
Abstract
Cloud computing is a decentralized approach of providing and accessing computer services through the internet. The phrase «cloud
computing» is commonly used to describe this setup. The term «cloud computing» refers to a method of running computer programs,
data, and services over the internet from a central location rather than on individual users’ local machines. Cloud computing environments
face the challenge of efficiently managing and scheduling diverse tasks to ensure optimal resource utilization and system performance.
This paper introduces a fuzzy logic-based approach for scheduling cloud computing operations designed to handle the uncertainty
and dynamic nature of task execution requirements. The proposed method incorporates fuzzy rules and membership functions to
evaluate key parameters such as task priority, resource availability, and execution time. By modeling these uncertainties, the fuzzy
logic system dynamically adjusts scheduling decisions to optimize load balancing and minimize delays. The approach offers flexibility
in allocating resources and prioritizing tasks in real-time, adapting to fluctuating workloads and system conditions. Experimental
simulations demonstrate the effectiveness of the fuzzy logic approach in enhancing system throughput and reducing task completion
time, offering a robust solution for scheduling in heterogeneous and complex cloud environments. This method shows promise for
improving the scalability and responsiveness of cloud-based operations. Comparisons with three separate scheduling algorithms the
first come, first serve (FCFS) algorithm, the round robin (RR) strategy, and the Honeybee foraging (HF) algorithm, show that our method
is quite effective. The experimental findings validate the efficacy of our algorithm.
Keywords: Cloud computing, Fuzzy logic, Task scheduling, Adaptive scheduling.

Fuzzy logic-driven scheduling for cloud computing operations:
A dynamic and adaptive approach
A. Kalaiselvi*, A. Chandrabose

RESEARCH ARTICLE

© The Scientific Temper. 2024
Received: 05/09/2024				 Accepted: 17/09/2024			 Published: 16/10/2024

Edayathangudy G.S Pillay Arts and Science College (Autonomous)
(Affiliated to Bharathidasan University, Tiruchirappalli)
Nagapattinam, Tamilnadu, India.
*Corresponding Author: A. Kalaiselvi, Edayathangudy G.S Pillay
Arts and Science College (Autonomous) (Affiliated to Bharathidasan
University, Tiruchirappalli) Nagapattinam, Tamilnadu, India., E-Mail:
lakshithsiva1386@gmail.com
How to cite this article: Kalaiselvi, A., Chandrabose, A. (2024).
Fuzzy logic-driven scheduling for cloud computing operations: A
dynamic and adaptive approach. The Scientific Temper, 15(spl):71-77.
Doi: 10.58414/SCIENTIFICTEMPER.2024.15.spl.09
Source of support: Nil

Conflict of interest: None.

Introduction
Cloud computing is a model that enables on-demand access
to a shared pool of configurable computing resources (such
as servers, storage, networks, applications, and services) over
the internet. These resources can be rapidly provisioned
and released with minimal management effort, allowing
organizations and individuals to store and process data,
run applications, and manage systems remotely, Islam, R.,

The Scientific Temper (2024) Vol. 15 (spl): 71-77	 E-ISSN: 2231-6396, ISSN: 0976-8653

Doi: 10.58414/SCIENTIFICTEMPER.2024.15.spl.09	 https://scientifictemper.com/

Patamsetti, V., Gadhi, A., Gondu, R. M., Bandaru, C. M., Kesani,
S. C., & Abiona, O. (2023), Golightly, L., Chang, V., Xu, Q. A.,
Gao, X., & Liu, B. S. (2022), Parast, F. K., Sindhav, C., Nikam, S.,
Yekta, H. I., Kent, K. B., & Hakak, S. (2022).

Key Characteristics
The following are the key characteristics of cloud computing,
Pallathadka, H., Sajja, G. S., Phasinam, K., Ritonga, M., Naved,
M., Bansal, R., & Quiñonez-Choquecota, J. (2022), Gang, L.,
& Badarch, T. (2023).

On-demand self-service
Users can automatically access and manage computing
resources without requiring human interaction with the
service provider.

