
Abstract
The exponential growth of high-dimensional data in various domains, such as healthcare, finance, and image processing, presents 
significant challenges for efficient analysis and predictive modeling. Dimensionality reduction is a key technique to address these 
challenges, mitigating the curse of dimensionality while preserving the most relevant information. This paper proposes an optimization-
based dimensionality reduction approach that integrates principal component analysis (PCA) with cultural algorithm (CA) optimization 
to enhance the handling of high-dimensional datasets. PCA is employed to transform the data by extracting principal components that 
capture the maximum variance. However, the selection of an optimal subset of components remains crucial for maintaining model 
accuracy and computational efficiency. To this end, the cultural algorithm is leveraged to optimize the selection of the most informative 
principal components by mimicking the evolutionary process of knowledge acquisition in a cultural framework. The proposed approach 
is validated through experiments on various high-dimensional datasets, demonstrating its superiority in reducing data dimensionality 
while maintaining high classification accuracy and reducing computational costs. The results highlight the effectiveness of combining PCA 
with cultural algorithm optimization for dimensionality reduction, paving the way for its application in large-scale real-world problems.
Keywords: Dimensionality reduction, Principal component analysis, Cultural algorithm, Healthcare domain.
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Introduction
The healthcare domain encompasses a vast and complex 
ecosystem dedicated to maintaining and improving human 
health. It includes a wide range of stakeholders, such as 
healthcare providers (hospitals, clinics, and physicians), 
patients, pharmaceutical companies, government regulatory 
bodies, insurance companies, and technology vendors. 
This domain is driven by the mission to diagnose, treat, 
prevent, and manage diseases and medical conditions while 
improving the quality of life for individuals and communities. 
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As healthcare continues to evolve, it is becoming more data-
driven, personalized, and patient-centric, which requires 
the integration of advanced technologies, including data 
analytics, artificial intelligence (AI), machine learning (ML), 
and the Internet of Things (IoT), Ayesha, S., Hanif, M. K., & 
Talib, R. (2021), Hasan, B. M. S., & Abdulazeez, A. M. (2021).

In the modern healthcare landscape, vast amounts of data 
are generated daily, from electronic health records (EHRs) and 
wearable health devices to medical imaging and genomic 
sequencing. This data is essential for making informed 
decisions regarding patient care, diagnosis, and treatment, 
as well as improving operational efficiency in healthcare 
systems. Data-driven approaches have revolutionized 
healthcare by enabling personalized medicine, predictive 
analytics, and population health management. However, 
with the exponential increase in data volume and complexity, 
handling and analyzing high-dimensional healthcare data 
has become one of the greatest challenges, Ray, P., Reddy, 
S. S., & Banerjee, T. (2021), Patra, S. S., et al. (2021), Tripathy, B. 
K., Sundareswaran, A., & Ghela, S. (2021).

High-dimensional data in healthcare refers to datasets 
with numerous variables or features, often in the range 
of thousands to millions. For example, in genomics, each 
patient’s DNA can be represented by millions of genetic 
markers, and in medical imaging, each scan can contain 
hundreds of thousands of pixels, each representing 
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important information. Such data, while rich in information, 
poses significant challenges for traditional data analysis 
and machine learning methods, which can suffer from 
the “curse of dimensionality.” The curse of dimensionality 
refers to the phenomenon where the performance of 
algorithms deteriorates as the number of features increases, 
leading to increased computational complexity, noise, and 
overfitting in models, Alhassan, A. M., & Wan Zainon, W. 
M. N. (2021), Islam, M. T., & Xing, L. (2021), Nanga, S., et al. 
(2021), Poornappriya, T. S., & Durairaj, M. (2019), Durairaj, M., 
& Poornappriya, T. S. (2020).

Healthcare data is highly diverse and includes various 
types of structured and unstructured data:

Electronic Health Records (EHRs)
Digital versions of patient medical histories, including 
diagnoses, medications, treatment plans, immunization 
dates, allergies, radiology images, and lab test results. EHRs 
are a rich source of structured and semi-structured data that 
can be mined for insights into patient outcomes, disease 
progression, and treatment effectiveness.

Medical Imaging
This includes X-rays, MRIs, CT scans, and ultrasound images, 
which are used to diagnose and monitor diseases. The 
high-dimensional nature of medical imaging data makes 
it a critical area for dimensionality reduction and image 
processing techniques.

Genomic Data
Genomics focuses on the study of an individual’s DNA and its 
impact on health. High-throughput technologies like next-
generation sequencing (NGS) generate massive datasets 
that contain thousands to millions of genetic variants, 
making dimensionality reduction essential for identifying 
key markers associated with diseases.

Wearable Devices and IoT Data
The proliferation of wearable devices, such as fitness trackers 
and smartwatches, has led to continuous streams of real-
time health data, including heart rate, blood pressure, 
and physical activity levels. This real-time data is critical 
for monitoring chronic conditions and enabling proactive 
healthcare interventions.

Clinical Notes
Unstructured text data from physician notes, discharge 
summaries, and patient interactions are often filled with 
valuable insights but require advanced natural language 
processing (NLP) techniques to extract meaningful 
information.

Principal Component Analysis Approach
Principal Component Analysis (PCA) is one of the most 
widely used techniques for dimensionality reduction in data 

science, machine learning, and statistics. It is a statistical 
method that transforms high-dimensional data into a 
lower-dimensional form while preserving as much variability 
(information) as possible. PCA achieves this by projecting the 
data onto a new set of orthogonal axes, known as principal 
components, which are ordered by the amount of variance 
they capture from the original dataset, Hasan, B. M. S., & 
Abdulazeez, A. M. (2021), Kostick, K. M., et al. (2021).

