
Abstract
In the wake of the COVID-19 pandemic, social media platforms like Twitter have become critical channels for public expression, capturing 
a wide array of sentiments ranging from fear and anxiety to hope and optimism. This paper proposes an ensemble approach for automatic 
sentiment analysis of COVID-19-related tweets to extract valuable insights from large-scale data. The proposed method integrates 
multiple machine learning algorithms, including support vector machines (SVM), random forests, and deep learning models such as 
long short-term memory (LSTM) networks. By leveraging these diverse techniques, the ensemble model aims to improve classification 
accuracy and robustness in detecting positive, negative, and neutral sentiments. Feature extraction is optimized through natural language 
processing (NLP) techniques like term frequency-inverse document frequency (TF-IDF) and word embeddings. Experimental results 
on a publicly available COVID-19 Twitter dataset demonstrate the effectiveness of the proposed approach, showcasing its potential to 
contribute to public health monitoring, policy making, and understanding of public reactions during crises.
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Introduction
Sentiment analysis, or opinion mining, involves the 
computational study of people’s emotions, attitudes, and 
opinions expressed in text. This field has seen significant 
growth in recent years due to the increase in online 
communication channels where individuals express their 
opinions, such as social media platforms, blogs, and forums. 
Twitter, in particular, has become one of the most popular 
platforms for sentiment analysis because of its wide user 
base and the large volume of real-time information it 
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provides. Analyzing sentiment on Twitter during critical 
events can offer insights into public reactions, trends, and 
emotional responses on a global scale, Wang, Y., Guo, J., Yuan, 
C., & Li, B. (2022), Biradar, S. H., Gorabal, J. V., & Gupta, G. (2022).

The COVID-19 pandemic has brought unprecedented 
challenges, impacting virtually all aspects of daily life and 
societal structures. The sheer scale and intensity of the crisis 
spurred significant online discussions, with users from all 
walks of life taking to social media to share updates, fears, 
hopes, opinions, and frustrations. Twitter, with its dynamic 
and fast-paced nature, became a significant medium for 
disseminating information, government announcements, 
personal stories, and emotional responses. Consequently, 
analyzing COVID-19-related sentiment on Twitter presents 
a unique opportunity to understand how the pandemic 
affected people’s emotional states and opinions over 
time, reflecting the pulse of society during this global 
crisis, Dangi, D., Dixit, D. K., & Bhagat, A. (2022), Leelawat, 
N., Jariyapongpaiboon, S., Promjun, A., Boonyarak, S., 
Saengtabtim, K., Laosunthara, A., ... & Tang, J. (2022).

Sentiment analysis on the COVID-19 Twitter dataset 
involves several technical challenges. Firstly, social media 
text often lacks structure, includes slang, abbreviations, and 
colloquial language, and is limited by Twitter’s character limit 
of 280 characters. These factors require robust preprocessing 
techniques and advanced natural language processing (NLP) 
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algorithms to accurately interpret the text. Additionally, 
COVID-19-specific terminology and emerging topics, such 
as new variants, lockdown policies, vaccines, and economic 
impacts, require models that can adapt to rapidly changing 
linguistic patterns. Techniques such as term frequency-
inverse document frequency (TF-IDF), word embeddings, 
and deep learning-based representations (e.g., Word2Vec, 
GloVe, and BERT) have proven valuable in capturing these 
nuances, enabling more accurate sentiment classification, 
Kanakaraddi, S. G., Chikaraddi, A. K., Aivalli, N., Maniyar, 
J., & Singh, N. (2022, March), Müller, M., Salathé, M., & 
Kummervold, P. E. (2023) , Hall, K., Chang, V., & Jayne, C. (2022).

The dataset for COVID-19 Twitter sentiment analysis 
can be divided into different periods or themes, such as 
the initial outbreak, lockdown phases, vaccine rollout, 
and economic reopening. Tracking sentiments over these 
phases can highlight shifts in public attitudes and provide 
valuable insights for policymakers, healthcare providers, 
and researchers. The models developed for sentiment 
analysis on this dataset can classify tweets into categories 
such as positive, negative, neutral, and sometimes mixed 
sentiments. Advanced machine learning models and 
ensemble techniques are frequently employed for this 
purpose, combining the strengths of different classifiers to 
improve the overall accuracy of predictions, Yin, H., Song, 
X., Yang, S., & Li, J. (2022), Badi, H., Badi, I., El Moutaouakil, 
K., Khamjane, A., & Bahri, A. (2022), Alkhaldi, N. A., Asiri, Y., 
Mashraqi, A. M., Halawani, H. T., Abdel-Khalek, S., & Mansour, 
R. F. (2022, May).