Broad network access
Resources are available over the internet from various
devices like laptops, smartphones, and tablets.

Resource pooling
Providers use multi-tenant models to serve multiple
customers, dynamically allocating resources based on
demand.

72	 Kalaiselvi and Chandrabose	 The Scientific Temper. Vol. 15, special issue

Rapid elasticity
Resources can be quickly scaled up or down based on usage
needs.

Measured service
Cloud systems automatically control and optimize resource
use by leveraging metering capabilities, offering a pay-as-
you-go model.

Service Models
The following are the cloud service models: Marinescu, D. C.
(2022), Maaz, M., Ahmed, M. A., Maqsood, M., & Soma, S. (2023),
Volkov, A. O., Korobkina, A. V., & Stepanov, S. N. (2022, March).

Infrastructure as a Service (IaaS)
Provides virtualized computing resources like virtual
machines, storage, and networking.

Platform as a Service (PaaS)
Offers platforms that allow developers to build, deploy, and
manage applications without dealing with the underlying
infrastructure.

Software as a Service (SaaS)
Delivers fully functional applications over the internet that
users can access through a browser without managing any
infrastructure.

Deployment Models

Public Cloud
Resources are owned and operated by a third-party provider
and made available to the general public.

Private Cloud
Resources are used exclusively by a single organization,
offering greater control and security.

Hybrid Cloud
Combines public and private cloud models, allowing data and
applications to be shared between them for greater flexibility.

Background Study On Task Scheduling
Task scheduling is a critical process in cloud computing,
as it determines how computing tasks are assigned to
resources like virtual machines (VMs), ensuring efficient
resource utilization and maintaining performance goals
such as minimizing execution time, energy consumption,
and operational cost, Abdel-Basset, M., Mohamed, R., Abd
Elkhalik, W., Sharawi, M., & Sallam, K. M. (2022), Liu, H. (2022).

In cloud computing environments, task scheduling
involves distributing and managing tasks across different
servers or data centers, balancing the load while meeting
the diverse requirements of users and applications.

Importance of Task Scheduling
Task scheduling in cloud computing significantly impacts,
Khan, M. S. A., & Santhosh, R. (2022), Murad, S. A., Muzahid,

A. J. M., Azmi, Z. R. M., Hoque, M. I., & Kowsher, M. (2022):

Performance
Effective task scheduling ensures timely execution of tasks,
reducing delays and improving system throughput.

Resource Utilization
By properly allocating tasks to virtual machines, resources
can be used more efficiently, avoiding situations where some
machines are idle while others are overburdened.

Energy Efficiency
Scheduling algorithms can minimize energy consumption
by reducing the number of active servers and optimizing
resource usage.

Cost Optimization
Proper scheduling lowers operational costs by optimizing
resource usage, enabling pay-per-use cost models common
in cloud environments.

Types of Task Scheduling in Cloud Computing
Task scheduling algorithms can be broadly categorized into
static and dynamic scheduling, Alakbarov, R. (2022); Sharma,
M., Kumar, M., & Samriya, J. K. (2022):

Static Scheduling
In this approach, tasks are pre-assigned to resources before
execution based on known parameters such as task execution
time, resource availability, and dependency. Once assigned,
tasks cannot be rescheduled. This method is suitable for
environments where task characteristics are predictable.

Dynamic Scheduling
In dynamic scheduling, tasks are assigned to resources
during runtime based on current system conditions such as
available CPU, memory, or bandwidth. This method is more
flexible and adaptive, making it suitable for dynamic cloud
environments where tasks and resources vary.

Common Task Scheduling Algorithms
There are various scheduling algorithms used in cloud
computing, each focusing on different performance metrics
such as time, cost, energy, or a combination of these, Aktan, M.
N., & Bulut, H. (2022); Hamid, L., Jadoon, A., & Asghar, H. (2022):

First Come, First Served (FCFS)
Tasks are executed in the order they arrive, without
considering resource availability or task priorities.