Dimensionality Reduction
PCA aims to reduce the number of variables (features) in a 
dataset while maintaining as much information as possible. 
This is especially useful in high-dimensional data, where 
many features may be correlated, redundant, or irrelevant.

Variance Preservation
PCA ensures that the principal components capture the 
maximum variance from the original data. The first principal 
component captures the most variance. The second 
captures the next most, and so on.

Data Visualization
PCA is often used for data visualization, especially in cases 
where the original dataset has more than three dimensions. 
By reducing the data to two or three principal components, 
one can create 2D or 3D plots that represent complex data 
structures.

PCA is based on linear algebra and involves finding the 
eigenvalues and eigenvectors of a data covariance matrix. 
The eigenvectors represent the principal components (new 
axes) onto which the original data will be projected, and the 
eigenvalues indicate the amount of variance captured by 
each principal component.

Step by Step Procedure for PCA

Step 1: Standardization
Given a dataset X of size n×d times dn×d, where n is 
the number of samples and d is the number of features, 
standardize the data if the features are measured on 
different scales. For each feature , subtract the mean and 
divide by the standard deviation: where  is the 
standardized data matrix,  is the mean of feature j,  is 
the standard deviation of feature j. This step ensures that all 
features contribute equally to the analysis. 

Step 2: Compute the Covariance Matrix
Once the data is standardized, calculate the covariance 
matrix of the dataset X. The covariance matrix measures how 
different features in the data vary together. It is computed as:  

 Where  is the transpose of the matrix X,  is the 
d X d covariance matrix. Each element  of the covariance 
matrix represents the covariance between features i and j. 
If features are positively correlated  will be positive, and 
if they are negatively correlated,  will be negative.
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Step 3: Eigenvalue and Eigenvector Decomposition
The next step is to perform eigenvalue decomposition 
on the covariance matrix Σ. This decomposition allows 
us to find the eigenvectors (principal components) and 
the corresponding eigenvalues (variance explained by 
each component). Solve the following equation for the 
eigenvalue λ and eigenvectors v: Σv=λv, where v represents 
the eigenvectors (principal components), λ represents the 
eigenvalues.

Eigenvalues ​ represent the amount of variance 
explained by the corresponding eigenvector (principal 
component) ​. The larger the eigenvalue, the more variance 
is captured by that principal component.

Step 4: Sort Eigenvalues and Eigenvectors
Sort the eigenvalues in descending order and rearrange 
the eigenvectors accordingly. This ordering helps prioritize 
the principal components that capture the most variance. 
Let , where  is the largest eigenvalue, 
corresponding to the first principal component, and so on.

Step 5: Select Principal Components
Decide how many principal components to retain based 
on the explained variance. The explained variance for each 
principal component i is given by: Explained Variance Ratio = 

. You may retain the top kkk principal components such 
that they capture a significant portion (e.g., 90% or 95%) of 
the total variance:  desired percentage of variance. 
The smaller the number of principal components, the more 
the data is compressed, but the less information it retains.

Step 6: Project the Data onto the Principal Components
Once you have selected the principal components 
(eigenvectors), project the original data X onto the new set 
of axes defined by the eigenvectors. Let , where 
Z is the transformed dataset (with reduced dimensions), 

 is a d X k matrix, where each column is one of the top k 
eigenvectors, Z is of size n×k, representing the dataset in 
the new k-dimensional subspace.

Cultural Algorithm for Optimization
Cultural Algorithm (CA) is an evolutionary optimization 
technique inspired by the concept of cultural evolution 
in human societies. Unlike traditional genetic algorithms 
or evolutionary strategies, where the search for optimal 
solutions is driven purely by biological evolution, cultural 
algorithms utilize both individual experiences and shared 
cultural knowledge to guide the search process. This 
incorporation of a knowledge-sharing mechanism helps to 
improve the convergence speed and the quality of solutions 
in complex optimization problems, Coello, C. A. C., & Castillo 
Tapia, M. G. (2021), Meng, X. (2021). 

Cultural Algorithms are modeled on two levels of 
evolution:

Population Space
This represents the traditional evolutionary algorithms 
(like Genetic Algorithms) where individual solutions evolve 
through variation and selection. The population space mimics 
biological evolution, where individuals are modified by 
genetic operators such as selection, crossover, and mutation.

Belief Space
This represents cultural evolution, where individuals share 
and accumulate knowledge over generations. The belief 
space serves as a repository of knowledge or rules that 
influence the evolutionary process. It is used to guide 
individuals in the population space toward more promising 
areas of the search space.

Cultural algorithms work by maintaining and updating 
both the population space (individual solutions) and 
the belief space (shared knowledge) throughout the 
optimization process. These two spaces interact to 
accelerate the search for optimal solutions.	

Components of Cultural Algorithms

Population Space
•	 This is a collection of candidate solutions (individuals) 

to the optimization problem.
•	 Individuals in the population are evaluated based on a 

fitness function that reflects how well they solve the 
problem.

•	 Typical genetic operators, such as selection, crossover, 
and mutation, are applied to generate new individuals 
and evolve the population.

Belief Space
•	 The belief space represents accumulated knowledge 

that influences the evolutionary process.
•	 Knowledge in the belief space is structured in different 

categories such as norms, situational knowledge, 
historical knowledge, topographical knowledge, etc.

•	 The belief space is updated based on the best-performing 
individuals in the population space. It provides guidance 
to the population in future generations.

Communication Protocol

Acceptance Function
The acceptance function determines which individuals 
from the population space can influence the belief space. 
Typically, high-performing individuals contribute their 
knowledge to the belief space, improving the optimization 
process in subsequent generations.

