step 3: Finest fit allocation
The algorithm iteratively selects each VM from the sorted
list and attempts to allocate it to the most appropriate
physical server:
•	 It searches for the server with the smallest available

capacity that can still accommodate the VM’s

	 An Approach for Virtual Machine Distribution	 109

requirements. This is the “finest fit” aspect, which
minimizes wasted resources on the selected server.

•	 If multiple servers can accommodate the VM, the
algorithm may apply additional criteria, such as load
balancing, to select the server that will ensure optimal
performance across the cloud environment.

Step 4: Modifier implementation
The “modifier” aspect of FFDM introduces specific criteria to
adjust the allocation process. This could involve:

Load balancing
Modifying the allocation to prevent overloading any single
server, ensuring that workloads are distributed evenly across
the available infrastructure.

•	 Energy efficiency
Incorporating energy consumption metrics into the
decision-making process so that servers with lower energy
costs are prioritized when allocating VMs.

•	 Predictive analytics
Utilizing historical data to predict future resource needs and
adjusting allocations accordingly.

Step 5: Iteration
The algorithm continues this process for all VMs in the sorted
list until all are allocated or no suitable servers remain.

Step 6: Output
The final output is the mapping of VMs to physical servers,
along with any relevant performance metrics (e.g., resource
utilization, energy consumption).

Support Vector Machine
Support vector machine (SVM) is a powerful supervised
machine learning algorithm primarily used for classification
and regression tasks. Developed in the 1990s, SVM
has gained popularity due to its effectiveness in high-
dimensional spaces and its ability to model complex
relationships between features. SVM aims to find the optimal
hyperplane that separates different classes in the feature
space, making it particularly useful for tasks involving binary
classification, Dhahi, S. H., Dhahi, E. H., Khadhim, B. J., &
Ahmed, S. T. (2023); Arunkumar, M., & Kumar, K. A. (2023);
Arunkumar, M., & Kumar, K. A. (2023).

Step 1: Hyperplane
In n-dimensional space, a hyperplane is a flat affine subspace
of dimension n-1. For example, in a 2D space, the hyperplane
is a line, while in a 3D space, it is a plane. The hyperplane
serves as the decision boundary that separates different
classes.

Step 2: Support vectors
Support vectors are the data points that lie closest to the
hyperplane and are critical for defining its position. They

are the points that influence the orientation and position
of the hyperplane. SVM uses only these support vectors
to construct the decision boundary, making it robust to
outliers.

Step 3: Margin
The margin is defined as the distance between the
hyperplane and the nearest support vectors from either
class. SVM aims to maximize this margin, as a larger margin
typically indicates better generalization to unseen data.

Step 4: Kernel Trick
SVM can eff iciently perform classif ication in high-
dimensional spaces through the use of kernel functions.
The kernel trick allows SVM to implicitly map input data
into higher-dimensional feature spaces without having to
compute the coordinates of the data in that space. Common
kernel functions include:
•	 Linear Kernel:
•	 Polynomial Kernel:
•	 Radial Basis Function (RBF) Kernel: .

Step 5: Soft margin
In practice, data is often not perfectly separable. The soft
margin SVM introduces a penalty for misclassifications,
allowing some data points to be on the wrong side of the
margin. This flexibility helps in handling noise and ensures
better generalization.

Proposed SVM-FFDM Approach
Efficient VM allocation is critical for optimizing resource
utilization and per formance in cloud computing
environments. The proposed approach combines the
finest fit decreasing modifier (FFDM) algorithm with support
vector machine (SVM) to enhance the allocation process.
By integrating these two techniques, we aim to achieve
a robust VM allocation strategy that minimizes resource
fragmentation while effectively predicting workload
requirements based on historical data.

This proposed approach outlines a step-by-step
procedure that combines the FFDM algorithm with SVM for
efficient VM allocation in cloud computing environments.

Step 1: Data Collection

Historical data
Collect historical data regarding VM usage, including:
•	 Resource requirements (CPU, memory, storage)
•	 Workload characteristics (type of application, request

patterns)
•	 Performance metrics (response time, resource utilization)

Step 2: Feature Selection for SVM

Identify features
Analyze the historical data to identify relevant features that
impact VM allocation, such as:

110	 D. Jayadurga et al.	 The Scientific Temper. Vol. 15, special issue

•	 Time of day (peak and off-peak hours)
•	 Types of applications running (resource-intensive vs.

lightweight)
•	 Historical resource consumption patterns

Step 3: SVM Model Development

Data preprocessing
Normalize and preprocess the selected features to ensure
consistency and suitability for SVM training.