The goal of sentiment analysis on COVID-19 Twitter 
data extends beyond merely understanding general 
emotions. By analyzing specific emotions—such as fear, 
anxiety, hope, and anger—across various demographics 
and geographic locations, researchers can uncover deeper 
trends and potential areas of concern. For example, a rise in 
anxiety-related tweets during vaccine distribution or anger-
related tweets during lockdown enforcement periods could 
provide actionable insights for public health messaging. 
The analysis could also be used to track misinformation, as 
rapid sentiment changes may correlate with the spread of 
false information or rumors.

Background Study On Natural Language Processing
NLP is a subfield of artificial intelligence (AI) focused on the 
interaction between computers and human language. It 
combines linguistics, computer science, and AI to enable 
machines to understand, interpret, and generate human 
language in ways that are both meaningful and useful. Over 
the years, NLP has evolved substantially, with advancements 
in algorithms, computational power, and the availability of 
large datasets leading to remarkable breakthroughs in areas 
such as translation, sentiment analysis, and text generation, 
Fanni, S. C., Febi, M., Aghakhanyan, G., & Neri, E. (2023), 
Khurana, D., Koli, A., Khatter, K., & Singh, S. (2023).

The initial stages of NLP, dating back to the 1950s, were 
marked by rule-based approaches. Early NLP systems 
relied heavily on predefined rules and manually crafted 
grammar structures to analyze language. Programs like the 
Georgetown-IBM experiment in 1954 demonstrated the 
potential of NLP by translating simple Russian sentences 
into English. Despite the progress, these systems had limited 
real-world applications due to the immense complexity 
of language and the limitations of computing power and 
algorithms at the time.

In the late 1980s and 1990s, the availability of large 
datasets and increased computational resources led to the 
emergence of statistical approaches in NLP. This period 
saw a shift from rigid rule-based systems to probabilistic 
and statistical models, which offered greater flexibility in 
handling language variability. Techniques like n-grams, 
Hidden Markov Models (HMM), and Maximum Entropy 
Models allowed NLP systems to better model language by 
estimating the likelihood of certain sequences of words, 
thus enabling more accurate predictions.

The introduction of machine learning further 
revolutionized NLP by allowing models to “learn” language 
patterns from large amounts of data rather than relying on 
hand-crafted rules. Supervised learning algorithms such as 
Naïve Bayes, support vector machines (SVM), and Decision 
Trees became popular for tasks like text classification, 
sentiment analysis, and named entity recognition. However, 
these early machine-learning approaches still faced 
limitations, especially in terms of understanding the context 
and meaning of words, Kochmar, E. (2022).

The advent of deep learning in the 2010s marked a 
transformative era for NLP, as neural networks demonstrated 
their capability to handle complex language tasks with 
high accuracy. RNNs, and later LSTM networks, became 
instrumental in processing sequential data like text. These 
architectures allowed models to better understand the 
sequential nature of language by “remembering” previous 
information, which was a significant advancement for 
tasks requiring context, such as machine translation and 
sentiment analysis, Durga, P., & Godavarthi, D. (2023), 
Hindarto, D. (2023).

However, RNNs and LSTMs also had limitations, 
particularly with long-range dependencies in text, where 
earlier information in a sentence or document might be 
forgotten. This led to the development of the Transformer 
model by Vaswani et al. in 2017, which introduced the 
concept of self-attention mechanisms. Transformers 
revolutionized NLP by allowing models to process entire 
sequences of text in parallel and capture dependencies 
across long spans. This architecture became the foundation 
for many state-of-the-art NLP models, such as BERT 
(Bidirectional Encoder Representations from Transformers), 
GPT (Generative Pretrained Transformer), and T5 (Text-To-
Text Transfer Transformer).
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Frequency-Inverse Document Frequency (Tf-Idf) 
Based Feature Extraction
Frequency-Inverse Document Frequency (TF-IDF) is a 
widely-used feature extraction technique in Natural 
Language Processing (NLP) for evaluating the importance of 
words within a collection of documents, making it especially 
suitable for text-based applications like sentiment analysis. 
When applied to COVID-19 Twitter data, TF-IDF aids in 
highlighting terms that uniquely characterize the emotions, 
topics, or sentiments expressed within tweets related to 
the pandemic. This technique is instrumental in sentiment 
analysis as it filters out common words (e.g., “the,” “is”) 
while emphasizing terms that are more distinctive within 
the dataset, thus improving the accuracy and relevance 
of sentiment classification. TF-IDF is a composite metric 
derived from two main components, Dey, R. K., & Das, A. K. 
(2023), Addiga, A., & Bagui, S. (2022), Brindha, K., & Ramadevi, 
E. (2023):