Influence Function
The influence function determines how the belief space 
affects the population space. This function guides the search 
process by shaping or modifying the evolutionary process 
(e.g., adjusting mutation rates or constraining crossover).
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Working of Cultural Algorithms
The basic steps of a Cultural Algorithm can be summarized 
as follows:

Initialization
•	 Generate an initial population of candidate solutions 

randomly.
•	 Initialize an empty belief space, or populate it with 

preliminary knowledge if available.

Evaluation
•	 Evaluate the fitness of each individual in the population 

space using the fitness function.

Update Belief Space
•	 Select individuals (based on their fitness) to contribute 

to the belief space.
•	 Update the belief space based on the knowledge 

extracted from the selected individuals (e.g., ranges 
of parameter values or successful solution strategies).

Influence Population
•	 Use the belief space to guide the creation of new 

individuals.
•	 Apply the influence function to modify the genetic 

operators or constrain the search to regions suggested 
by the belief space.

Evolution in Population Space
•	 Apply evolutionary operators (selection, crossover, 

mutation) to generate a new population of individuals.
•	 Repeat the evaluation, update, and influence steps for a 

set number of generations or until a stopping criterion 
is met.

Convergence
•	 The algorithm terminates when a satisfactory solution is 

found, or a maximum number of generations is reached.

Structure of the Belief Space
The belief space in Cultural Algorithms is divided into 
different components, each representing a different form 
of knowledge. These components guide the population 
evolution by influencing the genetic operations and the 
search space exploration. Some common categories of 
knowledge in the belief space are:

Normative Knowledge
This component represents the norms or acceptable ranges 
for solution parameters. For example, it may define upper 
and lower bounds for certain variables, restricting the search 
space based on past successful solutions.

Situational Knowledge
This contains specific experiences or situations that have led to 
successful outcomes in previous generations. It helps guide the 
search process toward promising regions of the search space.

Domain-Specific Knowledge
This includes any specialized knowledge relevant to the 
specific optimization problem being solved. For example, in 
healthcare optimization it might include knowledge about 
patient behavior or treatment success rates.

Topographical Knowledge
This refers to information about the fitness landscape of the 
problem, such as regions of high or low fitness. It can help 
the algorithm avoid local optima and search more effectively 
for the global optimum.

Historical Knowledge
This is the accumulated knowledge of the best solutions 
and strategies used in previous generations. It helps retain 
important information that can guide the algorithm in future 
generations.

Proposed Cultural Algorithm Based Principal 
Component Analysis (Ca-Pca) Approach For Handling 
High Dimensional Data
In this optimization-based dimensionality reduction 
approach, principal component analysis (PCA) is used 
to reduce the dimensionality of high-dimensional data, 
while the cultural algorithm (CA) is applied to optimize the 
selection of principal components, ensuring that the reduced 
feature set maintains maximum variance and performance.

Step 1: Data Preprocessing

•	 Step 1.1: Data Collection
Gather high-dimensional data relevant to the problem 
domain, ensuring the dataset contains all necessary features.

•	 Step 1.2: Data Cleaning
Handle missing values, remove noise, and resolve 
inconsistencies. Normalize or standardize the data 
(e.g., Z-score normalization) to ensure all features have 
comparable scales.

Step 2: Apply Principal Component Analysis (PCA)

•	 Step 2.1: Standardize the Dataset
Standardize the data matrix such that each feature has zero 
mean and unit variance. This ensures that PCA is not biased 
by features with different scales.

•	 Step 2.2: Compute the Covariance Matrix
Calculate the covariance matrix of the standardized data. 
This matrix captures the relationships between different 
features in the dataset.

•	 Step 2.3: Eigenvalue Decomposition
Perform eigenvalue decomposition on the covariance matrix.

•	 Step 2.4: Rank Principal Components
Rank the eigenvalues in descending order. The eigenvalue 
represents the amount of variance explained by the principal 
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component (PC). The corresponding eigenvectors are the 
directions of the PCs.

•	 Step 2.5: Retain Top Principal Components
Select the top k principal components that account for the 
majority of the variance. The number of components ks is 
determined by a cumulative variance threshold, (e.g., 90%)

Step 3: Initialize the Cultural Algorithm (CA)

•	 Step 3.1: Population Initialization
•	 Initialize a population of candidate solutions. Each 

candidate represents a potential subset of principal 
components selected from the PCA output.

•	 Each individual in the population is a binary vector, 
where a value of 1 indicates that the corresponding 
principal component is selected, and 0 indicates it is 
not selected.

•	 Step 3.2: Belief Space Initialization
Initialize the belief space, which stores shared knowledge 
and guides the optimization process. The belief space 
contains:
•	 Normative knowledge: Ranges for the number of 

principal components to select.
•	 Situational knowledge: Knowledge about successful 

combinations of principal components.

Step 4: Fitness Evaluation

•	 Step 4.1: Define Fitness Function
Design a fitness function to evaluate the performance of 
each candidate solution (subset of principal components). 
The fitness function should measure:
•	 Classification/Prediction Performance: Use a supervised 

learning algorithm (e.g., Support Vector Machine, 
Logistic Regression) to classify or predict based on the 
selected components.

•	 Dimensionality Reduction: Reward solutions with 
fewer components, ensuring effective dimensionality 
reduction without compromising on accuracy. Where 

 and  are weighting factors to balance accuracy and 
reduction.

  

•	 Step 4.2: Evaluate Population
For each individual in the population, select the subset of 
principal components and evaluate its fitness using the 
fitness function.