Train the SVM
Split the data into training and testing sets. Train the SVM
model using the training data to predict future resource
requirements based on the identified features.

Model Validation
Validate the SVM model using the testing set to ensure its
accuracy in predicting resource demands. Adjust parameters
as necessary to improve performance.

Step 4: Predict Resource Requirements

Input incoming workloads
For each new VM request, use the trained SVM model to
predict resource requirements based on its characteristics.

Classification
Classify each incoming workload into categories (e.g., high,
medium, low resource demand) based on the predicted
requirements.

Step 5: Implement the FFDM Algorithm

Initialize parameters
Prepare the list of available physical servers along with their
current resource capacities.

Sort VMs
Sort the predicted VMs in decreasing order based on their
predicted resource requirements obtained from the SVM
model.

Step 6: Finest Fit Allocation Process

Iterate through VMs
For each VM in the sorted list:

Find suitable server
Identify the physical server with the smallest available
capacity that can accommodate the VM’s resource
requirements.

Allocation criteria
If multiple servers meet the requirements:
•	 Apply load balancing criteria to prevent server overload.
•	 Consider energy efficiency metrics to prioritize servers

with lower energy costs.

Allocate VM
Assign the VM to the selected physical server and update
the server’s resource capacity accordingly.

Step 7: Modifier Integration

Load balancing
Ensure that the allocation promotes even distribution of
workloads across all available servers.

Energy efficiency
Implement energy-efficient practices by considering the
power consumption of servers during the allocation process.

Step 8: Monitor and Adapt

Performance monitoring
Continuously monitor the performance of allocated VMs
and servers, tracking metrics such as resource utilization
and response times.

Retrain SVM model
Periodically retrain the SVM model with new historical
data to improve accuracy and adapt to changing workload
patterns.

Result and Discussion
The performance of the proposed SVM-FFMD approach
is evaluated with the existing VM allocation methods
like first fit (FF), best fit (BF), and first fit decreasing (FFD)
using different evaluation metrics like resource utilization,
average response time, energy consumption and latency
for the different number of hosts and various number of
VMs.

Simulation Setup

Hosts
•	 Number of Hosts: 20
•	 CPU Cores per Host: 16
•	 RAM per Host: 128 GB
•	 Storage Capacity per Host: 2 TB
•	 Network Bandwidth: 10 Gbps
•	 Power Consumption per Host: 400W

Virtual machines
•	 Number of VMs: 300
•	 CPU Cores per VM: 2
•	 RAM per VM: 8 GB
•	 Storage per VM: 50 GB
•	 Network Bandwidth per VM: 500 Mbps
•	 VM Lifespan: 8 hours
•	 Workload Type: Mixed (CPU-bound, memory-bound,

I/O-bound)

	 An Approach for Virtual Machine Distribution	 111

Performance Analysis with Number of Hosts = 20 and
Number of VMs = 200
Table 1 depicts the resource utilization (in %) obtained
by the proposed SVM-FFMD and existing FF, BF, and FFD
with a number of hosts = 20 and a number of VMs = 200.
From Table 1, As the task size increases from 100 MB to
800 MB, the proposed SVM-FFDM approach demonstrates
consistently higher resource utilization compared to the
existing methods (FF, BF, FFD). The results indicate that the
proposed approach effectively manages resources, reducing
fragmentation and optimizing VM allocation, particularly
with larger task sizes.

Table 2 depicts the average response time (in ms)
obtained by the proposed SVM-FFDM approach existing
FF, BF, and FFD with a number of hosts = 20 and number of
VMs = 200. From Table 2, The proposed SVM-FFDM approach
consistently demonstrates lower average response times
across all task sizes compared to existing methods (FF, BF,
FFD). As the task size increases from 100 MB to 800 MB,
the response times for all approaches generally increase;
however, the SVM-FFDM remains the most efficient. This
indicates that the proposed approach optimally allocates
resources and manages workloads, resulting in improved
responsiveness for VM requests.

