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Cultural algorithm based principal component analysis (CA-
PCA) approach for handling high dimensional data
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Abstract

The exponential growth of high-dimensional data in various domains, such as healthcare, finance, and image processing, presents
significant challenges for efficient analysis and predictive modeling. Dimensionality reduction is a key technique to address these
challenges, mitigating the curse of dimensionality while preserving the most relevant information. This paper proposes an optimization-
based dimensionality reduction approach that integrates principal component analysis (PCA) with cultural algorithm (CA) optimization
to enhance the handling of high-dimensional datasets. PCA is employed to transform the data by extracting principal components that
capture the maximum variance. However, the selection of an optimal subset of components remains crucial for maintaining model
accuracy and computational efficiency. To this end, the cultural algorithm is leveraged to optimize the selection of the most informative
principal components by mimicking the evolutionary process of knowledge acquisition in a cultural framework. The proposed approach
is validated through experiments on various high-dimensional datasets, demonstrating its superiority in reducing data dimensionality
while maintaining high classification accuracy and reducing computational costs. The results highlight the effectiveness of combining PCA
with cultural algorithm optimization for dimensionality reduction, paving the way for its application in large-scale real-world problems.

Keywords: Dimensionality reduction, Principal component analysis, Cultural algorithm, Healthcare domain.

As healthcare continues to evolve, it is becoming more data-
driven, personalized, and patient-centric, which requires
the integration of advanced technologies, including data
analytics, artificial intelligence (Al), machine learning (ML),
and the Internet of Things (loT), Ayesha, S., Hanif, M. K., &
Talib, R. (2021), Hasan, B. M. S., & Abdulazeez, A. M. (2021).
Inthe modern healthcare landscape, vastamounts of data
are generated daily, from electronic health records (EHRs) and
wearable health devices to medical imaging and genomic
sequencing. This data is essential for making informed
decisions regarding patient care, diagnosis, and treatment,
as well as improving operational efficiency in healthcare
systems. Data-driven approaches have revolutionized
healthcare by enabling personalized medicine, predictive
analytics, and population health management. However,
with the exponential increase in data volume and complexity,

Introduction

The healthcare domain encompasses a vast and complex
ecosystem dedicated to maintaining and improving human
health. It includes a wide range of stakeholders, such as
healthcare providers (hospitals, clinics, and physicians),
patients, pharmaceutical companies, government regulatory
bodies, insurance companies, and technology vendors.
This domain is driven by the mission to diagnose, treat,
prevent, and manage diseases and medical conditions while
improving the quality of life for individuals and communities.
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handling and analyzing high-dimensional healthcare data
has become one of the greatest challenges, Ray, P, Reddy,
S.S., &Banerjee, T. (2021), Patra, S. S, et al. (2021), Tripathy, B.
K., Sundareswaran, A., & Ghela, S. (2021).

High-dimensional data in healthcare refers to datasets
with numerous variables or features, often in the range
of thousands to millions. For example, in genomics, each
patient’s DNA can be represented by millions of genetic
markers, and in medical imaging, each scan can contain
hundreds of thousands of pixels, each representing
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important information. Such data, while rich in information,
poses significant challenges for traditional data analysis
and machine learning methods, which can suffer from
the “curse of dimensionality.” The curse of dimensionality
refers to the phenomenon where the performance of
algorithms deteriorates as the number of features increases,
leading to increased computational complexity, noise, and
overfitting in models, Alhassan, A. M., & Wan Zainon, W.
M. N. (2021), Islam, M. T., & Xing, L. (2021), Nanga, S., et al.
(2021), Poornappriya, T. S., & Durairaj, M. (2019), Durairaj, M.,
& Poornappriya, T. S. (2020).

Healthcare data is highly diverse and includes various
types of structured and unstructured data:

Electronic Health Records (EHRs)

Digital versions of patient medical histories, including
diagnoses, medications, treatment plans, immunization
dates, allergies, radiology images, and lab test results. EHRs
arearich source of structured and semi-structured data that
can be mined for insights into patient outcomes, disease
progression, and treatment effectiveness.

Medical Imaging

Thisincludes X-rays, MRIs, CT scans, and ultrasound images,
which are used to diagnose and monitor diseases. The
high-dimensional nature of medical imaging data makes
it a critical area for dimensionality reduction and image
processing techniques.

Genomic Data

Genomics focuses on the study of an individual’'s DNA and its
impact on health. High-throughput technologies like next-
generation sequencing (NGS) generate massive datasets
that contain thousands to millions of genetic variants,
making dimensionality reduction essential for identifying
key markers associated with diseases.

Wearable Devices and loT Data

The proliferation of wearable devices, such as fitness trackers
and smartwatches, has led to continuous streams of real-
time health data, including heart rate, blood pressure,
and physical activity levels. This real-time data is critical
for monitoring chronic conditions and enabling proactive
healthcare interventions.

Clinical Notes

Unstructured text data from physician notes, discharge
summaries, and patient interactions are often filled with
valuable insights but require advanced natural language
processing (NLP) techniques to extract meaningful
information.

Principal Component Analysis Approach

Principal Component Analysis (PCA) is one of the most
widely used techniques for dimensionality reduction in data

science, machine learning, and statistics. It is a statistical
method that transforms high-dimensional data into a
lower-dimensional form while preserving as much variability
(information) as possible. PCA achieves this by projecting the
data onto a new set of orthogonal axes, known as principal
components, which are ordered by the amount of variance
they capture from the original dataset, Hasan, B. M. S., &
Abdulazeez, A. M. (2021), Kostick, K. M., et al. (2021).

