
Abstract
Ensuring the quality of service (QoS) in cloud computing environments requires efficient resource allocation mechanisms to manage
dynamic workloads and meet user demands. This paper proposes a dynamic resource allocation strategy that integrates gravitational
search optimization (GSO) with Harris Hawks optimization (HHO) to optimize resource utilization and maintain QoS in cloud infrastructures.
The proposed hybrid approach combines the global search capabilities of GSO, inspired by the law of gravity, with the exploitation
and exploration strategies of HHO, mimicking the cooperative hunting behavior of Harris hawks. This synergy enables adaptive and
efficient allocation of computational resources based on real-time workload fluctuations, reducing response times, minimizing energy
consumption, and preventing Service Level Agreement (SLA) violations. By predicting workload variations and adjusting resource
allocation dynamically, the proposed method ensures higher reliability, scalability, and cost-effectiveness compared to traditional resource
allocation techniques. Simulation results demonstrate that the GSO-HHO-based approach outperforms conventional optimization
algorithms in balancing the trade-offs between performance and resource efficiency, making it a robust solution for maintaining QoS
in cloud computing environments.
Keywords: Cloud computing, quality of service, Optimization techniques, Dynamic resource allocation.

Dynamic resource allocation with otpimization techniques for
qos in cloud computing
V. Baby Deepa*, R. Jeya

RESEARCH ARTICLE

© The Scientific Temper. 2024
Received: 18/09/2024				 Accepted: 26/09/2024			 Published : 16/10/2024

Department of Computer Science, Government Arts College
(Autonomous) (Affiliated to Bharathidasan University,
Tiruchirappalli), Karur, Tamil Nadu, India.
*Corresponding Author: V. Baby Deepa, Department of Computer
Science, Government Arts College (Autonomous) (Affiliated to
Bharathidasan University, Tiruchirappalli), Karur, Tamil Nadu, India,
E-Mail: deepamct@gmail.com
How to cite this article: Baby, D.V., Jeya, R. (2024). Dynamic
resource allocation with otpimization techniques for qos in cloud
computing. The Scientific Temper, 15(spl):45-55.
Doi: 10.58414/SCIENTIFICTEMPER.2024.15.spl.06
Source of support: Nil

Conflict of interest: None.

Introduction
Resource allocation is a critical component of cloud
computing, where computing resources such as CPU,
memory, storage, and network bandwidth must be allocated
efficiently to meet the demands of users and applications.
Cloud computing operates in a highly dynamic environment,
where multiple users share infrastructure, and workloads
fluctuate in real time. As cloud service providers (CSPs)
aim to deliver scalable, flexible, and on-demand services,
effective resource allocation becomes crucial to ensure
optimal performance, minimize costs, and maintain the

The Scientific Temper (2024) Vol. 15 (spl): 45-55	 E-ISSN: 2231-6396, ISSN: 0976-8653

Doi: 10.58414/SCIENTIFICTEMPER.2024.15.spl.06	 https://scientifictemper.com/

quality of service (QoS) commitments laid out in Service
Level Agreements (SLAs), Belgacem, A. (2022), Saidi, K., &
Bardou, D. (2023), Jawhar, M. M., & Osman, H. M. (2022), Xu,
H., Xu, S., Wei, W., & Guo, N. (2023).

Resource allocation in cloud computing involves
assigning resources to tasks or virtual machines (VMs) based
on the current demand and workload while keeping the
infrastructure utilization at optimal levels. The goal is to
allocate just enough resources to ensure that all applications
receive the necessary resources to function properly without
over-provisioning, which can lead to wastage or under-
provisioning, which can lead to performance degradation
and SLA violations. Efficient resource allocation ensures
high availability, low latency, scalability, and energy
efficiency while adhering to QoS requirements like response
time, throughput, and fault tolerance, Mohamed, Y. A., &
Mohamed, A. O. (2022, July), Chen, F., Lu, A., Wu, H., Dou, R.,
& Wang, X. (2022).