Table 3 depicts energy consumption (in kWh) obtained
by the proposed SVM-FFDM approach existing FF, BF, and
FFD with a number of hosts = 20 and number of VMs =
200. From Table 3, The proposed SVM-FFDM approach
consistently demonstrates lower energy consumption across
all task sizes compared to existing methods (FF, BF, FFD).
As the task size increases from 100 MB to 800 MB, energy
consumption increases for all approaches; however, the
SVM-FFDM remains the most energy-efficient. This indicates
that the proposed approach optimizes resource allocation
effectively, resulting in reduced energy usage during the
VM allocation process.

Table 4 depicts latency obtained by the proposed SVM-
FFDM approach existing FF, BF, and FFD with a number of

Table 1: Resource utilization (in %) obtained by the proposed SVM-
FFDM approach with FF, BF and FFD with number of hosts = 20 and

Number of VMs = 200

Task
size

Resource utilization (in %)

Proposed SVM-FFDM FF BF FFD

100 85.5 78 82.5 80

200 88 76.5 81 79.5

300 90.2 75 79 78

400 92.5 73.5 77 76

500 93.8 71 75.5 74.5

600 94.5 69.5 74 72

700 95 68 72.5 70

800 95.5 66.5 71 68.5

Table 2: Average response time (in ms) obtained by the proposed
SVM-FFDM approach with FF, BF and FFD with number of hosts = 20

and Number of VMs = 200

Task
size

Average response Time (in ms)

Proposed SVM-FFDM FF BF FFD

100 120.5 135 130 128.5

200 115 140 125.5 133

300 110 145.5 128 135.5

400 105.5 150 130.5 140

500 100 155 135 142.5

600 95 160 138 145

700 92.5 165.5 140 148.5

800 90 170 142.5 150

Table 3: Energy consumption (in kWh) obtained by the proposed
SVM-FFDM approach with FF, BF and FFD with number of hosts = 20

and Number of VMs = 200

Task
size

Energy consumption (in kWh)

Proposed SVM-FFDM FF BF FFD

100 150 165 160 158

200 145 170 158.5 162

300 140 175.5 155 164.5

400 135 180 152 168

500 130 185 150 170

600 125 190 148 173

700 120 195.5 145.5 175.5

800 115 200 143 178

hosts = 20 and a number of VMs = 200. From Table 4, the
proposed SVM-FFDM approach consistently demonstrates
lower latency across all task sizes compared to existing
methods (FF, BF, FFD). As the task size increases from 100 MB
to 800 MB, latency generally increases for all approaches;
however, the SVM-FFDM remains the most efficient. This
indicates that the proposed approach effectively manages
task allocations, leading to reduced latency in processing
requests.

Performance Analysis with Number of Hosts = 20 and
Number of VMs = 300
Table 5 depicts the resource utilization (in %) obtained by
the proposed SVM-FFMD and existing FF, BF, and FFD with
a number of hosts = 20 and a number of VMs = 300. From
Table 5, The proposed SVM-FFDM approach consistently
demonstrates higher resource utilization compared to
the existing methods (FF, BF, FFD) across all task sizes. As
the task size increases from 100 to 800 MB, the SVM-FFDM
shows a gradual increase in resource utilization, indicating
effective resource management and reduced fragmentation.
The existing methods show a declining trend in resource
utilization efficiency as task sizes increase, suggesting
potential limitations in their allocation strategies.

112	 D. Jayadurga et al.	 The Scientific Temper. Vol. 15, special issue

Table 6 depicts the average response time (in ms) obtained
by the proposed SVM-FFDM approach existing FF, BF, and
FFD with a number of hosts = 20 and a number of VMs =
300. From Table 6, The proposed SVM-FFDM approach
consistently demonstrates lower average response times
across all task sizes compared to existing methods (FF,
BF, FFD). As the task size increases from 100 to 800 MB,
the response times generally increase for all approaches;
however, the SVM-FFDM remains the most efficient. This
indicates that the proposed approach effectively manages
task allocations, leading to improved responsiveness in
processing requests.