Dimensionality Reduction

PCA aims to reduce the number of variables (features) in a
dataset while maintaining as much information as possible.
This is especially useful in high-dimensional data, where
many features may be correlated, redundant, or irrelevant.

Variance Preservation

PCA ensures that the principal components capture the
maximum variance from the original data. The first principal
component captures the most variance. The second
captures the next most, and so on.

Data Visualization

PCA is often used for data visualization, especially in cases
where the original dataset has more than three dimensions.
By reducing the data to two or three principal components,
one can create 2D or 3D plots that represent complex data
structures.

PCA is based on linear algebra and involves finding the
eigenvalues and eigenvectors of a data covariance matrix.
The eigenvectors represent the principal components (new
axes) onto which the original data will be projected, and the
eigenvalues indicate the amount of variance captured by
each principal component.

Step by Step Procedure for PCA

Step 1: Standardization

Given a dataset X of size nxd times dnxd, where n is
the number of samples and d is the number of features,
standardize the data if the features are measured on
different scales. For each feature X subtract the mean and
divide by the standard deviation: x' = %"’where X" is the
standardized data matrix, Kjis the mean of feature j, a; is
the standard deviation of feature j. This step ensures that all
features contribute equally to the analysis.

Step 2: Compute the Covariance Matrix

Once the data is standardized, calculate the covariance
matrix of the dataset X. The covariance matrix measures how
different features in the data vary together. It is computed as:
I= ixrx Where x7T is the transpose of the matrix X, & is the
d X d covariance matrix. Each element b of the covariance
matrix represents the covariance between features i and j.
If features are positively correlated £,;; Wil be positive, and
if they are negatively correlated, I, ; will be negative.
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Step 3: Eigenvalue and Eigenvector Decomposition

The next step is to perform eigenvalue decomposition
on the covariance matrix . This decomposition allows
us to find the eigenvectors (principal components) and
the corresponding eigenvalues (variance explained by
each component). Solve the following equation for the
eigenvalue A and eigenvectors v: Zv=A\v, where v represents
the eigenvectors (principal components), A represents the
eigenvalues.

Eigenvalues j. represent the amount of variance
explained by the corresponding eigenvector (principal
component) v,. The larger the eigenvalue, the more variance
is captured by that principal component.

Step 4: Sort Eigenvalues and Eigenvectors

Sort the eigenvalues in descending order and rearrange
the eigenvectors accordingly. This ordering helps prioritize
the principal components that capture the most variance.
Letd, = A;;, = -+ = A, where 2, is the largest eigenvalue,
corresponding to the first principal component, and so on.

Step 5: Select Principal Components

Decide how many principal components to retain based
on the explained variance. The explained variance for each
principal componentiis given by: Explained Variance Ratio =
EJT You may retain the top kkk principal components such
that they capture a significant portion (e.g., 90% or 95%) of
the total variance: X¥_, ; = desired percentage of variance.
The smaller the number of principal components, the more
the data is compressed, but the less information it retains.

Step 6: Project the Data onto the Principal Components
Once you have selected the principal components
(eigenvectors), project the original data X onto the new set
of axes defined by the eigenvectors. Let Z = XV, where
Z is the transformed dataset (with reduced dimensions),
I, is a d X k matrix, where each column is one of the top k
eigenvectors, Z is of size nxk, representing the dataset in
the new k-dimensional subspace.

Cultural Algorithm for Optimization
Cultural Algorithm (CA) is an evolutionary optimization
technique inspired by the concept of cultural evolution
in human societies. Unlike traditional genetic algorithms
or evolutionary strategies, where the search for optimal
solutions is driven purely by biological evolution, cultural
algorithms utilize both individual experiences and shared
cultural knowledge to guide the search process. This
incorporation of a knowledge-sharing mechanism helps to
improve the convergence speed and the quality of solutions
in complex optimization problems, Coello, C. A.C., & Castillo
Tapia, M. G. (2021), Meng, X. (2021).

Cultural Algorithms are modeled on two levels of
evolution:

Population Space

This represents the traditional evolutionary algorithms
(like Genetic Algorithms) where individual solutions evolve
through variation and selection. The population space mimics
biological evolution, where individuals are modified by
genetic operators such as selection, crossover, and mutation.

Belief Space

This represents cultural evolution, where individuals share
and accumulate knowledge over generations. The belief
space serves as a repository of knowledge or rules that
influence the evolutionary process. It is used to guide
individuals in the population space toward more promising
areas of the search space.

Cultural algorithms work by maintaining and updating
both the population space (individual solutions) and
the belief space (shared knowledge) throughout the
optimization process. These two spaces interact to
accelerate the search for optimal solutions.

Components of Cultural Algorithms

Population Space

« This is a collection of candidate solutions (individuals)
to the optimization problem.

+ Individuals in the population are evaluated based on a
fitness function that reflects how well they solve the
problem.

- Typical genetic operators, such as selection, crossover,
and mutation, are applied to generate new individuals
and evolve the population.

Belief Space

« The belief space represents accumulated knowledge
that influences the evolutionary process.

«  Knowledge in the belief space is structured in different
categories such as norms, situational knowledge,
historical knowledge, topographical knowledge, etc.