In traditional computing environments, static resource
allocation was sufficient, where predefined resources were
assigned based on historical workloads. However, cloud
environments present unique challenges, such as workload
variability, multi-tenancy, and dynamic scaling requirements,
making static allocation inefficient. As cloud workloads vary
over time, with users running diverse applications that may
have unpredictable resource demands, a static allocation

46	 Deepa and Jeya	 The Scientific Temper. Vol. 15, special issue

approach often results in underutilized resources during
periods of low demand or performance bottlenecks during
peak loads. Consequently, there is a strong need for dynamic
resource allocation mechanisms that can adapt in real time
to changing conditions.

Background Study On Resource Allocation
Cloud computing has evolved into a prominent paradigm
for delivering on-demand computing services over the
internet, enabling users to access and utilize resources
such as processing power, storage, and networking
without the need for direct infrastructure ownership. The
inherent flexibility, scalability, and cost-efficiency of cloud
computing make it highly suitable for diverse applications
across industries, ranging from web hosting and big data
analytics to machine learning and internet of things (IoT)
services, Kumar, N., & Kumar, S. (2022), Umer, A., Nazir, B., &
Ahmad, Z. (2022).

One of the foundational aspects of cloud computing
is the efficient management of resources, which directly
impacts performance, cost-effectiveness, and quality
of service (QoS). Resource allocation, in particular, is a
key process in which available computational resources
are dynamically assigned to meet the needs of cloud
applications while optimizing for performance, energy
consumption, and economic factors, Umer, A., Nazir, B., &
Ahmad, Z. (2022), Osypanka, P., & Nawrocki, P. (2022), Shi,
F., & Lin, J. (2022).

This background study explores the historical context,
resource allocation models, and challenges faced in cloud
computing environments, followed by a discussion of
existing optimization techniques for dynamic resource
allocation.

Resource Allocation Models in Cloud Computing
Resource allocation in cloud computing involves
managing several types of resources, including, Hameed,
A., Khoshkbarforoushha, A., Ranjan, R., Jayaraman, P. P.,
Kolodziej, J., Balaji, P., ... & Zomaya, A. (2016), Naeem, M.,
Anpalagan, A., Jaseemuddin, M., & Lee, D. C. (2013):
•	 Compute resources: CPU cycles, memory, and storage.
•	 Network resources: Bandwidth, latency, and network

paths.
•	 Energy resources: Power consumption and cooling

requirements.
Several models have been proposed over the years for
resource allocation in cloud computing:

Static Resource Allocation
In this model, resources are allocated to tasks or VMs
based on predefined configurations or historical data.
Static allocation is easy to implement but suffers from
inefficiencies, particularly in highly dynamic cloud

environments. This can result in over-provisioning during
low-demand periods or under-provisioning during peak
demand, leading to SLA violations or resource wastage,
Petrovska, I., & Kuchuk, H. (2022).

Dynamic Resource Allocation
Dynamic resource allocation is the process of continuously
monitoring workload demands and adjusting the resource
allocation in real time. DRA improves resource utilization
and efficiency by reallocating resources based on current
demand. It is critical for maintaining QoS in cloud
environments, as workloads can fluctuate rapidly, making
static allocation inadequate, Si Salem, T., Iosifidis, G., &
Neglia, G. (2022).

On-Demand Resource Allocation
This model dynamically provisions resources only when they
are needed, based on user requests or system demands.
This approach underpins the cloud’s “pay-as-you-go” billing
model, where users are charged for resources consumed on
a per-usage basis, Han, H., Bai, X., Hou, Y., & Qiao, J. (2022).

Predictive Resource Allocation
Predictive resource allocation uses machine learning or
statistical models to forecast future workload patterns based
on historical data. The goal is to proactively adjust resource
allocation before demand spikes occur, reducing latency and
preventing bottlenecks, Chen, J., Wang, Y., & Liu, T. (2021).

Hybrid Resource Allocation
Hybrid approaches combine multiple models, such as static
and dynamic allocation, to achieve an optimal balance
between performance and resource utilization. Hybrid
models can be particularly useful in cloud environments
where different types of workloads coexist (e.g., a mix of
long-running batch jobs and latency-sensitive real-time
tasks), Teekaraman, Y., Manoharan, H., Basha, A. R., &
Manoharan, A. (2023).