Step 5: Update the Belief Space

•	 Step 5.1: Acceptance Function
Use the acceptance function to select high-performing 
individuals from the population to update the belief space. 
Typically, the top-performing individuals contribute their 
knowledge to the belief space.

•	 Step 5.2: Update Normative Knowledge
Update the normative knowledge (e.g., upper and lower 
bounds for the number of components) based on successful 
candidates: B(t+1)normative = [min (components), max 
(components)]

•	 Step 5.3: Update Situational Knowledge
Update situational knowledge by identifying successful 
combinations of principal components that frequently 
appear in high-performing solutions. This knowledge can 
guide future generations.

Step 6: Generate New Population

•	 Step 6.1: Apply Influence Function
Use the belief space to influence the generation of new 
solutions. The influence function modifies the genetic 
operators or constrains the search space. For instance:
•	 Use normative knowledge to limit the range of principal 

components selected.
•	 Use situational knowledge to encourage or discourage 

certain combinations of components.

•	 Step 6.2: Apply Genetic Operators
Perform evolutionary operations such as
•	 Selection: Select individuals based on their fitness scores 

to create a mating pool.
•	 Crossover: Combine individuals to generate new 

solutions by exchanging components.
•	 Mutation: Randomly modify individual components to 

explore new regions of the search space.

Step 7: Convergence and Termination

•	 Step 7.1: Convergence Check
Monitor the optimization process for convergence. The 
algorithm terminates when:
•	 A satisfactory solution is found (i.e., a subset of principal 

components that achieves high performance and 
substantial dimensionality reduction).

•	 The fitness improvement between generations falls 
below a threshold.

•	 A maximum number of generations is reached.

•	 Step 7.2: Final Solution
The best-performing individual at the end of the optimization 
process is selected as the final solution. This individual 
represents the optimal subset of principal components for 
dimensionality reduction.

Result And Discussion

Performance Metrics
The performance of the proposed CA-PCA approach is 
evaluated with other optimization techniques like genetic 
algorithm, particle swarm optimization (PSO), artificial bee 
colony (ABC) and ant colony optimization (ACO) with PCA. 
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The following table metrics are considered to evaluate the 
performance. Table 1 depicts the performance metrics used 
in this paper.

To evaluate the performance of the Proposed PCA-CA 
approach for dimensionality reduction, the healthcare 
datasets that are publicly available are considered. The 
cervical cancer, lung cancer and dermatology datasets 
are considered to evaluate the proposed dimensionality 
reduction approach. The classification techniques like 
random forest (RF), K-nearest neighbor (KNN), gradient 
boosting tree (GBT), neural network (NN), and Naïve Bayes 
(NB) are considered UCI machine learning repositories (n.d.), 
cervical cancer risk factors, lung cancer, dermatology.

Classification Accuracy 
Table 2 depicts the classification accuracy (in %) obtained 
by the Proposed and existing Optimization techniques like 
a genetic algorithm (GA), PSO, ABC, and ACO for cervical 
cancer dataset, lung cancer dataset and dermatology 
dataset using RF, KNN, GBT, ANN, and NB classifiers. 

The classification accuracy for various datasets (Cervical 
Cancer, Lung Cancer, and Dermatology) using different 
optimization techniques (GA, PSO, ABC, ACO) and classifiers 
(random forest (RF), K-nearest neighbors (KNN), gradient 
boosting trees (GBT), artificial neural networks (ANN), and 
Naive Bayes (NB)) is presented in Table 2.

Cervical Cancer Dataset
•	 The original dataset yielded the lowest accuracies across 

all classifiers, ranging from 41.65 (NB) to 48.32% (GBT).
•	 Optimization techniques signif icantly improved 

the classification accuracy, with the ACO technique 
achieving the highest accuracy (72.87% for GBT) among 
the existing methods.

•	 The proposed CA-PCA method outperformed all existing 
techniques, achieving impressive accuracies of 93.55 
(RF) and 95.06% (GBT).

Lung Cancer Dataset
•	 Similar to the cervical cancer dataset, the original dataset 

had low accuracy rates, with NB achieving the lowest 
at 41.75%.

•	 ACO again yielded the highest accuracy for existing 
methods (72.59% for GBT).

•	 The proposed CA-PCA method showed substantial 
improvements, with accuracies of 93.46 (RF) and 
94.91% (GBT), indicating its effectiveness in enhancing 
classification performance.

Dermatology Dataset
•	 The original dataset’s accuracies were again the lowest, 

with NB showing 42.72% as the minimum.
•	 ACO produced the highest accuracy among existing 

methods, achieving 74.04% for both GBT and KNN.
•	 The proposed CA-PCA method achieved the highest 

accuracies across all classifiers, with 95.85% (KNN) and 
95.15% (RF and GBT), demonstrating its superiority in 
classification tasks.

True Positive Rate
Table 3 depicts the true positive rate (in %) obtained by the 
proposed and existing optimization techniques like GA, 
PSO, ABC, and ACO for cervical cancer dataset, lung cancer 

Table 1: Performance metrics

Metrics Equation

Accuracy TP+TN/TP+FN+TN+FP

True positive rate (TPR) 
(Sensitivity or Recall)

TP/TP+FN

False positive rate (FPR) FP/FP+TN

Precision TP/TP+FP

True negative rate (Specificity) 1- False Positive Rate (FPR)

Miss rate 1-True Positive Rate (TPR)

Table 2: Classification accuracy (in %) obtained by the proposed 
and existing optimization techniques like GA, PSO, ABC, and ACO for 

the cervical cancer dataset, lung cancer dataset and dermatology 
dataset using RF, KNN, GBT, ANN, and NB classifiers