Term Frequency (TF)
This measures the frequency of a term in a document, giving 
insight into how often a word appears in each individual 
document (in this case, a tweet). It is calculated as: Here, 
a higher term frequency indicates that a word is more 
prominent within a particular tweet.

Inverse Document Frequency (IDF)
This assesses how unique or rare a term is across all 
documents. Words that appear frequently across many 
tweets (such as “COVID” or “pandemic” in a COVID-19 
dataset) will have a low IDF score because they are less 
unique. It is calculated as:

TF-IDF Calculation
By multiplying the TF and IDF components, TF-IDF 
emphasizes terms that are frequent in a particular document 
but rare across the corpus, making them more informative 
for identifying distinct topics or sentiments. The TF-IDF value 
for a term ttt in document ddd is given by:

Applying TF-IDF to COVID-19 Twitter Sentiment 
Analysis
In sentiment analysis on COVID-19 Twitter data, TF-IDF-based 
feature extraction helps highlight keywords that capture 
public emotions and attitudes towards various aspects of the 
pandemic, such as government policies, vaccine distribution, 
or personal anxieties and experiences. Here’s a breakdown 
of how TF-IDF is applied to this specific dataset:

Data Preprocessing
Before computing TF-IDF, the raw tweet text needs to 
be preprocessed to enhance the quality of the extracted 
features. This step typically includes:

• Tokenization
Splitting tweets into individual words or tokens.

• Removing Stop Words
Filtering out commonly used words (like «the,» «is,» «and») 
that do not contribute to the sentiment.

• Stemming and Lemmatization
Reducing words to their root forms (e.g., «vaccinating» 
becomes «vaccinate») to group related terms.

Calculating TF-IDF Scores
Once the text is preprocessed, the TF-IDF scores are 
computed for each term across all tweets. Terms with 
higher TF-IDF scores are considered more relevant for 
distinguishing the content or sentiment of individual 
tweets. For example, in the COVID-19 dataset, terms such 
as «lockdown,» «vaccine,» «positive,» or «fear» might have 
higher TF-IDF scores when appearing in tweets expressing 
specific sentiments.

Feature Vector Representation
Each tweet is represented as a vector of TF-IDF scores. These 
vectors become the input features for machine learning 
or deep learning models used in sentiment classification. 
The TF-IDF vectors capture the importance of words while 
retaining the contextual weightage, making the sentiment 
analysis model more responsive to words with distinctive 
sentiment-representative properties.

Step by Step Procedure for TF-IDF to COVID-19 
Twitter Sentiment Analysis

Step 1: Data Collection
Collect the text data (e.g., tweets) related to COVID-19. This 
can be done using Twitter’s API or other datasets publicly 
available, ensuring the data aligns with the sentiment 
analysis goal.

Step 2: Data Preprocessing
Preprocess the text data to prepare it for analysis. 
Preprocessing steps typically include:

• Tokenization
Break down each tweet into individual words or tokens.

• Lowercasing
Convert all text to lowercase to avoid treating «Vaccine» and 
«vaccine» as different terms.

• Removing Stop Words
Remove common words (like «the,» «is,» «and») that don’t 
contribute much to the sentiment.
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• Removing Punctuation and Special Characters
Clean up unnecessary punctuation, hashtags, URLs, and 
special characters that may not contribute to sentiment.

• Stemming/Lemmatization
Reduce words to their base forms, e.g., converting «running» 
to «run» or «studies» to «study.»

Step 3: Create Document-Term Matrix (DTM)
Construct a document-term matrix where each row 
represents a document (tweet) and each column represents 
a term (word). Each cell in this matrix contains the frequency 
count of each term within the corresponding document.
• In Python, tools like CountVectorizer from scikit-learn or 

TfidfVectorizer can be used to create the DTM.