Gravitational Search Optimization Approach
Gravitational search optimization (GSO) is a population-
based metaheuristic algorithm inspired by Newton’s law
of gravity and motion. First introduced by Esmat Rashedi in
2009, GSO models individuals (or agents) in the search space
as objects that attract one another based on their masses,
with the force of attraction being proportional to their
fitness. The stronger an agent’s fitness (mass), the greater its
gravitational pull, which influences the movement of other
agents toward it. This enables GSO to explore and exploit the
search space in an efficient manner, making it well-suited for
solving complex optimization problems, including dynamic
resource allocation in cloud computing environments,
Hashemi, A., Dowlatshahi, M. B., & Nezamabadi-Pour, H.
(2021), Ahmadabadi, J. Z., Mood, S. E., & Souri, A. (2023).

	 Dynamic research allocation	 47

Key Concepts

Agents
Each agent represents a potential solution in the search
space. The performance of an agent is evaluated using a
fitness function.

Mass
Each agent is assigned a mass based on its fitness; better
solutions have higher mass.

Gravity
The gravitational force attracts agents toward better
solutions.

Basic Steps of GSO

Initialization
Randomly initialize the positions and masses of the agents.

Fitness evaluation
Calculate the fitness of each agent based on the objective
function.

Gravitational force calculation
For each agent, calculate the gravitational force exerted by
other agents.

Update positions
Update the positions of the agents based on the calculated
gravitational forces.

Iteration
Repeat the fitness evaluation and position update for a
predetermined number of iterations or until convergence.

Mathematical Formulation

Gravitational force
The gravitational force between two agents i and j is given
by:

	 (1)

Where is the gravitational force between agents i and
j. G is the gravitational constant. are the masses
of agents i and j. is the distance between agents i and j.

Distance calculation
The distance between two agents i and j in a multi-
dimensional space can be calculated as:

		 (2)

Where D is the number of dimensions. and are the
coordinates of agents iii and j in dimension k.

Net gravitational force
The net gravitational force acting on agent i from all other
agents is calculated as:

		 (3)

Where N is the total number of agents.

Acceleration
The acceleration of agent i due to the net gravitational force
is given by:

		 (4)

Position update
The position of agent i is updated using the acceleration:

		 (5)

Where is the current position of agent i. is the
time step.

Mass assignment
The mass of each agent can be updated based on its fitness
as follows:

		 (6)

Where is the fitness of the best agent, is the
fitness of the worst agent, and is the fitness of agent i.

Algorithm Steps
Step 1: Initialize the population of agents.
Step 2: Evaluate the fitness of each agent.
Step 3: Calculate the mass for each agent based on fitness.
Step 4: Compute the gravitational forces and update the
positions.
Step 5: Repeat steps 2-4 until convergence criteria are met.

Harris Hawks Optimization Approach
Harris Hawks optimization (HHO) is a metaheuristic
algorithm inspired by the cooperative hunting strategy of
Harris Hawks. It is widely applied in optimization problems,
and its dynamic and adaptive nature makes it suitable for
complex problems.

HHO mimics the predatory behavior of Harris hawks,
particularly their surprise pounce mechanism. The algorithm
alternates between exploration (searching for prey) and
exploitation (attacking the prey). In cloud computing, HHO
can be used to allocate resources (like CPU, memory, and
bandwidth) dynamically by optimizing performance metrics
such as response time, cost, and energy efficiency, Zivkovic,

48	 Deepa and Jeya	 The Scientific Temper. Vol. 15, special issue

M., Bezdan, T., Strumberger, I., Bacanin, N., & Venkatachalam,
K. (2021), Alabool, H. M., Alarabiat, D., Abualigah, L., & Heidari,
A. A. (2021).

Key Components for Dynamic Resource Allocation

Hawks (Agents)
Each hawk represents a potential solution, such as a specific
resource allocation configuration.

Prey (Best Solution)
The best resource allocation solution (in terms of fitness,
such as cost minimization or performance maximization) is
the target for all hawks.

Energy level (Exploration vs Exploitation)
Hawks adapt their behavior based on the “energy” of the
system, switching between exploration (searching for a
better resource allocation) and exploitation (fine-tuning
the current allocation).

HHO Algorithm Phases

Exploration phase
The hawks search for prey by randomly adjusting resource
allocation configurations to explore the solution space.
The goal is to avoid local optima and find diverse potential
configurations.