«  Thebeliefspaceisupdated based onthe best-performing
individuals in the population space. It provides guidance
to the population in future generations.

Communication Protocol

Acceptance Function

The acceptance function determines which individuals
from the population space can influence the belief space.
Typically, high-performing individuals contribute their
knowledge to the belief space, improving the optimization
process in subsequent generations.

Influence Function

The influence function determines how the belief space
affects the population space. This function guides the search
process by shaping or modifying the evolutionary process
(e.g., adjusting mutation rates or constraining crossover).
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Working of Cultural Algorithms
The basic steps of a Cultural Algorithm can be summarized
as follows:

Initialization
« Generate an initial population of candidate solutions
randomly.

« Initialize an empty belief space, or populate it with
preliminary knowledge if available.

Evaluation

- Evaluate the fitness of each individual in the population
space using the fitness function.

Update Belief Space

« Select individuals (based on their fitness) to contribute
to the belief space.

« Update the belief space based on the knowledge
extracted from the selected individuals (e.g., ranges
of parameter values or successful solution strategies).

Influence Population

« Use the belief space to guide the creation of new
individuals.

«  Apply the influence function to modify the genetic
operators or constrain the search to regions suggested
by the belief space.

Evolution in Population Space

« Apply evolutionary operators (selection, crossover,
mutation) to generate a new population of individuals.

« Repeat the evaluation, update, and influence steps fora
set number of generations or until a stopping criterion
is met.

Convergence

« Thealgorithm terminates when a satisfactory solution is
found, ora maximum number of generations is reached.

Structure of the Belief Space

The belief space in Cultural Algorithms is divided into
different components, each representing a different form
of knowledge. These components guide the population
evolution by influencing the genetic operations and the
search space exploration. Some common categories of
knowledge in the belief space are:

Normative Knowledge

This component represents the norms or acceptable ranges
for solution parameters. For example, it may define upper
and lower bounds for certain variables, restricting the search
space based on past successful solutions.

Situational Knowledge

This contains specific experiences or situations that have led to
successful outcomes in previous generations. It helps guide the
search process toward promising regions of the search space.

Domain-Specific Knowledge

This includes any specialized knowledge relevant to the
specific optimization problem being solved. For example, in
healthcare optimization it might include knowledge about
patient behavior or treatment success rates.

Topographical Knowledge

This refers to information about the fitness landscape of the
problem, such as regions of high or low fitness. It can help
the algorithm avoid local optima and search more effectively
for the global optimum.

Historical Knowledge

This is the accumulated knowledge of the best solutions
and strategies used in previous generations. It helps retain
importantinformation that can guide the algorithm in future
generations.

Proposed Cultural Algorithm Based Principal
Component Analysis (Ca-Pca) Approach For Handling
High Dimensional Data

In this optimization-based dimensionality reduction
approach, principal component analysis (PCA) is used
to reduce the dimensionality of high-dimensional data,
while the cultural algorithm (CA) is applied to optimize the
selection of principal components, ensuring that the reduced
feature set maintains maximum variance and performance.

Step 1: Data Preprocessing

e Step 1.1: Data Collection

Gather high-dimensional data relevant to the problem
domain, ensuring the dataset contains all necessary features.

e Step 1.2: Data Cleaning

Handle missing values, remove noise, and resolve
inconsistencies. Normalize or standardize the data
(e.g., Z-score normalization) to ensure all features have
comparable scales.

Step 2: Apply Principal Component Analysis (PCA)

e Step 2.1: Standardize the Dataset

Standardize the data matrix such that each feature has zero
mean and unit variance. This ensures that PCA is not biased
by features with different scales.

e Step 2.2: Compute the Covariance Matrix

Calculate the covariance matrix of the standardized data.
This matrix captures the relationships between different
features in the dataset.

e Step 2.3: Eigenvalue Decomposition
Perform eigenvalue decomposition on the covariance matrix.

e Step 2.4: Rank Principal Components

Rank the eigenvalues in descending order. The eigenvalue
represents the amount of variance explained by the principal
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component (PC). The corresponding eigenvectors are the
directions of the PCs.

e Step 2.5: Retain Top Principal Components

Select the top k principal components that account for the
majority of the variance. The number of components ks is
determined by a cumulative variance threshold, (e.g., 90%)

Step 3: Initialize the Cultural Algorithm (CA)

e Step 3.1: Population Initialization
Initialize a population of candidate solutions. Each
candidate represents a potential subset of principal
components selected from the PCA output.

« Each individual in the population is a binary vector,
where a value of 1 indicates that the corresponding
principal component is selected, and 0 indicates it is
not selected.

e Step 3.2: Belief Space Initialization

Initialize the belief space, which stores shared knowledge

and guides the optimization process. The belief space

contains:

«  Normative knowledge: Ranges for the number of
principal components to select.

« Situational knowledge: Knowledge about successful
combinations of principal components.

Step 4: Fitness Evaluation

e Step 4.1: Define Fitness Function

Design a fitness function to evaluate the performance of

each candidate solution (subset of principal components).

The fitness function should measure:

Classification/Prediction Performance: Use a supervised
learning algorithm (e.g., Support Vector Machine,
Logistic Regression) to classify or predict based on the
selected components.

- Dimensionality Reduction: Reward solutions with
fewer components, ensuring effective dimensionality
reduction without compromising on accuracy. Where
« and ff are weighting factors to balance accuracy and
reduction.