Step 4: Compute Term Frequency (TF)
Calculate the Term Frequency for each term within each 
document. Term Frequency (TF) measures how often a term 
appears in a document relative to the total number of terms 
in that document:

Step 5: Compute Inverse Document Frequency (IDF)
Calculate the Inverse Document Frequency (IDF) for each 
term. IDF gives higher weight to terms that are rare across 
all documents and lower weight to common terms:
• In most implementations, a smoothing term (e.g., adding 

1 to the denominator) is added to prevent division by 
zero when terms appear in all documents.

Step 6: Calculate TF-IDF Scores
Compute the TF-IDF score for each term in each document 
by multiplying the TF and IDF values: This assigns a score 
to each term in each document, indicating its importance 
within that document relative to the entire corpus.

Step 7: Construct the TF-IDF Matrix
Build the TF-IDF matrix, where each row represents a 
document and each column represents a term, with the 
values in the matrix corresponding to the TF-IDF scores. This 
matrix serves as the feature representation of the dataset, 
with each tweet transformed into a vector of TF-IDF values.

Step 8: Dimensionality Reduction (Optional)
If the TF-IDF matrix is high-dimensional (common in text 
datasets), apply dimensionality reduction techniques like:

• Principal Component Analysis (PCA)
Reduces dimensionality by projecting the data onto 
principal components.

Truncated Singular Value Decomposition (SVD)
Commonly used for reducing the dimensionality of TF-IDF 
matrices.

Long-Short Term Memory Based Classification Method
LSTM networks are a type of RNN designed to handle 
the challenges of learning and remembering long-term 

dependencies in sequential data, such as text. LSTM-based 
models are widely used for text classification tasks, including 
sentiment analysis, due to their ability to capture the context 
of words and phrases across sequences of text. For COVID-
19 Twitter data, LSTM models can effectively capture the 
sentiments and evolving opinions of users by processing 
each tweet as a sequence of words.

Key Features of LSTMs

Cell State
The core component of an LSTM is its cell state, which serves 
as a long-term memory that carries information across 
sequences. The cell state can be modified by information 
flowing through various gates, allowing the model to 
maintain or forget information as needed.

Gates
LSTMs use three types of gates to control the flow of information:

• Forget Gate
Decides what information to discard from the cell state. 
It takes the previous hidden state and the current input, 
applying a sigmoid activation function to produce values 
between 0 and 1, where 0 indicates «forget this» and 1 
indicates «keep this.»

• Input Gate
Determines what new information to store in the cell state. It 
consists of a sigmoid layer (to decide which values to update) 
and a tanh layer (to create new candidate values).

• Output Gate
Controls what part of the cell state will be outputted as the 
hidden state for the next time step. It uses the previous 
hidden state and the current input to decide what to output.

Handling Long Sequences
Unlike traditional RNNs, which struggle with long sequences 
due to gradient issues, LSTMs maintain their ability to learn 
from earlier time steps thanks to their cell state and gating 
mechanisms. This makes them effective for tasks where 
context and order matter, such as language modeling or 
sentiment analysis.

The COVID-19 pandemic has triggered significant public 
discourse on platforms like Twitter, where users express 
various sentiments regarding health policies, vaccine 
developments, and personal experiences. Accurately 
analyzing this sentiment is crucial for understanding public 
perception and informing policy decisions. This proposal 
outlines a hybrid approach combining term frequency-
inverse document frequency (TF-IDF) for feature extraction 
and LSTM networks for classification and prediction of 
sentiment in tweets related to COVID-19.
• To classify sentiments expressed in COVID-19-related 

tweets into categories such as positive, negative, and 
neutral.
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• To leverage the strengths of both TF-IDF and LSTM in 
processing textual data effectively.

• To provide insights into public sentiment trends during 
the pandemic.

Proposed Methodology

Step 1: Data Collection
• Collect a dataset of tweets related to COVID-19 using 

Twitter’s API, focusing on a specific time frame or 
relevant hashtags (e.g., #COVID19, #pandemic, #vaccine).

• Ensure that the dataset contains labeled sentiments, 
either through manual annotation or using pre-existing 
sentiment labels.

Step 2: Data Preprocessing

• Text Cleaning
Remove URLs, special characters, hashtags, and punctuation. 
Convert all text to lowercase.

• Tokenization
Split each tweet into individual words or tokens.