Feature selection 
methods

Classification accuracy (in %) – Cervical cancer 
dataset

RF KNN GBT NN NB

Original dataset 43.099 46.44 48.32 42.98 41.65

GA 69.63 69.97 70.84 68.45 67.91

PSO 66.54 66.86 68.75 63.34 62.82

ABC 65.46 65.77 67.64 62.23 61.73

ACO 71.76 72.30 72.87 69.81 68.27

Proposed CA-PCA 93.55 94.86 95.06 78.92 79.45

Classification accuracy (in %) – Lung cancer 
dataset

Original dataset 43.97 44.98 48.32 42.86 41.75

GA 69.34 70.94 70.84 67.43 66.83

PSO 58.43 59.85 59.73 56.32 55.72

ABC 57.34 58.74 58.64 55.43 54.81

ACO 71.67 71.47 72.59 69.78 68.92

Proposed CA-PCA 93.46 94.09 94.91 80.58 78.21

Classification accuracy (in %) – dermatology 
dataset

Original dataset 44.93 45.81 50.16 43.82 42.72

GA 68.81 67.11 66.19 64.28 63.22

PSO 57.92 58.22 55.28 53.37 52.34

ABC 56.81 57.32 54.19 52.46 51.45

ACO 74.04 72.20 74.04 69.15 68.42

Proposed CA-PCA 95.15 95.85 95.15 82.57 81.98
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dataset and dermatology dataset using RF, KNN, GBT, ANN, 
and NB classifiers.

Table 3 presents the true positive rate (TPR) achieved by 
various optimization techniques (GA, PSO, ABC, ACO) and 
classifiers (Random Forest (RF), K-nearest neighbors (KNN), 
gradient boosting trees (GBT), artificial neural networks 
(ANN), and Naive Bayes (NB)) across three datasets: Cervical 
cancer, lung cancer, and dermatology.

Cervical Cancer Dataset
•	 The original dataset recorded relatively low TPR values, 

with NB showing the lowest at 50.26% and KNN the 
highest at 52.94%.

•	 All optimization techniques improved TPR significantly, 
with the GA method achieving the highest TPR of 
76.07% for RF.

•	 ACO also yielded notable results, reaching a maximum 
TPR of 76.37% for KNN.

•	 The proposed CA-PCA method demonstrated 
remarkable performance, attaining TPRs of 93.35% 
(RF) and 94.99% (KNN), highlighting its effectiveness 
in enhancing classification sensitivity.

Lung Cancer Dataset
•	 The original dataset showed low TPR values, with the 

highest at 52.76% for GBT and the lowest at 45.87% for NB.
•	 GA provided significant improvements, especially with 

KNN (75.50%) and GBT (74.45%).
•	 ACO outperformed other existing techniques, achieving 

a TPR of 82.3% for RF.
•	 The proposed CA-PCA method excelled with TPRs of 

92.42% (RF) and 95.51% (GBT), indicating substantial 
enhancements in sensitivity across classifiers.

Dermatology Dataset
•	 The original dataset produced the lowest TPR values 

again, with NB at 46.22% and RF at 55.11%.
•	 GA yielded improved results, with TPRs around 67.35% 

for RF and 70.57% for GBT.
•	 ACO showed the highest TPR among existing methods, 

reaching 84.55% for RF.
•	 The proposed CA-PCA method achieved the highest 

TPR values, with 96.53% (RF) and 96.90% (KNN), 
demonstrating its superior ability to identify positive 
cases in the dataset.

Table 3: True positive rate (in %) obtained by the proposed and 
existing optimization techniques like GA, PSO, ABC, and ACO for 

cervical cancer dataset, lung cancer dataset and dermatology 
dataset using RF, KNN, GBT, ANN, and NB classifiers

Feature selection 
methods

True positive rate (in %) – Cervical cancer 
dataset

RF KNN GBT NN NB

Original dataset 52.61 52.94 52.80 51.78 50.26

GA 76.07 74.59 71.35 73.63 72.21

PSO 69.18 67.68 65.45 65.72 64.32

ABC 64.34 66.57 68.29  64.61 63.21

ACO 75.37 76.37 70.54 69.32 68.54

Proposed CA-PCA 93.35 94.99 94.97 78.15 77.73

True positive rate (in %) – Lung cancer dataset

Original dataset 51.26 47.68 52.76 46.35 45.87

GA 73.05 75.50 74.45 71.16 70.61

PSO 62.16 64.41 63.34 60.24 59.72

ABC 61.27 63.32 62.25 59.13 58.61

ACO 82.3 74.90 71.19 69.24 67.72

Proposed CA-PCA 92.42 94.51 95.51 79.96 77.45

True positive rate (in %) – Dermatology dataset

Original dataset 55.11 49.44 54.26 47.53 46.22

GA 67.35 69.42 70.57 65.46 64.53

PSO 56.43 58.31 60.46 54.55 53.64

ABC 55.65 57.53 59.68 53.73 52.86

ACO 84.55 80.57 81.74 78.66 77.65

Proposed CA-PCA 96.53 96.90 95.02 81.69 80.85

Table 4: False positive rate (in %) obtained by the proposed and 
existing optimization techniques like GA, PSO, ABC, and ACO for 

cervical cancer dataset, lung cancer dataset and dermatology 
dataset using RF, KNN, GBT, ANN, and NB classifiers