Fitness = a.Accuracy — [.Number of Components

e Step 4.2: Evaluate Population

For each individual in the population, select the subset of
principal components and evaluate its fitness using the
fitness function.

Step 5: Update the Belief Space

e Step 5.1: Acceptance Function

Use the acceptance function to select high-performing
individuals from the population to update the belief space.
Typically, the top-performing individuals contribute their
knowledge to the belief space.

e Step 5.2: Update Normative Knowledge

Update the normative knowledge (e.g., upper and lower
bounds for the number of components) based on successful
candidates: B(t+1)normative = [min (components), max
(components)]

e Step 5.3: Update Situational Knowledge

Update situational knowledge by identifying successful
combinations of principal components that frequently
appear in high-performing solutions. This knowledge can
guide future generations.

Step 6: Generate New Population

e Step 6.1: Apply Influence Function

Use the belief space to influence the generation of new

solutions. The influence function modifies the genetic

operators or constrains the search space. For instance:

« Use normative knowledge to limit the range of principal
components selected.

« Use situational knowledge to encourage or discourage
certain combinations of components.

e Step 6.2: Apply Genetic Operators

Perform evolutionary operations such as

«  Selection: Selectindividuals based on their fitness scores
to create a mating pool.

«  Crossover: Combine individuals to generate new
solutions by exchanging components.

« Mutation: Randomly modify individual components to
explore new regions of the search space.

Step 7: Convergence and Termination

e Step 7.1: Convergence Check

Monitor the optimization process for convergence. The

algorithm terminates when:

« Asatisfactory solutionis found (i.e., a subset of principal
components that achieves high performance and
substantial dimensionality reduction).

« The fitness improvement between generations falls
below a threshold.

« A maximum number of generations is reached.

e Step 7.2: Final Solution
The best-performingindividual at the end of the optimization
process is selected as the final solution. This individual
represents the optimal subset of principal components for
dimensionality reduction.

Result And Discussion

Performance Metrics

The performance of the proposed CA-PCA approach is
evaluated with other optimization techniques like genetic
algorithm, particle swarm optimization (PSO), artificial bee
colony (ABC) and ant colony optimization (ACO) with PCA.
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The following table metrics are considered to evaluate the
performance. Table 1 depicts the performance metrics used
in this paper.

To evaluate the performance of the Proposed PCA-CA
approach for dimensionality reduction, the healthcare
datasets that are publicly available are considered. The
cervical cancer, lung cancer and dermatology datasets
are considered to evaluate the proposed dimensionality
reduction approach. The classification techniques like
random forest (RF), K-nearest neighbor (KNN), gradient
boosting tree (GBT), neural network (NN), and Naive Bayes
(NB) are considered UCI machine learning repositories (n.d.),
cervical cancer risk factors, lung cancer, dermatology.

Classification Accuracy

Table 2 depicts the classification accuracy (in %) obtained
by the Proposed and existing Optimization techniques like
a genetic algorithm (GA), PSO, ABC, and ACO for cervical
cancer dataset, lung cancer dataset and dermatology
dataset using RF, KNN, GBT, ANN, and NB classifiers.

The classification accuracy for various datasets (Cervical
Cancer, Lung Cancer, and Dermatology) using different
optimization techniques (GA, PSO, ABC, ACO) and classifiers
(random forest (RF), K-nearest neighbors (KNN), gradient
boosting trees (GBT), artificial neural networks (ANN), and
Naive Bayes (NB)) is presented in Table 2.

Cervical Cancer Dataset

« Theoriginal datasetyielded the lowest accuracies across
all classifiers, ranging from 41.65 (NB) to 48.32% (GBT).

«  Optimization techniques significantly improved
the classification accuracy, with the ACO technique
achieving the highest accuracy (72.87% for GBT) among
the existing methods.

«  The proposed CA-PCA method outperformed all existing
techniques, achieving impressive accuracies of 93.55
(RF) and 95.06% (GBT).

Lung Cancer Dataset

«  Similarto the cervical cancer dataset, the original dataset
had low accuracy rates, with NB achieving the lowest
at 41.75%.

Table 1: Performance metrics

Metrics Equation

Accuracy TP+TN/TP+FN+TN+FP
True positive rate (TPR) TP/TP+FN

(Sensitivity or Recall)

False positive rate (FPR) FP/FP+TN

Precision TP/TP+FP

True negative rate (Specificity) ~ 1- False Positive Rate (FPR)

Miss rate 1-True Positive Rate (TPR)

« ACO again yielded the highest accuracy for existing
methods (72.59% for GBT).

«  The proposed CA-PCA method showed substantial
improvements, with accuracies of 93.46 (RF) and
94.91% (GBT), indicating its effectiveness in enhancing
classification performance.

Dermatology Dataset

« Theoriginal dataset’s accuracies were again the lowest,
with NB showing 42.72% as the minimum.

« ACO produced the highest accuracy among existing
methods, achieving 74.04% for both GBT and KNN.

«  The proposed CA-PCA method achieved the highest
accuracies across all classifiers, with 95.85% (KNN) and
95.15% (RF and GBT), demonstrating its superiority in
classification tasks.