Table 7 depicts energy consumption (in kWh) obtained
by the proposed SVM-FFDM approach existing FF, BF, and
FFD with a number of hosts = 20 and a number of VMs
= 300. From Table 7, The proposed SVM-FFDM approach
consistently demonstrates lower energy consumption
across all task sizes compared to existing methods (FF, BF,
FFD). As the task size increases from 100 to 800 MB, energy
consumption tends to increase for all approaches; however,
the SVM-FFDM remains the most energy-efficient solution.
This indicates that the proposed approach optimally

Table 4: Latency (in (ms)) obtained by the proposed SVM-FFDM
approach with FF, BF and FFD with number of hosts = 20 and

Number of VMs = 200

Task
size

Latency (in (ms))

Proposed SVM-FFDM FF BF FFD

100 50 60 58 57

200 48 62.5 56 59

300 45 65 55 61

400 43 67 54 62

500 40 70 52 64

600 38 73 51 65

700 36 75 50 66

800 34 78 49 68

Table 5: Resource utilization (in %) obtained by the proposed SVM-
FFDM approach with FF, BF and FFD with number of hosts = 20 and

Number of VMs = 300

Task size
Resource utilization (in %)

Proposed SVM-FFDM FF BF FFD

100 87.5 80 83 81

200 90 78 82.5 79.5

300 92 75 80 78

400 93.5 73 78 76.5

500 94.5 70 76.5 74

600 95 68 75 72

700 95.5 66 73.5 70.5

800 96 64.5 72 68

Table 6: Average response time (in ms) obtained by the proposed
SVM-FFDM approach with FF, BF and FFD with number of hosts = 20

and Number of VMs = 300

Task size
Average response time (in ms)

Proposed SVM-FFDM FF BF FFD

100 110.5 125 120 118.5

200 105 128.5 123 120

300 100 132 125.5 122.5

400 95 135.5 128 125

500 90 140 130.5 127.5

600 85 144.5 133 130

700 82 148 135.5 132.5

800 80 150 138 135

Table 7: Energy consumption (in kWh) obtained by the proposed
SVM-FFDM approach with FF, BF and FFD with number of hosts = 20

and Number of VMs = 300

Task size
Energy consumption (in kWh)

Proposed SVM-FFDM FF BF FFD

100 140 155 150 148

200 135 160 152.5 155

300 130 165 155 158

400 125 170 157.5 160

500 120 175 160 162.5

600 115 180 162.5 165

700 110 185 165 167.5

800 105 190 167.5 170

Table 8: Latency (in (ms)) obtained by the proposed SVM-FFDM
approach with FF, BF and FFD with number of hosts = 20 and Number

of VMs = 300

Task size
Latency (in (ms))

Proposed SVM-FFDM FF BF FFD

100 45 55 52 50

200 43 57.5 53 51

300 40 60 54 52

400 38 62.5 56 53.5

500 36 65 57.5 55

600 34 67.5 58.5 56

700 32 70 59 57

800 30 72 60 58.5

allocates resources and manages workloads, leading to
reduced energy usage during the VM allocation process.

Table 8 depicts latency obtained by the proposed SVM-
FFDM approach existing FF, BF, and FFD with a number of
hosts = 20 and number of VMs = 300. From Table 8, The
proposed SVM-FFDM approach consistently demonstrates
lower latency across all task sizes compared to existing
methods (FF, BF, FFD). As the task size increases from 100 MB

	 An Approach for Virtual Machine Distribution	 113

based support vector machine for malicious attack detection
in cloud environment. International Journal of Information
Technology, 15(3), 1653-1660.

Belgacem, A. (2022). Dynamic resource allocation in cloud
computing: analysis and taxonomies. Computing, 104(3),
681-710.

Dhahi, S. H., Dhahi, E. H., Khadhim, B. J., & Ahmed, S. T. (2023). Using
support vector machine regression to reduce cloud security
risks in developing countries. Indonesian Journal of Electrical
Engineering and Computer Science, 30(2), 1159-1166.

Han, B., & Zhang, R. (2022). Virtual Machine Allocation Strategy
Based on Statistical Machine Learning. Mathematical
Problems in Engineering, 2022(1), 8190296.

Khan, M. S. A., & Santhosh, R. (2022). Hybrid optimization algorithm
for vm migration in cloud computing. Computers and
Electrical Engineering, 102, 108152.

Madhusudhan, H. S., Gupta, P., Saini, D. K., & Tan, Z. (2023).
Dynamic virtual machine allocation in cloud computing
using elephant herd optimization scheme. Journal of Circuits,
Systems and Computers, 32(11), 2350188.

Mandal, R., Mondal, M. K., Banerjee, S., Srivastava, G., Alnumay,
W., Ghosh, U., & Biswas, U. (2023). MECpVmS: an SLA aware
energy-efficient virtual machine selection policy for green
cloud computing. Cluster Computing, 26(1), 651-665.