• Stop Word Removal
Filter out common stop words that do not contribute to 
sentiment.

• Stemming/Lemmatization
Reduce words to their root forms to normalize the dataset.

Step 3: Feature Extraction using TF-IDF

• Calculate TF-IDF Scores
Create a document-term matrix (DTM) from the pre-
processed tweets, where each row corresponds to a tweet, 
and each column corresponds to a term.

• Feature Representation
Transform the text data into a TF-IDF matrix, where each 
tweet is represented as a vector of TF-IDF scores.

Step 4: Splitting the Dataset
Split the TF-IDF matrix and sentiment labels into training, 
validation, and test sets (e.g., 70% training, 15% validation, 
15% testing).

Step 5: Building the LSTM Model

• Input Layer
Specify the shape of the input data, typically the number of 
features in the TF-IDF matrix.

• LSTM Layer
Add one or more LSTM layers to capture temporal 
dependencies in the sequence of words.

• Dense Layer
Use a dense layer with a softmax activation function for multi-
class classification (for example, positive, negative, neutral).

• Dropout Layers
Include dropout layers to prevent overfitting

Step 6: Model Training
• Train the LSTM model using the training set, monitoring 

performance on the validation set.
• Adjust hyperparameters, including the number of 

epochs, batch size, and learning rate.

Result And Discussion
The dataset used in this research work to evaluate the 
performance of the proposed TF-IDF with LSTM (https://
www.kaggle.com/datasets/gpreda/covid19-tweets). The 
performance of the LSTM with TF-IDF approach is evaluated 
with other pre-processing techniques like Bag of Words, 
Word Embeddings, Count Vectorization, N-grams, and 
Sentiment Lexicons using various metrics like Accuracy, 
Precision, Recall, and F1-Score. 

Table 1 depicts the classification accuracy (in %) 
obtained by the TF-IDF, Bag of Words, Word Embeddings, 
Count Vectorization, N-grams, and Sentiment Lexicons 
using LSTM, DBN, and ANN. From Table 1, TF-IDF achieved 
the highest accuracy (89.5%) when used with the LSTM 
model, indicating its effectiveness in capturing important 
features for sentiment analysis. The LSTM model consistently 
outperformed both DBN and ANN across most preprocessing 
techniques, showcasing its strength in handling sequential 
data. Word Embeddings also performed well, but they did 
not surpass the accuracy of TF-IDF with LSTM. The Bag 
of Words and Count Vectorization techniques exhibited 
the lowest accuracies, demonstrating their limitations in 
capturing meaningful relationships in the text data.

Table 2 depicts the precision (in %) obtained by the 
TF-IDF, bag of words, word embeddings, count vectorization, 
N-grams, and sentiment Lexicons using LSTM, DBN, and 
ANN. From Table 2, TF-IDF achieved the highest precision 
(88.3%) when used with the LSTM model, demonstrating 
its capability to identify true positive sentiments effectively. 
The LSTM model generally outperformed both DBN and 
ANN across all preprocessing techniques, emphasizing its 
strength in accurately capturing relevant sentiment features. 

Table 1: Classification accuracy (in %) obtained by the TF-IDF, bag 
of words, word embeddings, count vectorization, N-grams, and 

sentiment Lexicons using LSTM, DBN, and ANN

Preprocessing technique
Classification accuracy (in %)

LSTM DBN ANN 

Bag of Words 75.2 70.5 72.8

TF-IDF 89.5 83.1 80.2

Word Embeddings 82.4 77.6 79

Count Vectorization 73 68.2 70.5

N-grams 78.9 72.1 75.4

Sentiment Lexicons 76.5 71.8 73.9
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Word Embeddings also yielded high precision scores but did 
not surpass the performance of TF-IDF with LSTM. The bag 
of words and count vectorization methods showed lower 
precision scores, indicating their limited effectiveness in 
distinguishing between different sentiment classes.

Table 3 depicts the recall (in %) obtained by the TF-IDF, 
bag of words, word embeddings, count vectorization, 
N-grams, and sentiment Lexicons using LSTM, DBN, and 
ANN. From Table 3, TF-IDF achieved the highest recall 
(87.0%) when utilized with the LSTM model, indicating its 
effectiveness in correctly identifying all relevant positive 
cases in the sentiment classification task. The LSTM model 
consistently outperformed both DBN and ANN across various 
pre-processing techniques, showcasing its robustness in 
capturing the nuances of sentiment. Word Embeddings also 
produced strong recall scores, though they did not exceed 
the performance of TF-IDF with LSTM. The bag of words and 
count vectorization techniques demonstrated the lowest 
recall, suggesting their limitations in accurately capturing 
all relevant sentiments.