True Positive Rate

Table 3 depicts the true positive rate (in %) obtained by the
proposed and existing optimization techniques like GA,
PSO, ABC, and ACO for cervical cancer dataset, lung cancer

Table 2: Classification accuracy (in %) obtained by the proposed
and existing optimization techniques like GA, PSO, ABC, and ACO for
the cervical cancer dataset, lung cancer dataset and dermatology
dataset using RF, KNN, GBT, ANN, and NB classifiers

Classification accuracy (in %) — Cervical cancer

Feature selection dataset
methods
RF KNN GBT NN NB

Original dataset ~ 43.099 46.44 48.32 42.98 41.65
GA 69.63 69.97 70.84 68.45 67.91
PSO 66.54 66.86 68.75 63.34 62.82
ABC 65.46 65.77 67.64 62.23 61.73
ACO 71.76 72.30 72.87 69.81 68.27

Proposed CA-PCA  93.55 94.86 95.06 78.92 79.45

Classification accuracy (in %) — Lung cancer

dataset
Original dataset 43.97 44.98 48.32 42.86 41.75
GA 69.34 70.94 70.84 67.43 66.83
PSO 58.43 59.85 59.73 56.32 55.72
ABC 57.34 58.74 58.64 55.43 54.81
ACO 71.67 71.47 72.59 69.78 68.92

Proposed CA-PCA 9346  94.09  94.91 80.58 78.21

Classification accuracy (in %) — dermatology

dataset
Original dataset ~ 44.93 4581 50.16 43.82 42.72
GA 68.81 67.11 66.19 6428  63.22
PSO 5792 5822 5528 5337 5234
ABC 56.81 5732 5419 5246 5145
ACO 7404 7220 7404 69.15 6842

Proposed CA-PCA  95.15 95.85 95.15 8257  81.98
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dataset and dermatology dataset using RF, KNN, GBT, ANN,
and NB classifiers.

Table 3 presents the true positive rate (TPR) achieved by
various optimization techniques (GA, PSO, ABC, ACO) and
classifiers (Random Forest (RF), K-nearest neighbors (KNN),
gradient boosting trees (GBT), artificial neural networks
(ANN), and Naive Bayes (NB)) across three datasets: Cervical
cancer, lung cancer, and dermatology.

Cervical Cancer Dataset

« The original dataset recorded relatively low TPR values,
with NB showing the lowest at 50.26% and KNN the
highest at 52.94%.

« All optimization techniques improved TPR significantly,
with the GA method achieving the highest TPR of
76.07% for RF.

« ACO also yielded notable results, reaching a maximum
TPR of 76.37% for KNN.

+ The proposed CA-PCA method demonstrated
remarkable performance, attaining TPRs of 93.35%
(RF) and 94.99% (KNN), highlighting its effectiveness
in enhancing classification sensitivity.

Table 3: True positive rate (in %) obtained by the proposed and
existing optimization techniques like GA, PSO, ABC, and ACO for
cervical cancer dataset, lung cancer dataset and dermatology
dataset using RF, KNN, GBT, ANN, and NB classifiers

Lung Cancer Dataset

« The original dataset showed low TPR values, with the
highest at 52.76% for GBT and the lowest at 45.87% for NB.

«  GA provided significant improvements, especially with
KNN (75.50%) and GBT (74.45%).

« ACO outperformed other existing techniques, achieving

a TPR of 82.3% for RF.

The proposed CA-PCA method excelled with TPRs of

92.42% (RF) and 95.51% (GBT), indicating substantial

enhancements in sensitivity across classifiers.

Dermatology Dataset
« The original dataset produced the lowest TPR values
again, with NB at 46.22% and RF at 55.11%.
«  GAvyielded improved results, with TPRs around 67.35%
for RF and 70.57% for GBT.
«  ACO showed the highest TPR among existing methods,
reaching 84.55% for RF.
The proposed CA-PCA method achieved the highest
TPR values, with 96.53% (RF) and 96.90% (KNN),
demonstrating its superior ability to identify positive
cases in the dataset.

Table 4: False positive rate (in %) obtained by the proposed and
existing optimization techniques like GA, PSO, ABC, and ACO for
cervical cancer dataset, lung cancer dataset and dermatology
dataset using RF, KNN, GBT, ANN, and NB classifiers

) True positive rate (in %) — Cervical cancer
Feature selection

False Positive Rate (in %) — Cervical Cancer
Feature Selection

dataset Dataset
methods Methods

RF KNN GBT NN NB RF KNN GBT NN NB
Original dataset 52.61 52.94 52.80 51.78 50.26 Original dataset 67.17 61.08 56.83 68.89 69.04
GA 76.07 74.59 71.35 73.63 72.21 GA 35.62 34.77 29.73 36.47 37.15
PSO 69.18 67.68 65.45 65.72 64.32 PSO 46.53 45.66 40.82 47.82 48.26
ABC 64.34 66.57 68.29 64.61 63.21 ABC 47.42 46.75 41.71 48.73 49.37
ACO 75.37 76.37 70.54 69.32 68.54 ACO 32.18 32.8 24.22 35.47 36.02

Proposed CA-PCA  93.35 94.99 94.97 78.15 77.73

Proposed CA-PCA  6.21 5.26 4.84 27.36 25.14

True positive rate (in %) — Lung cancer dataset

False Positive Rate (in %) — Lung Cancer Dataset

Original dataset 5126 4768 5276 4635  45.87

GA 7305 7550 7445 71.16 7061
PSO 62.16  64.41 63.34 60.24  59.72
ABC 6127 6332 6225 59.13 5861
ACO 823 7490 7119  69.24  67.72