Feature Selection 
Methods

False Positive Rate (in %) – Cervical Cancer 
Dataset

RF KNN GBT NN NB

Original dataset 67.17 61.08 56.83 68.89 69.04

GA 35.62 34.77 29.73 36.47 37.15

PSO 46.53 45.66 40.82 47.82 48.26

ABC 47.42 46.75 41.71 48.73 49.37

ACO 32.18 32.8 24.22 35.47 36.02

Proposed CA-PCA 6.21 5.26 4.84 27.36 25.14

False Positive Rate (in %) – Lung Cancer Dataset

Original dataset 63.8 57.67 56.58 64.32 65.52

GA 35.31 33.75 32.87 36.22 37.64

PSO 44.42 42.84 43.78 47.35 46.53

ABC 45.53 43.75 44.69 48.43 47.44

ACO 31.91 32.31 25.60 33.42 34.54

Proposed CA-PCA 5.36 6.36 5.72 20.36 20.54

False Positive Rate (in %) – Dermatology Dataset

Original dataset 64.74 59.04 54.40 65.85 66.15

GA 28.79 35.32 38.08 39.19 40.43

PSO 37.88 36.43 39.19 40.28 41.34

ABC 38.06 37.65 40.32 41.40 42.56

ACO 35.76 36.21 34.56 37.32 38.65

Proposed CA-PCA 6.32 5.305 4.704 20.73 21.36
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False Positive Rate
Table 4 depicts the false positive rate (in %) obtained by 
the proposed and existing optimization techniques like GA, 
PSO, ABC, and ACO for cervical cancer dataset, lung cancer 
dataset and dermatology dataset using RF, KNN, GBT, ANN, 
and NB classifiers.

Table 4 presents the false positive rate (FPR) obtained 
through various optimization techniques (GA, PSO, ABC, 
ACO) and classifiers (Random Forest (RF), K-Nearest 
Neighbors (KNN), gradient boosting trees (GBT), artificial 
neural networks (ANN), and Naive Bayes (NB)) across three 
datasets: Cervical cancer, lung cancer, and dermatology.

Cervical Cancer Dataset
•	 The original dataset recorded high FPR values, with RF 

at 67.17% and KNN at 61.08%.
•	 All optimization techniques successfully reduced FPR, 

with ACO achieving the lowest rate of 24.22% for GBT.
•	 The GA method also provided significant improvements, 

lowering FPR to 29.73% for GBT.
•	 The proposed CA-PCA method drastically reduced 

FPR, reaching only 4.84% for GBT and 5.26% for KNN, 
indicating a substantial enhancement in classification 
reliability.

Lung Cancer Dataset
•	 Similar to the cervical cancer dataset, the original dataset 

exhibited high FPR values, peaking at 65.52% for NB.
•	 GA effectively decreased FPR, particularly for KNN 

(33.75%) and GBT (32.87%).
•	 ACO also demonstrated notable results with an FPR of 

25.60% for GBT.
•	 The proposed CA-PCA method yielded remarkable 

results, achieving FPRs as low as 5.36% for RF and 6.36% 
for KNN, showcasing its effectiveness in reducing false 
positives.

Dermatology Dataset
•	 The original dataset’s FPR was also high, with NB at 

66.15% and RF at 64.74%.
•	 GA provided significant improvements, lowering FPR 

to 28.79% for RF.
•	 ACO resulted in an FPR of 34.56% for GBT, while ABC and 

PSO recorded similar reductions.
•	 The proposed CA-PCA method achieved exceptionally 

low FPR values, reaching 4.704% for GBT and 5.305% 
for KNN, indicating a strong capability to minimize false 
positive classifications.

Precision
Table 5 depicts the Precision (in %) obtained by the Proposed 
and existing Optimization techniques like GA, PSO, ABC, 
and ACO for Cervical Cancer Dataset, Lung Cancer Dataset 
and Dermatology Dataset using RF, KNN, GBT, ANN, and 
NB classifiers.

Table 5 presents the Precision values achieved by various 
optimization techniques (GA, PSO, ABC, ACO) and classifiers 
(Random Forest (RF), K-Nearest Neighbors (KNN), Gradient 
Boosting Trees (GBT), Artificial Neural Networks (ANN), and 
Naive Bayes (NB)) across three datasets: Cervical Cancer, 
Lung Cancer, and Dermatology.

Cervical Cancer Dataset
•	 The original dataset showed relatively low precision 

values, with RF at 45.81% and NB at 43.66%.
•	 All optimization techniques improved precision 

significantly, with ACO achieving the highest precision 
of 78.97% for GBT.

•	 The GA method also yielded high precision rates, 
reaching 73.60% for GBT.

•	 T he prop ose d C A- PC A metho d dramatical ly 
outperformed existing techniques, achieving precision 
rates of 94.30% (RF) and 95.50% (GBT), indicating its 
effectiveness in enhancing the reliability of positive 
classifications.

Lung Cancer Dataset
•	 The original dataset’s precision values were low, with NB 

at 44.83% and RF at 46.11%.

Table 5: Precision (in %) obtained by the Proposed and existing 
Optimization techniques like GA, PSO, ABC, and ACO for Cervical 
Cancer Dataset, Lung Cancer Dataset and Dermatology Dataset 

using RF, KNN, GBT, ANN, and NB classifiers

Feature Selection 
Methods

Precision (in %) – Cervical Cancer Dataset

RF KNN GBT NN NB

Original dataset 45.81 49.01 51.72 44.54 43.66

GA 68.79 68.81 73.60 67.89 66.34

PSO 59.68 59.72 62.51 56.78 55.43

ABC 58.57 58.61 61.43 55.65 54.32

ACO 71.97 71.45 78.97 70.54 69.80

Proposed CA-PCA 94.30 95.16 95.50 82.46 78.91

Precision (in %) – Lung Cancer Dataset

Original dataset 46.11 52.34 50.84 45.96 44.83

GA 69.21 69.77 70.04 67.32 65.98

PSO 58.32 58.68 61.13 56.31 54.87

ABC 57.43 57.79 60.24 55.42 53.78

ACO 72.76 71.92 78.18 69.53 68.25

Proposed CA-PCA 95.11 94.16 94.17 81.74 80.63

Precision (in %) – Dermatology Dataset

Original dataset 44.75 52.80 52.67 43.86 42.57

GA 74.80 67.58 64.97 63.86 62.67

PSO 63.91 57.47 53.86 52.77 51.56

ABC 61.13 56.69 52.08 51.95 50.78

ACO 68.81 69.09 72.55 67.62 66.18

Proposed CA-PCA 94.24 95.11 95.56 82.21 81.59
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•	 GA provided substantial improvements, achieving 
precision of 70.04% for GBT and 69.77% for KNN.