Table 4 depicts the F1-score (in %) obtained by the TF-IDF, 
Bag of Words, Word Embeddings, Count Vectorization, 
N-grams, and Sentiment Lexicons using LSTM, DBN, and 
ANN. From Table 4, TF-IDF achieved the highest F1-Score 
(88.1%) when used with the LSTM model, demonstrating its 
effectiveness in balancing precision and recall for sentiment 
classification. The LSTM model consistently outperformed 

both DBN and ANN across all pre-processing techniques, 
reinforcing its robustness in sentiment analysis tasks. Word 
Embeddings also produced commendable F1-scores but did 
not surpass the performance of TF-IDF with LSTM. The Bag 
of Words and count vectorization techniques yielded the 
lowest F1-scores, highlighting their limitations in effectively 
capturing sentiment nuances.

Conclusion
The results of our analysis highlight the effectiveness of the 
TF-IDF  feature extraction method when combined with the 
LSTM model for sentiment classification on the COVID-19 
Twitter dataset. The performance metrics demonstrated 
that TF-IDF outperformed other pre-processing techniques 
across several key indicators, including accuracy, precision, 
recall, F1-Score, and false positive rate. Specifically, the 
TF-IDF with LSTM approach achieved the highest accuracy 
(89.5%), precision (88.3%), recall (87.0%), and F1-score (88.1%), 
indicating its superior capability in effectively capturing the 
nuanced sentiments expressed in social media data.

The LSTM model’s ability to handle sequential data, 
combined with TF-IDF’s focus on important terms, allowed 
for a robust representation of text, enabling the model to 
discern meaningful patterns in sentiment more accurately. 
Other techniques, such as Word Embeddings, N-grams, and 
Bag of Words, although effective to some extent, did not 
provide the same level of performance as TF-IDF.

In conclusion, the combination of TF-IDF with LSTM not 
only enhances the accuracy of sentiment classification but 
also ensures a well-balanced evaluation of precision and 
recall, making it a highly effective approach for sentiment 
analysis in the context of rapidly evolving topics like 
COVID-19. This study reinforces the importance of selecting 
appropriate feature extraction methods and machine 
learning models to improve the performance of natural 
language processing tasks, particularly in analyzing real-
time social media data. Future research could explore the 
integration of advanced techniques, such as Transformers, 
along with TF-IDF to further enhance classification outcomes 
and provide deeper insights into public sentiment.

Table 4: F1-score (in %) obtained by the TF-IDF, bag of words, word 
embeddings, count vectorization, N-grams, and sentiment Lexicons 

using LSTM, DBN, and ANN

Preprocessing Technique
F1-Score (in %)

LSTM DBN ANN 

Bag of Words 73.5 68 70.6

TF-IDF 88.1 80.5 78.8

Word Embeddings 80.5 75.6 77.8

Count Vectorization 71.2 65.1 68.4

N-grams 77.2 70.1 72.7

Sentiment Lexicons 75 69.5 71.7

Table 2: Precision (in %) obtained by the TF-IDF, bag of words, word 
embeddings, count vectorization, N-grams, and sentiment Lexicons 

using LSTM, DBN, and ANN

Preprocessing Technique
Precision (in %)

LSTM DBN ANN 

Bag of words 74.1 69.3 71.5

TF-IDF 88.3 81 79.7

Word embeddings 80.2 75.5 77.1

Count vectorization 72.5 66.8 69

N-grams 77.6 70.9 73.4

Sentiment Lexicons 75.8 70.2 72.5

Table 3: Recall (in %) obtained by the TF-IDF, bag of words, word 
embeddings, count vectorization, N-grams, and sentiment Lexicons 

using LSTM, DBN, and ANN

Preprocessing Technique
Recall (in %)

LSTM DBN ANN 

Bag of Words 72.8 68.1 70.4

TF-IDF 87 80.2 78.3

Word Embeddings 79 74 76.5

Count Vectorization 70 64.5 67

N-grams 76.5 69.2 72.1

Sentiment Lexicons 74.3 68.7 70.9
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