Transition to exploitation
Based on the hawk’s energy, the algorithm dynamically
adjusts to move from exploration to exploitation. In cloud
computing, this transition corresponds to refining the best-
found resource allocation solutions.

Exploitation phase
The hawks attack the prey by narrowing down the solution
space and fine-tuning resource allocations. In dynamic
resource allocation, this involves optimizing resource
usage according to the current workload and performance
constraints.

Mathematical Function

Hawk’s position update
The position of hawks, representing resource allocation
configurations, is updated based on the current prey (best
solution) and energy levels.

During exploration

	 (7)

Where is the current position (resource allocation) of
hawk i, is a randomly selected position (another
resource configuration), and are random numbers in
[0,1], controlling randomness.

During exploitation (Soft besiege strategy)

		 (8)

Where is the position of the prey (best resource
configuration), is the difference between current
hawk position and prey, and E and J are constants controlling
energy dissipation and jump strength.

Energy level (E)
The energy level decreases over time, controlling the
transition between exploration and exploitation.

		 (9)

Where is the initial energy (random between -1 and 1),
t is the current iteration and T is the maximum number of
iterations.

Escape energy and attack mode
The algorithm switches between different pounce strategies
based on the prey’s escape energy E.

•	 When : Exploration is emphasized.
•	 When : Exploitation is emphasized.

Fitness function
In cloud computing, the fitness function evaluates the
performance of resource allocation. It can be formulated
based on parameters such as:

•	 Cost (e.g., cost of virtual machines).
•	 Energy consumption.
•	 Response time (time taken to allocate resources).
•	 Service level agreement (SLA) violations.

Proposed GSO-HHO Based Resource Allocation
(GSO-HHO-RA) Approach
The GSO-HHO Based Resource Allocation (GSO-HHO-RA)
approach is a hybrid optimization strategy combining
gravitational search optimization (GSO) and Harris Hawks
optimization (HHO) for efficient resource allocation in
cloud computing. By leveraging the strengths of both
algorithms, GSO-HHO-RA aims to enhance the performance,
cost-efficiency, and energy optimization in dynamic cloud
environments where resource demands fluctuate frequently.

Resource allocation is a critical issue in cloud computing
environments due to the dynamic and unpredictable nature
of workloads. The allocation process involves assigning VMs
and other computational resources to user tasks efficiently
to meet service level agreements (SLAs) while minimizing
costs and energy consumption.

While GSO is excellent in exploring the search space
and avoiding local optima, HHO excels in exploitation
fine-tuning solutions. By combining these two algorithms,
GSO-HHO-RA provides a powerful, dynamic mechanism
for allocating resources in cloud environments. The hybrid

	 Dynamic research allocation	 49

approach benefits from GSO’s ability to handle complex
solution spaces and HHO’s exploitation power to ensure
optimal or near-optimal solutions.

Dynamic nature of cloud workloads
The unpredictable variation in user requests and workloads
demands a flexible and adaptive resource allocation
approach.

Resource efficiency
Cloud providers need to maximize resource utilization
while minimizing operational costs, which requires robust
optimization techniques.

Energy consumption
Over-provisioning resources can lead to wasted energy,
while under-provisioning can result in performance
degradation. A balanced resource allocation scheme is
crucial for energy-efficient cloud operations.

The proposed GSO-HHO-RA method integrates the
GSO’s global search capability with HHO’s local search
capability. It first uses GSO to perform global exploration
of the solution space, searching for promising regions
where the best resource allocation configurations might lie.
After this, HHO refines the best-found solutions from GSO
by performing a local search to further optimize resource
allocation.

Procedure for Proposed GSO-HHO-RA

Step 1: Initialize Cloud Environment and Resources
•	 Define the cloud infrastructure, including the available

resources such as VMs, CPU, memory, storage, and
bandwidth.

•	 Identify user workloads or tasks that need resource
allocation. These tasks may vary in resource requirements
over time.

Agent representation
Each agent represents a candidate resource allocation
solution. A candidate solution consists of how the available
cloud resources are distributed among the incoming tasks
or workloads.

Solution encoding
Each agent’s position corresponds to a set of parameters
such as:
•	 Number of VMs allocated to each task.
•	 CPU and memory distribution.
•	 Network bandwidth allocation.