•	 ACO also demonstrated strong performance, reaching 
78.18% for GBT.

•	 The proposed CA-PCA method achieved precision 
values of 95.11% (RF) and 94.17% (GBT), highlighting 
its effectiveness in improving classification accuracy.

Dermatology Dataset
•	 The original dataset exhibited low precision, with NB at 

42.57% and RF at 44.75%.
•	 GA showed significant improvements, with precision 

rates of 74.80% for RF and 67.58% for KNN.
•	 ACO also provided substantial results, achieving 72.55% 

for GBT.
•	 The proposed CA-PCA method excelled with precision 

values of 94.24% (RF) and 95.56% (GBT), further 
demonstrating its superiority in classification tasks.

Specificity
Table 6 depicts the Specificity (in %) obtained by the 
Proposed and existing Optimization techniques like GA, 

PSO, ABC, and ACO for Cervical Cancer Dataset, Lung Cancer 
Dataset and Dermatology Dataset using RF, KNN, GBT, ANN, 
and NB classifiers.

Table 6 presents the Specificity values achieved by 
various optimization techniques (GA, PSO, ABC, ACO) and 
classifiers (Random Forest (RF), K-Nearest Neighbors (KNN), 
Gradient Boosting Trees (GBT), Artificial Neural Networks 
(ANN), and Naive Bayes (NB)) across three datasets: Cervical 
Cancer, Lung Cancer, and Dermatology.

Cervical Cancer Dataset
•	 The original dataset showed low specificity values, with 

RF at 32.83% and NB at 30.96%.
•	 All optimization techniques improved specificity 

significantly, with ACO achieving the highest specificity 
of 75.78% for GBT.

•	 The GA method also yielded strong results, with a 
specificity of 70.27% for GBT.

•	 T he prop ose d C A- PC A metho d signi f icantly 
outperformed existing techniques, achieving specificity 
values of 93.79% (RF) and 94.74% (KNN), indicating a 
robust ability to correctly identify true negatives.

Lung Cancer Dataset
•	 The original dataset recorded low specificity values, with 

RF at 36.2% and NB at 34.48%.
•	 GA demonstrated notable improvements, reaching a 

maximum specificity of 67.13% for GBT.
•	 ACO also provided strong performance, achieving a 

specificity of 74.4% for GBT.
•	 The proposed CA-PCA method excelled with specificity 

values of 94.64% (RF) and 93.64% (KNN), demonstrating 
its effectiveness in accurately identifying non-cancerous 
cases.

•	 Dermatology Dataset
•	 The original dataset exhibited low specificity, with RF at 

35.26% and NB at 33.85%.
•	 GA significantly improved specificity, achieving 71.21% 

for RF.
•	 ACO recorded a maximum specificity of 65.44% for GBT.
•	 The proposed CA-PCA method achieved high specificity 

rates of 93.68% (RF) and 94.695% (KNN), underscoring 
its capacity to correctly identify true negatives in 
dermatological assessments.

Miss Rate
Table 7 depicts the Miss Rate (in %) obtained by the Proposed 
and existing Optimization techniques like GA, PSO, ABC, 
and ACO for Cervical Cancer Dataset, Lung Cancer Dataset 
and Dermatology Dataset using RF, KNN, GBT, ANN, and 
NB classifiers.

Table 7 presents the Miss Rate values obtained using 
various optimization techniques (GA, PSO, ABC, ACO) and 
classifiers (Random Forest (RF), K-Nearest Neighbors (KNN), 

Table 6: Specificity (in %) obtained by the Proposed and existing 
Optimization techniques like GA, PSO, ABC, and ACO for Cervical 
Cancer Dataset, Lung Cancer Dataset and Dermatology Dataset 

using RF, KNN, GBT, ANN, and NB classifiers

Feature Selection 
Methods

Specificity (in %) – Cervical Cancer Dataset

RF KNN GBT NN NB

Original dataset 32.83 38.92 43.17 31.11 30.96

GA 64.38 65.23 70.27 63.53 62.85

PSO 53.47 54.34 59.18 52.18 51.74

ABC 52.58 53.25 58.29 51.27 50.63

ACO 67.82 67.2 75.78 64.53 63.98

Proposed CA-PCA 93.79 94.74 95.16 72.64 74.86

Specificity (in %) – Lung Cancer Dataset

Original dataset 36.2 42.33 43.42 35.68 34.48

GA 64.69 66.25 67.13 63.78 62.36

PSO 55.58 57.16 56.22 52.65 53.47

ABC 54.47 56.25 55.31 51.57 52.56

ACO 68.09 67.69 74.4 66.58 65.46

Proposed CA-PCA 94.64 93.64 94.28 79.64 79.46

Specificity (in %) – Dermatology Dataset

Original dataset 35.26 40.96 45.6 34.15 33.85

GA 71.21 64.68 61.92 60.81 59.57

PSO 62.12 63.57 60.81 59.72 58.66

ABC 61.94 62.35 59.68 58.6 57.44

ACO 64.24 63.79 65.44 62.68 61.35

Proposed CA-PCA 93.68 94.695 95.296 79.27 78.64
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Gradient Boosting Trees (GBT), Artificial Neural Networks 
(ANN), and Naive Bayes (NB)) across three datasets: Cervical 
Cancer, Lung Cancer, and Dermatology.