Proposed CA-PCA  92.42 94.51 95.51 79.96 77.45

Original dataset 63.8 57.67 56.58 64.32 65.52

GA 35.31 33.75 32.87 36.22 37.64
PSO 4442 4284 4378 4735 46.53
ABC 45.53 43.75 4469 4843 47.44
ACO 31.91 3231 25.60 33.42 34.54

Proposed CA-PCA  5.36 6.36 572 2036 20.54

True positive rate (in %) — Dermatology dataset

False Positive Rate (in %) - Dermatology Dataset

Original dataset 55.11 4944 5426 4753  46.22

GA 67.35 6942 7057 6546  64.53
PSO 56.43 5831 6046  54.55 53.64
ABC 55.65 57.53 59.68  53.73 52.86
ACO 84.55 80.57 81.74 7866  77.65

Proposed CA-PCA  96.53 96.90 95.02 81.69 80.85

Original dataset 64.74 59.04 54.40 65.85 66.15

GA 2879 3532 38.08 39.19 4043
PSO 3788 3643 3919 4028 4134
ABC 3806 3765 4032 4140 4256
ACO 3576  36.21 3456 3732  38.65

Proposed CA-PCA  6.32 5.305 4.704 20.73 21.36
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False Positive Rate

Table 4 depicts the false positive rate (in %) obtained by
the proposed and existing optimization techniques like GA,
PSO, ABC, and ACO for cervical cancer dataset, lung cancer
dataset and dermatology dataset using RF, KNN, GBT, ANN,
and NB classifiers.

Table 4 presents the false positive rate (FPR) obtained
through various optimization techniques (GA, PSO, ABC,
ACO) and classifiers (Random Forest (RF), K-Nearest
Neighbors (KNN), gradient boosting trees (GBT), artificial
neural networks (ANN), and Naive Bayes (NB)) across three
datasets: Cervical cancer, lung cancer, and dermatology.

Cervical Cancer Dataset

The original dataset recorded high FPR values, with RF
at 67.17% and KNN at 61.08%.

«  All optimization techniques successfully reduced FPR,
with ACO achieving the lowest rate of 24.22% for GBT.

«  The GA method also provided significantimprovements,
lowering FPR to 29.73% for GBT.

The proposed CA-PCA method drastically reduced
FPR, reaching only 4.84% for GBT and 5.26% for KNN,
indicating a substantial enhancement in classification
reliability.

Lung Cancer Dataset

- Similarto the cervical cancer dataset, the original dataset
exhibited high FPR values, peaking at 65.52% for NB.

GA effectively decreased FPR, particularly for KNN
(33.75%) and GBT (32.87%)).

ACO also demonstrated notable results with an FPR of
25.60% for GBT.

«  The proposed CA-PCA method yielded remarkable
results, achieving FPRs as low as 5.36% for RF and 6.36%
for KNN, showcasing its effectiveness in reducing false
positives.

Dermatology Dataset

« The original dataset’s FPR was also high, with NB at
66.15% and RF at 64.74%.

+  GA provided significant improvements, lowering FPR
to 28.79% for RF.

. ACOresultedin an FPR of 34.56% for GBT, while ABC and
PSO recorded similar reductions.

« The proposed CA-PCA method achieved exceptionally
low FPR values, reaching 4.704% for GBT and 5.305%
for KNN, indicating a strong capability to minimize false
positive classifications.

Precision

Table 5 depicts the Precision (in %) obtained by the Proposed
and existing Optimization techniques like GA, PSO, ABC,
and ACO for Cervical Cancer Dataset, Lung Cancer Dataset
and Dermatology Dataset using RF, KNN, GBT, ANN, and
NB classifiers.

Table 5 presents the Precision values achieved by various
optimization techniques (GA, PSO, ABC, ACO) and classifiers
(Random Forest (RF), K-Nearest Neighbors (KNN), Gradient
Boosting Trees (GBT), Artificial Neural Networks (ANN), and
Naive Bayes (NB)) across three datasets: Cervical Cancer,
Lung Cancer, and Dermatology.

Cervical Cancer Dataset

« The original dataset showed relatively low precision
values, with RF at 45.81% and NB at 43.66%.

« All optimization techniques improved precision
significantly, with ACO achieving the highest precision
of 78.97% for GBT.

+  The GA method also yielded high precision rates,
reaching 73.60% for GBT.

« The proposed CA-PCA method dramatically
outperformed existing techniques, achieving precision
rates of 94.30% (RF) and 95.50% (GBT), indicating its
effectiveness in enhancing the reliability of positive
classifications.

Lung Cancer Dataset

- Theoriginal dataset’s precision values were low, with NB
at 44.83% and RF at 46.11%.