Round Robin (RR)
Tasks are assigned to resources in a cyclic manner,
distributing the workload evenly but without considering
task length or priority.

Min-Min and Max-Min
These are heuristic approaches that schedule tasks based
on their execution times. Min-Min assigns the shortest tasks

	 Fuzzy logic-driven scheduling for cloud computing operations: A dynamic and adaptive approach	 73

to the fastest available resources, while Max-Min assigns the
longest tasks to the fastest resources.

Genetic Algorithms (GA)
These are evolutionary algorithms that search for an optimal
or near-optimal scheduling solution by mimicking the
process of natural selection.

Ant Colony Optimization (ACO)
Inspired by the behavior of ants, this algorithm uses
cooperative agents to find optimal paths for task scheduling.

Particle Swarm Optimization (PSO)
PSO uses a population-based approach to explore the
scheduling space and find an optimal or near-optimal
solution.

Priority-based Scheduling
This method assigns tasks based on their priority levels,
ensuring that high-priority tasks are executed before lower-
priority ones.

Hybrid Scheduling Algorithms
These algorithms combine multiple approaches (e.g., GA
+ PSO) to achieve better performance in multi-objective
optimization.

Background Study On Fuzzy Logic
Fuzzy logic is a form of logic that allows reasoning with
imprecise or uncertain information. It extends classical
(binary) logic by introducing degrees of truth, enabling
the modeling of human reasoning more effectively. While
classical logic operates with discrete values (true/false or
1/0), fuzzy logic works with continuous values ranging
between 0 and 1, which can represent the degree to which
a statement is true or false, Zadeh, L. A. (2023), Van Krieken,
E., Acar, E., & van Harmelen, F. (2022).

Fuzzy logic was introduced by Lotfi Zadeh in 1965 as
part of his research on the mathematical representation of
human reasoning. Zadeh proposed that many real-world
situations are not strictly binary and that traditional logic
struggles to handle this complexity. For example, terms like
“warm,” “tall,” or “expensive” are inherently vague, and fuzzy
logic provides a framework to deal with this vagueness by
representing these concepts with fuzzy sets and degrees
of membership.

Fuzzy Sets and Membership Functions
At the core of fuzzy logic is the concept of fuzzy sets. In
classical set theory, an element either belongs to a set or it
does not. However, in fuzzy set theory, an element can have
a degree of membership in a set, represented by a value
between 0 and 1, Varshney, A., & Goyal, V. (2023).

Fuzzy Sets
A fuzzy set is a collection of elements where each element
has a degree of membership. For example, a fuzzy set could

represent the concept of “tall people,” and each person’s
height would have a corresponding membership value
between 0 and 1, indicating how “tall” they are relative to
others.

Membership Functions
These functions define how the degree of membership
is determined for any given input. Common types of
membership functions include:

•	 Triangular
Defined by a triangle shape with a peak value and linear
transitions.

•	 Trapezoidal
Similar to the triangular function but with a flat top,
representing a range of values with full membership.

•	 Gaussian
Bell-shaped, representing smooth transitions.

Fuzzy Logic Systems (FLS)
A fuzzy logic system (FLS) is a decision-making system based
on fuzzy logic, consisting of four key components, Zhao, T.,
Cao, H., & Dian, S. (2022):

Fuzzification
Converts crisp inputs into fuzzy sets by determining the
degree of membership for each input variable using
membership functions.

Inference Engine
Applies a set of fuzzy rules to the fuzzified inputs to generate
fuzzy output sets. These rules are typically in the form of
IF-THEN statements (e.g., «If temperature is high, then fan
speed should be high»).

Rule Base
A collection of fuzzy rules that represent the knowledge of
the system. These rules define how to combine fuzzy inputs
to determine fuzzy outputs.

Defuzzification
Converts the fuzzy outputs back into crisp values, which can
be used as actionable decisions or control inputs. Common
defuzzification techniques include the Centroid method and
Mean of Maximum.