Cervical Cancer Dataset
•	 The original dataset exhibited high miss rates, with RF 

at 47.39% and NB at 49.74%.
•	 All optimization techniques significantly reduced the 

miss rate, with ACO achieving a low miss rate of 24.63% 
for RF.

•	 GA also showed substantial improvement, reaching a 
miss rate of 23.93% for RF.

•	 The proposed CA-PCA method demonstrated 
exceptional performance, achieving a miss rate as 
low as 5.01% for KNN and 5.03% for GBT, indicating its 
effectiveness in minimizing misclassifications.

Lung Cancer Dataset
•	 The original dataset had a high miss rate, particularly 

with KNN at 52.32% and NB at 54.13%.
•	 GA effectively reduced the miss rate to 24.50% for KNN.
•	 ACO also demonstrated a notable decrease, achieving 

a miss rate of 17.70% for RF.

•	 The proposed CA-PCA method excelled with a miss rate 
of only 4.49% for GBT and 5.49% for KNN, highlighting 
its capability in enhancing classification accuracy.

Dermatology Dataset
•	 The original dataset showed high miss rates, with RF at 

44.89% and NB at 53.78%.
•	 GA significantly lowered the miss rates, reaching 29.43% 

for GBT.
•	 ACO achieved a low miss rate of 15.45% for RF.
•	 The proposed CA-PCA method achieved the best results, 

with miss rates of 3.10% for KNN and 3.47% for RF, 
demonstrating its superior ability to classify correctly 
and minimize misclassifications.

Conclusion
The proposed Optimization-Based Dimensionality 
Reduction Approach utilizing Principal Component Analysis 
(PCA) combined with Cultural Algorithm (CA) Optimization 
effectively addresses the challenges associated with high-
dimensional data. In today’s data-driven landscape, where 
vast amounts of information can overwhelm traditional 
analysis methods, the need for efficient dimensionality 
reduction techniques is paramount.

This approach leverages PCA’s ability to transform high-
dimensional datasets into a lower-dimensional space while 
preserving essential variance, thereby facilitating easier data 
interpretation and analysis. By incorporating CA, the method 
not only selects the most relevant principal components but 
also optimizes their selection based on a fitness function that 
balances accuracy and dimensionality reduction. This dual 
mechanism enhances the robustness and adaptability of 
the model, ensuring that it can perform well across different 
datasets and applications.

The iterative process of evaluating and updating 
both the population and belief space in CA promotes 
the exploration of diverse solutions, ultimately leading to 
improved convergence and performance. The belief space, 
enriched with normative and situational knowledge, guides 
the optimization process effectively, fostering the selection 
of components that contribute to superior predictive 
accuracy.

The results from the evaluations across the Cervical 
Cancer, Lung Cancer, and Dermatology datasets highlight 
the effectiveness of the proposed CA-PCA method in 
enhancing classification performance when compared to 
existing optimization techniques such as GA, PSO, ABC, 
and ACO.

The proposed method consistently achieved superior 
results in key performance metrics, including classification 
accuracy, true positive rate, specificity, precision, and notably, 
the miss rate. For instance, in all three datasets, the CA-PCA 
method demonstrated remarkable capabilities in correctly 
identifying cases while minimizing misclassifications, 

Table 7: Miss Rate (in %) obtained by the Proposed and existing 
Optimization techniques like GA, PSO, ABC, and ACO for Cervical 
Cancer Dataset, Lung Cancer Dataset and Dermatology Dataset 

using RF, KNN, GBT, ANN, and NB classifiers

Feature Selection 
Methods

Miss Rate (in %) – Cervical Cancer Dataset

RF KNN GBT NN NB

Original dataset 47.39 47.06 47.2 48.22 49.74

GA 23.93 25.41 28.65 26.37 27.79

PSO 30.82 32.32 34.55 34.28 35.68

ABC 35.66 33.43 31.71 35.39 36.79

ACO 24.63 23.63 29.46 30.68 31.46

Proposed CA-PCA 6.65 5.01 5.03 21.85 22.27

Miss Rate (in %) – Lung Cancer Dataset

Original dataset 48.74 52.32 47.24 53.65 54.13

GA 26.95 24.5 25.55 28.84 29.39

PSO 37.84 35.59 36.66 39.76 40.28

ABC 38.73 36.68 37.75 40.87 41.39

ACO 17.7 25.1 28.81 30.76 32.28

Proposed CA-PCA 7.58 5.49 4.49 20.04 22.55

Miss Rate (in %) – Dermatology Dataset

Original dataset 44.89 50.56 45.74 52.47 53.78

GA 32.65 30.58 29.43 34.54 35.47

PSO 43.57 41.69 39.54 45.45 46.36

ABC 44.35 42.47 40.32 46.27 47.14

ACO 15.45 19.43 18.26 21.34 22.35

Proposed CA-PCA 3.47 3.1 4.98 18.31 19.15
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evidenced by exceptionally low miss rates of 5.01% (KNN) in 
the Cervical Cancer dataset, 4.49% (GBT) in the Lung Cancer 
dataset, and 3.10% (KNN) in the Dermatology dataset.
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