Table 5: Precision (in %) obtained by the Proposed and existing

Optimization techniques like GA, PSO, ABC, and ACO for Cervical

Cancer Dataset, Lung Cancer Dataset and Dermatology Dataset
using RF, KNN, GBT, ANN, and NB classifiers

Feature Selection  Precision (in %) — Cervical Cancer Dataset
Methods RF KNN  GBT NN NB
Original dataset ~ 45.81 49.01 5172 4454  43.66
GA 68.79 68.81 73.60 67.89 66.34
PSO 59.68 59.72 62.51 56.78 55.43
ABC 58.57 58.61 61.43 55.65 54.32
ACO 71.97 71.45 78.97 70.54 69.80

Proposed CA-PCA  94.30 95.16 95.50 82.46 7891

Precision (in %) - Lung Cancer Dataset
Original dataset ~ 46.11 5234 5084 4596  44.83

GA 69.21 69.77 70.04  67.32 65.98
PSO 58.32 58.68 61.13 56.31 54.87
ABC 5743 5779  60.24 5542 53.78
ACO 72.76 71.92 7818  69.53 68.25

Proposed CA-PCA  95.11 94.16 94.17 81.74 80.63

Precision (in %) — Dermatology Dataset
Original dataset ~ 44.75 52.80 52.67 4386  42.57

GA 7480  67.58 6497 6386  62.67
PSO 63.91 57.47 53.86 52.77 51.56
ABC 61.13 56.69  52.08 51.95 50.78
ACO 68.81 69.09 7255 67.62 66.18

Proposed CA-PCA 9424  95.11 9556  82.21 81.59
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«  GA provided substantial improvements, achieving
precision of 70.04% for GBT and 69.77% for KNN.

« ACO also demonstrated strong performance, reaching
78.18% for GBT.

« The proposed CA-PCA method achieved precision
values of 95.11% (RF) and 94.17% (GBT), highlighting
its effectiveness in improving classification accuracy.

Dermatology Dataset
« The original dataset exhibited low precision, with NB at
42.57% and RF at 44.75%.
«  GA showed significant improvements, with precision
rates of 74.80% for RF and 67.58% for KNN.
ACO also provided substantial results, achieving 72.55%
for GBT.
The proposed CA-PCA method excelled with precision
values of 94.24% (RF) and 95.56% (GBT), further
demonstrating its superiority in classification tasks.

Specificity
Table 6 depicts the Specificity (in %) obtained by the
Proposed and existing Optimization techniques like GA,

Table 6: Specificity (in %) obtained by the Proposed and existing

Optimization techniques like GA, PSO, ABC, and ACO for Cervical

Cancer Dataset, Lung Cancer Dataset and Dermatology Dataset
using RF, KNN, GBT, ANN, and NB classifiers

Feature Selection  Specificity (in %) — Cervical Cancer Dataset

Methods RF KNN  GBT NN NB

Original dataset 3283 3892 4317  31.11 30.96
GA 6438 6523 7027 6353 6285
PSO 53.47 54.34 59.18 52.18 51.74
ABC 5258 5325 5829 5127 5063
ACO 67.82 67.2 75.78 64.53 63.98

Proposed CA-PCA  93.79 94.74 95.16 72.64 74.86

Specificity (in %) - Lung Cancer Dataset

Original dataset 36.2 4233 4342 3568 3448

GA 6469 66.25 67.13 63.78 62.36
PSO 5558 57.16  56.22 5265 5347
ABC 5447  56.25 5531 5157 5256
ACO 68.09 6769 744 66.58  65.46

Proposed CA-PCA 9464 9364 9428 79.64 7946

Specificity (in %) — Dermatology Dataset
Original dataset 35.26 40.96 45.6 3415 33.85

GA 71.21 6468 6192  60.81 59.57
PSO 62.12  63.57 60.81 59.72  58.66
ABC 61.94 6235 5968 58.6 57.44
ACO 64.24 6379 6544 6268 6135

Proposed CA-PCA  93.68  94.695 95.296 79.27 78.64

PSO, ABC, and ACO for Cervical Cancer Dataset, Lung Cancer
Dataset and Dermatology Dataset using RF, KNN, GBT, ANN,
and NB classifiers.

Table 6 presents the Specificity values achieved by
various optimization techniques (GA, PSO, ABC, ACO) and
classifiers (Random Forest (RF), K-Nearest Neighbors (KNN),
Gradient Boosting Trees (GBT), Artificial Neural Networks
(ANN), and Naive Bayes (NB)) across three datasets: Cervical
Cancer, Lung Cancer, and Dermatology.

Cervical Cancer Dataset

« Theoriginal dataset showed low specificity values, with
RF at 32.83% and NB at 30.96%.

- All optimization techniques improved specificity
significantly, with ACO achieving the highest specificity
of 75.78% for GBT.

+  The GA method also yielded strong results, with a
specificity of 70.27% for GBT.

« The proposed CA-PCA method significantly
outperformed existing techniques, achieving specificity
values of 93.79% (RF) and 94.74% (KNN), indicating a
robust ability to correctly identify true negatives.

Lung Cancer Dataset

« Theoriginal dataset recorded low specificity values, with
RF at 36.2% and NB at 34.48%.

«  GA demonstrated notable improvements, reaching a
maximum specificity of 67.13% for GBT.

« ACO also provided strong performance, achieving a
specificity of 74.4% for GBT.

«  The proposed CA-PCA method excelled with specificity
values of 94.64% (RF) and 93.64% (KNN), demonstrating
its effectiveness in accurately identifying non-cancerous
cases.

« Dermatology Dataset

- Theoriginal dataset exhibited low specificity, with RF at
35.26% and NB at 33.85%.

«  GA significantly improved specificity, achieving 71.21%
for RF.

+ ACOrecorded a maximum specificity of 65.44% for GBT.

«  The proposed CA-PCA method achieved high specificity
rates of 93.68% (RF) and 94.695% (KNN), underscoring
its capacity to correctly identify true negatives in
dermatological assessments.

Miss Rate

Table 7 depicts the Miss Rate (in %) obtained by the Proposed
and existing Optimization techniques like GA, PSO, ABC,
and ACO for Cervical Cancer Dataset, Lung Cancer Dataset
and Dermatology Dataset using RF, KNN, GBT, ANN, and
NB classifiers.