Proposed Fuzzy Logic Driven Scheduling Approach
In cloud computing environments, efficient task scheduling
is crucial to improve resource utilization, minimize execution
time, and optimize energy consumption. A fuzzy logic-
based task scheduling (FLTS) approach leverages fuzzy
logic to make intelligent and adaptive decisions regarding
task allocation, especially when dealing with uncertainty
in resource availability, workload, and user requirements.

The main objective of the fuzzy logic-based scheduling
approach is to allocate tasks to the most suitable resources

74	 Kalaiselvi and Chandrabose	 The Scientific Temper. Vol. 15, special issue

(virtual machines) by considering multiple factors such as
task priority, execution time, resource load, and energy
consumption. Fuzzy logic is employed to handle the
inherent uncertainties in these factors and derive an optimal
decision for task assignment.

Step by step procedure for FLTS

Step 1: Define Input Variables
To implement fuzzy logic-based task scheduling, identify the
key parameters that influence task scheduling. These input
parameters are fuzzified to reflect the imprecise nature of
resource and task characteristics.

•	 Task Priority (TP)
Indicates the importance of the task. Higher priority tasks
should be allocated to resources first.

Fuzzy terms: {Low, Medium, High}

•	 Estimated Execution Time (EET)
The expected time a task will take to execute on a resource.

Fuzzy terms: {Short, Moderate, Long}

Resource Load (RL)
The current load or utilization of the resource (VM).

Fuzzy terms: {Low, Medium, High}

•	 Energy Consumption (EC)
The energy cost of executing the task on a specific resource.

Fuzzy terms: {Low, Moderate, High}\

Step 2: Define Membership Functions
For each input variable, define membership functions
to represent the fuzziness in the data. The membership
functions translate crisp input values into fuzzy degrees
of membership between 0 and 1. A typical approach uses
triangular or trapezoidal membership functions for each
fuzzy set. Example of a triangular membership function for
Task Priority:

Step 3: Define Fuzzy Rule Base
Develop a rule base that captures the scheduling decisions
based on the input parameters. These IF-THEN rules help to
decide the best allocation of tasks to resources. Examples
of fuzzy rules:

•	 Rule 1
IF Task Priority is High AND Estimated Execution Time is
Short AND Resource Load is Low THEN Task Allocation is
Immediate.

•	 Rule 2
IF Task Priority is Medium AND Resource Load is High, THEN
Task Allocation is Delayed.

•	 Rule 3
IF Task Priority is Low AND Energy Consumption is High THEN
Task Allocation is Rejected.

Step 4: Fuzzification
During runtime, the crisp input values (e.g., the actual task
priority, estimated execution time, resource load, and energy
consumption) are converted into fuzzy values using the
predefined membership functions.

For example, suppose a task has a priority of 4, an
estimated execution time of 10 seconds, and is assigned
to a resource with a current load of 60%. In that case, the
corresponding fuzzy values for these inputs are calculated
using the membership functions.

Step 5: Inference Engine
The inference engine processes the fuzzified inputs using
the Mamdani inference model. It evaluates the fuzzy rules
from the rule base and produces fuzzy outputs (e.g., Task
Allocation Decisions). The inference process involves:

•	 Rule Evaluation
Checking which fuzzy rules are triggered based on the
fuzzified inputs.

•	 Aggregation of Outputs
Combining the results of all triggered rules to form a single
fuzzy output.

The defuzzified output is the task allocation decision,
which can have values like:

Immediate allocation (high priority, low resource load,
short execution time).

Delayed allocation (low priority or high resource load).
Rejection (high energy consumption or low-priority task

when resources are scarce).
The centroid defuzzification method is given by:

Where μ(y) is the aggregated fuzzy output, and y is the
task allocation decision.

Step 7: Task Assignment
Based on the defuzzified task allocation decision, the task
is either:
•	 Assigned to a virtual machine (VM) for immediate execution.
•	 Delayed until more resources are available.
•	 Rejected if resources are not sufficient or the task is not

critical.