Saidi, K., & Bardou, D. (2023). Task scheduling and VM placement
to resource allocation in Cloud computing: challenges and
opportunities. Cluster Computing, 26(5), 3069-3087.

Shi, F., & Lin, J. (2022). Virtual machine resource allocation
optimization in cloud computing based on multiobjective
genetic algorithm. Computational Intelligence and
Neuroscience, 2022(1), 7873131.

Singh, G., Rani, L., Ghosh, P., Goyal, S., & Vajpayee, A. (2022,
December). Artificial Intelligence Based Virtual Machine
Allocation and Migration Policy using Improved MBFD. In
2022 IEEE International Conference on Current Development in
Engineering and Technology (CCET) (pp. 1-6). IEEE.

Sundas, A., Badotra, S., Alotaibi, Y., Alghamdi, S., & Khalaf, O. I.
(2022). Modified Bat Algorithm for Optimal VM’s in Cloud
Computing. Computers, Materials & Continua, 72(2).

Supreeth, S., Patil, K., Patil, S. D., Rohith, S., Vishwanath, Y., &
Prasad, K. V. (2022). An Efficient Policy‐Based Scheduling
and Allocation of Virtual Machines in Cloud Computing
Environment. Journal of Electrical and Computer Engineering,
2022(1), 5889948.

Supreeth, S., Patil, K., Patil, S. D., Rohith, S., Vishwanath, Y., &
Prasad, K. V. (2022). An Efficient Policy‐Based Scheduling
and Allocation of Virtual Machines in Cloud Computing
Environment. Journal of Electrical and Computer Engineering,
2022(1), 5889948.

Ullah, A., & Chakir, A. (2022). Improvement for tasks allocation
system in VM for cloud datacenter using modified bat
algorithm. Multimedia Tools and Applications, 81(20), 29443-
29457.

Ullah, A., & Nawi, N. M. (2023). An improved in tasks allocation
system for virtual machines in cloud computing using HBAC
algorithm. Journal of Ambient Intelligence and Humanized
Computing, 14(4), 3713-3726.

Ullah, A., Nawi, N. M., & Ouhame, S. (2022). Recent advancement in
VM task allocation system for cloud computing: review from
2015 to2021. Artificial Intelligence Review, 55(3), 2529-2573.

to 800 MB, the latency generally increases for all approaches;
however, the SVM-FFDM remains the most efficient in
minimizing response times. This indicates that the proposed
approach effectively manages task allocations, leading to
improved responsiveness in processing requests.

Conclusion
In this study, we proposed the support vector machine with
the finest fit decreasing modifier (SVM-FFDM) approach
for VM allocation in cloud computing environments. The
performance of the proposed method was evaluated against
existing strategies, namely FF, BF, and FFD, using various
metrics, including resource utilization, average response
time, energy consumption, and latency.

Resource Utilization
The proposed approach achieved higher resource utilization
rates, effectively minimizing resource wastage. This
efficiency is critical in cloud environments where maximizing
resource usage is essential for reducing operational costs
and enhancing overall system performance.

Average Response Time
The SVM-FFDM method consistently recorded lower average
response times compared to the existing algorithms.
This improvement indicates better task scheduling and
allocation, resulting in faster processing of user requests
and improved user experience.

Energy Consumption
The proposed approach exhibited lower energy consumption
levels, showcasing its effectiveness in reducing the
environmental footprint associated with cloud operations.
This aspect is increasingly important as organizations strive
for sustainability in their IT infrastructure.

Latency
The SVM-FFDM method achieved reduced latency across
varying task sizes, indicating superior handling of task
requests. Lower latency contributes to enhanced system
responsiveness and can lead to better performance for
time-sensitive applications.

In conclusion, the SVM-FFDM approach provides
a robust solution for VM allocation, outperforming
traditional methods in critical performance areas. The
findings underscore the potential of integrating machine
learning techniques, such as support vector machines,
with optimization algorithms to enhance cloud computing
resource management. Future work could explore further
refinements of the SVM-FFDM approach and its applicability
in diverse cloud scenarios, including hybrid and multi-cloud
environments.

References
Arunkumar, M., & Kumar, K. A. (2023). GOSVM: Gannet optimization