Table 7 presents the Miss Rate values obtained using
various optimization techniques (GA, PSO, ABC, ACO) and
classifiers (Random Forest (RF), K-Nearest Neighbors (KNN),
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Table 7: Miss Rate (in %) obtained by the Proposed and existing

Optimization techniques like GA, PSO, ABC, and ACO for Cervical

Cancer Dataset, Lung Cancer Dataset and Dermatology Dataset
using RF, KNN, GBT, ANN, and NB classifiers

Feature Selection ~ Miss Rate (in %) — Cervical Cancer Dataset
Methods RF KNN  GBT NN NB
Original dataset 4739  47.06 472 4822  49.74
GA 2393 2541 28.65 2637  27.79
PSO 30.82 32.32 34.55 34.28 35.68
ABC 3566 3343 31.71 3539  36.79
ACO 2463 2363 2946 30.68 3146

Proposed CA-PCA  6.65 5.01 5.03 21.85 22.27

Miss Rate (in %) — Lung Cancer Dataset
Original dataset 48.74 5232 4724  53.65 54.13

GA 26.95 24.5 2555 2884  29.39
PSO 37.84 3559 3666 39.76  40.28
ABC 38.73 36.68 37.75 4087  41.39
ACO 17.7 25.1 28.81 3076  32.28

Proposed CA-PCA  7.58 5.49 4.49 20.04  22.55

Miss Rate (in %) — Dermatology Dataset
Original dataset 44.89 50.56 4574 5247 53.78

GA 32.65 30.58 29.43 34.54 35.47
PSO 43.57 41.69 39.54 45.45 46.36
ABC 44.35 42.47 40.32 46.27 47.14
ACO 15.45 19.43 18.26 21.34 22.35
Proposed CA-PCA  3.47 3.1 4.98 18.31 19.15

Gradient Boosting Trees (GBT), Artificial Neural Networks
(ANN), and Naive Bayes (NB)) across three datasets: Cervical
Cancer, Lung Cancer, and Dermatology.

Cervical Cancer Dataset

« The original dataset exhibited high miss rates, with RF
at 47.39% and NB at 49.74%.

« All optimization techniques significantly reduced the
miss rate, with ACO achieving a low miss rate of 24.63%
for RF.

«  GA also showed substantial improvement, reaching a
miss rate of 23.93% for RF.

« The proposed CA-PCA method demonstrated
exceptional performance, achieving a miss rate as
low as 5.01% for KNN and 5.03% for GBT, indicating its
effectiveness in minimizing misclassifications.

Lung Cancer Dataset

« The original dataset had a high miss rate, particularly
with KNN at 52.32% and NB at 54.13%.

«  GA effectively reduced the miss rate to 24.50% for KNN.

« ACO also demonstrated a notable decrease, achieving
a miss rate of 17.70% for RF.

+ The proposed CA-PCA method excelled with a miss rate
of only 4.49% for GBT and 5.49% for KNN, highlighting
its capability in enhancing classification accuracy.

Dermatology Dataset

« The original dataset showed high miss rates, with RF at
44.89% and NB at 53.78%.

«  GAsignificantly lowered the miss rates, reaching 29.43%
for GBT.

«  ACO achieved a low miss rate of 15.45% for RF.

«  Theproposed CA-PCA method achieved the best results,
with miss rates of 3.10% for KNN and 3.47% for RF,
demonstrating its superior ability to classify correctly
and minimize misclassifications.

Conclusion

The proposed Optimization-Based Dimensionality
Reduction Approach utilizing Principal Component Analysis
(PCA) combined with Cultural Algorithm (CA) Optimization
effectively addresses the challenges associated with high-
dimensional data. In today’s data-driven landscape, where
vast amounts of information can overwhelm traditional
analysis methods, the need for efficient dimensionality
reduction techniques is paramount.

This approach leverages PCA's ability to transform high-
dimensional datasets into a lower-dimensional space while
preserving essential variance, thereby facilitating easier data
interpretation and analysis. By incorporating CA, the method
not only selects the most relevant principal components but
also optimizes their selection based on a fitness function that
balances accuracy and dimensionality reduction. This dual
mechanism enhances the robustness and adaptability of
the model, ensuring that it can perform well across different
datasets and applications.

The iterative process of evaluating and updating
both the population and belief space in CA promotes
the exploration of diverse solutions, ultimately leading to
improved convergence and performance. The belief space,
enriched with normative and situational knowledge, guides
the optimization process effectively, fostering the selection
of components that contribute to superior predictive
accuracy.

The results from the evaluations across the Cervical
Cancer, Lung Cancer, and Dermatology datasets highlight
the effectiveness of the proposed CA-PCA method in
enhancing classification performance when compared to
existing optimization techniques such as GA, PSO, ABC,
and ACO.

The proposed method consistently achieved superior
results in key performance metrics, including classification
accuracy, true positive rate, specificity, precision, and notably,
the miss rate. For instance, in all three datasets, the CA-PCA
method demonstrated remarkable capabilities in correctly
identifying cases while minimizing misclassifications,
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evidenced by exceptionally low miss rates of 5.01% (KNN) in
the Cervical Cancer dataset, 4.49% (GBT) in the Lung Cancer
dataset, and 3.10% (KNN) in the Dermatology dataset.
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