Result And Discussion
The performance of the proposed fuzzy logic-based task
scheduling (FLTS), first come, first serve (FCFS), round robin
(RR), and honeybee foraging (HF) approaches are compared
based on metrics like makespan, average waiting time
(AWT), resource utilization (RU), throughput for the varying
number of tasks.

	 Fuzzy logic-driven scheduling for cloud computing operations: A dynamic and adaptive approach	 75

Table 1 depicts the makespan (in seconds) by the Proposed
FLST, FCFS, RR and HF with varying number of tasks.

The FLTS approach consistently achieves the lowest
makespan for all numbers of tasks. This reduction is due to
the intelligent decision-making of the fuzzy logic system,
which considers multiple factors like task priority, resource
load, and estimated execution time to assign tasks more
efficiently. As the number of tasks increases, FLTS adapts
well to the rising load, keeping the makespan increase at a
lower rate than the other methods. The makespan increases
significantly as the number of tasks rises, indicating that
FCFS struggles to handle larger task loads effectively. The
RR strategy shows better performance than FCFS but lags
behind both FLTS and HF. The HF approach performs better
than FCFS and RR, as it balances tasks dynamically across
resources based on task demand and resource availability.

Table 2 depicts the average waiting time (AWT) (in
seconds) by the proposed FLST, FCFS, RR and HF with varying
number of tasks.

From Table 2, The proposed FLTS approach consistently
achieves the lowest average waiting time (AWT) across all
numbers of tasks. FCFS shows the highest AWT among
all the approaches. The RR strategy performs better than
FCFS but still has a higher AWT compared to both FLTS and
HF. HF shows better performance than RR and FCFS, as it
balances tasks dynamically and uses an adaptive scheduling
approach.

Table 3 depicts the throughput (in task/seconds) by
the Proposed FLST, FCFS, RR and HF with varying number
of tasks.

From Table 3, The FLTS approach achieves the highest
throughput across all task sizes. By dynamically allocating
tasks based on resource availability and task priority,
FLTS optimizes the completion of tasks, leading to
higher throughput. As the number of tasks increases, the
throughput shows a consistent increase, demonstrating the
scalability and efficiency of this method. The FCFS approach
has the lowest throughput across all task numbers. Tasks are
processed in the order they arrive without consideration
for resource optimization, resulting in lower efficiency,
particularly with longer tasks at the front of the queue.
The throughput decreases steadily as the number of tasks
increases, indicating a struggle to handle larger workloads
effectively. The RR strategy shows a moderate throughput,
better than FCFS but lower than FLTS and HF. While RR
attempts to balance task processing by allocating equal time
slices, it may not efficiently utilize resources, particularly if
tasks have varying execution times. Throughput remains
stable but lower than FLTS, with a gradual decrease as the
number of tasks increases. The HF approach performs better
than FCFS and RR but does not reach the efficiency of FLTS.
By mimicking natural foraging behavior, HF can adaptively
allocate tasks, improving throughput compared to FCFS and
RR. The throughput for HF increases as task numbers rise,
reflecting its adaptability to workload demands.

Table 4 depicts the resource utilization (RU) (in %) by
the proposed FLST, FCFS, RR and HF with varying numbers
of tasks.

From Table 4, The Proposed FLTS approach shows the
highest resource utilization across all task numbers. FLTS

Table 1: Makespan (in seconds) by the proposed FLST, FCFS, RR and
HF with varying number of tasks

Number of
Tasks

Makespan (in seconds

FLTS FCFS RR HF

100 180 230 210 200

200 360 460 420 400

300 550 690 640 610

400 740 920 850 820

500 930 1150 1060 1030

Table 2: Average Waiting Time (AWT) (in seconds) by the Proposed
FLTS, FCFS, RR and HF with varying number of tasks

Number of
Tasks

Average Waiting Time (AWT) (in seconds)

FLTS FCFS RR HF

100 20 60 45 30

200 35 120 95 60

300 50 180 140 90

400 70 240 185 120

500 90 300 230 150

Table 3: Throughput (in task/seconds) by the proposed FLTS, FCFS,
RR and HF with varying number of tasks

Number of
Tasks

Throughput (in task/seconds)

FLTS FCFS RR HF

100 50 40 45 42

200 52 38 44 46

300 55 36 43 48

400 58 34 41 49

500 60 32 39 50

Table 4: Resource utilization (in %) by the proposed FLTS, FCFS, RR
and HF with varying number of tasks

Number of
tasks

Resource utilization (in %)

FLTS FCFS RR HF

100 85 60 70 75

200 88 63 73 77

300 90 65 75 79

400 92 68 78 81

500 94 70 80 83

76	 Kalaiselvi and Chandrabose	 The Scientific Temper. Vol. 15, special issue

dynamically allocates resources based on task priority and
resource availability using fuzzy logic, leading to optimized
usage of computing resources. As the number of tasks
increases, the resource utilization improves significantly,
showing that the approach efficiently scales with workload
increases. FCFS has the lowest resource utilization among all
approaches. Since FCFS does not prioritize tasks or consider
the current state of resources, it often leads to resource
underutilization, especially when handling a mix of tasks
with varying resource requirements. Resource utilization
increases gradually with the task load but remains lower
than the other methods. The RR approach shows moderate
resource utilization but is still outperformed by both FLTS
and HF. RR assigns time slices equally to tasks, which can
lead to suboptimal use of resources when some tasks could
be completed faster or require fewer resources. Resource
utilization increases steadily as the task count grows, but
it lacks the adaptability needed for maximum efficiency.
The HF algorithm performs better than RR and FCFS in
terms of resource utilization but is still behind the proposed
FLTS approach. By mimicking the foraging behavior of
bees to balance workload distribution, HF achieves better
resource utilization compared to RR and FCFS. However, it
cannot match the fine-grained resource allocation and task
prioritization provided by the FLTS approach, resulting in
slightly lower resource utilization.

Conclusion
The results of evaluating the proposed fuzzy logic-based
task scheduling (FLTS), first come first serve (FCFS), round
Robin (RR), and honeybee foraging (HF) approaches in a
cloud computing environment demonstrate the superior
performance of the FLTS method across multiple metrics,
including throughput, average waiting time (AWT), and
resource utilization (RU).

Throughput
The FLTS approach consistently achieved the highest
throughput across all task sizes, efficiently completing
more tasks per unit time compared to FCFS, RR, and HF.
This improvement in throughput is due to FLTS’s ability to
dynamically allocate resources and prioritize tasks based on
system conditions and task urgency.

Average Waiting Time (AWT)
FLTS significantly reduced the waiting time for tasks in the
queue, outperforming all other approaches. This reduction
is attributed to its intelligent scheduling, which balances the
load while minimizing delays.

Resource Utilization (RU)
FLTS maximized resource utilization, effectively using the
available computing resources more efficiently than the
other methods. The dynamic nature of fuzzy logic ensured

optimal allocation of CPU, memory, and other resources,
reducing wastage and improving system performance.

In comparison, FCFS showed the poorest performance
across all metrics, mainly due to its rigid scheduling
mechanism, which does not optimize task processing
or resource allocation. Round Robin (RR) demonstrated
moderate performance but failed to adapt dynamically to
varying task demands, leading to lower throughput and
resource utilization than FLTS. Honeybee foraging (HF)
performed better than RR and FCFS due to its adaptive
nature, though it still lagged behind FLTS in overall
performance.

In conclusion, the proposed FLTS approach offers
a highly efficient solution for task scheduling in cloud
computing environments. It provides superior performance
in terms of throughput, task responsiveness, and resource
efficiency, making it an ideal choice for managing diverse
and dynamic workloads in modern cloud infrastructures.

References
Abdel-Basset, M., Mohamed, R., Abd Elkhalik, W., Sharawi,

M., & Sallam, K. M. (2022). Task scheduling approach in
cloud computing environment using hybrid differential
evolution. Mathematics, 10(21), 4049.

Aktan, M. N., & Bulut, H. (2022). Metaheuristic task scheduling
algorithms for cloud computing environments. Concurrency
and Computation: Practice and Experience, 34(9), e6513.

Alakbarov, R. (2022). An optimization model for task scheduling
in mobile cloud computing. International Journal of Cloud
Applications and Computing (IJCAC), 12(1), 1-17.

Gang, L., & Badarch, T. (2023). Research on Characteristics and
Technologies of Cloud Computing. American Journal of
Computer Science and Technology, 6(1), 33-41.

Golightly, L., Chang, V., Xu, Q. A., Gao, X., & Liu, B. S. (2022).
Adoption of cloud computing as innovation in the
organization. International Journal of Engineering Business
Management, 14, 18479790221093992.

Hamid, L., Jadoon, A., & Asghar, H. (2022). Comparative analysis
of task level heuristic scheduling algorithms in cloud
computing. The Journal of Supercomputing, 78(11), 12931-
12949.

Islam, R., Patamsetti, V., Gadhi, A., Gondu, R. M., Bandaru, C.
M., Kesani, S. C., & Abiona, O. (2023). The future of cloud
computing: benefits and challenges. International Journal of
Communications, Network and System Sciences, 16(4), 53-65.

Khan, M. S. A., & Santhosh, R. (2022). Task scheduling in cloud
computing using hybrid optimization algorithm. Soft
computing, 26(23), 13069-13079.

Liu, H. (2022). Research on cloud computing adaptive task
scheduling based on ant colony algorithm. Optik, 258,
168677.

Maaz, M., Ahmed, M. A., Maqsood, M., & Soma, S. (2023).
Development Of Service Deployment Models In Private
Cloud. Journal of Scientific Research and Technology, 1-12.

Marinescu, D. C. (2022). Cloud computing: theory and practice.
Morgan Kaufmann.

Murad, S. A., Muzahid, A. J. M., Azmi, Z. R. M., Hoque, M. I., &

	 Fuzzy logic-driven scheduling for cloud computing operations: A dynamic and adaptive approach	 77

Kowsher, M. (2022). A review on job scheduling technique
in cloud computing and priority rule based intelligent
framework. Journal of King Saud University-Computer and
Information Sciences, 34(6), 2309-2331.

Pallathadka, H., Sajja, G. S., Phasinam, K., Ritonga, M., Naved,
M., Bansal, R., & Quiñonez-Choquecota, J. (2022). An
investigation of various applications and related challenges
in cloud computing. Materials Today: Proceedings, 51, 2245-
2248.

Parast, F. K., Sindhav, C., Nikam, S., Yekta, H. I., Kent, K. B., & Hakak, S.
(2022). Cloud computing security: A survey of service-based
models. Computers & Security, 114, 102580.

Sharma, M., Kumar, M., & Samriya, J. K. (2022). An optimistic approach
for task scheduling in cloud computing. International Journal
of Information Technology, 14(6), 2951-2961.

Van Krieken, E., Acar, E., & van Harmelen, F. (2022). Analyzing

differentiable fuzzy logic operators. Artificial Intelligence, 302,
103602.

Varshney, A., & Goyal, V. (2023). Re-evaluation on fuzzy logic
controlled system by optimizing the membership
functions. Materials Today: Proceedings.

Volkov, A. O., Korobkina, A. V., & Stepanov, S. N. (2022, March).
Development of a Model and Algorithms for Servicing Real-
Time and Data Traffic in a Cloud Computing System. In 2022
Systems of Signals Generating and Processing in the Field of on
Board Communications (pp. 1-5). IEEE.

Zadeh, L. A. (2023). Fuzzy logic. In Granular, Fuzzy, and Soft
Computing (pp. 19-49). New York, NY: Springer US.

Zhao, T., Cao, H., & Dian, S. (2022). A self-organized method
for a hierarchical fuzzy logic system based on a fuzzy
autoencoder. IEEE Transactions on Fuzzy Systems, 30(12),
5104-5115.