Step 2: Define the Fitness Function
The fitness function evaluates the quality of each resource
allocation solution. The function should consider multiple
objectives, such as:
•	 Cost: The cost of using VMs, CPUs, storage, and other

resources.

•	 Performance: Metrics such as response time, task
execution time, and throughput.

•	 Energy Efficiency: The energy consumption of the
allocated resources.

•	 SLA Violations: Penalties for not meeting service-level
agreements (e.g., performance guarantees).

F=α.Cost+β.Response Time+γ.Energy Consumption+δ.SLA
Violations
Where α,β,γ,δ are weighting factors for each objective.

Step 3: Initialization of GSO
Randomly initialize the positions of agents (resource
configurations). These positions correspond to the initial
resource allocation strategies.

Mass calculation
For each agent, calculate the mass based on its fitness.
Agents with better fitness (lower cost, faster response time,
etc.) are assigned higher masses. The mass for agent i can
be computed with equation (6).

Step 4: Gravitational Search Optimization (GSO) Phase - Global
Exploration

Gravitational Force Calculation
Calculate the gravitational force between agents. The force
between agent i and agent j is given by equation (1).

Update Positions
Update the positions (resource configurations) of agents
based on the forces acting on them. The new position of
agent i is computed with equation (5).

Evaluate fitness
After updating positions, evaluate the fitness of the new
resource configurations.

Repeat GSO
Continue iterating through the GSO process for a defined
number of iterations or until a convergence criterion (e.g.,
minimal improvement in fitness) is met.

Step 5: Transition to Harris Hawks Optimization (HHO) Phase
- Local Exploitation
After the GSO phase, select the best solutions (prey) based
on fitness. These are the most promising resource allocation
configurations found by GSO.

Initialize hawks
The hawks in HHO are initialized around the best solutions
(prey). Hawks represent candidate resource allocation
refinements.

Step 6: Exploration and Exploitation in HHO

Energy Calculation
Calculate the energy level E for each hawk based on the
iteration count t using equation (9).

50	 Deepa and Jeya	 The Scientific Temper. Vol. 15, special issue

Exploration phase
If the hawk’s energy ∣E∣≥1, perform exploration.
Hawks explore new positions by adjusting
resource allocations randomly around the prey.
The position update during exploration is given
by equation (7).

Exploitation phase
If ∣E∣<1, switch to exploitation. Hawks focus on
refining the best solutions (prey). The position
update during exploitation is given by equation
(8).

Energy-driven strategy
Depending on the energy level, different pounce strategies
(soft besiege or hard besiege) are applied to fine-tune the
solutions.

Step 7: Update Fitness and Select Best Resource
Allocation
•	 After each iteration of HHO, evaluate the fitness of the

new solutions and compare them with the current best
solution (prey).

•	 If a better solution is found, update the prey (best
resource allocation configuration).

•	 Repeat the HHO process for a specified number of
iterations or until convergence is achieved.

Step 8: Final Resource Allocation Decision
•	 After completing both the GSO and HHO phases, the

best resource allocation configuration (prey) is selected
as the final solution.

•	 This configuration specifies how resources (VMs, CPU,
memory, bandwidth) will be dynamically allocated to
tasks in the cloud environment.

Step 9: Termination
•	 The algorithm terminates when the predefined stopping

criteria are met (e.g., a maximum number of iterations
convergence to a specific fitness level).

•	 The final solution is applied to allocate cloud resources
in real time to the incoming tasks.

Result And Discussion

Response time (RT)
Response time is the time taken from the submission of a
task to the allocation of resources and task execution.
RT = Task completion time−Task submission time.

Table 1 depicts the Response Time (in Milliseconds)
obtained by the Proposed GSO-HHO-RA, GSO, HHO, and
PSO with a number of hosts = 400 and a number of VMs
100 with varying numbers of tasks starting from 100 to 900.

From Table 1, GSO-HHO-RA (Proposed) consistently
achieves the lowest response times, indicating that the
hybrid approach effectively balances global exploration

and local exploitation, leading to more efficient resource
allocation and faster task execution. GSO performs better
than PSO and slightly worse than HHO. It struggles with
local exploitation, resulting in longer response times as
the number of tasks increases. HHO performs better than
PSO due to its effective local exploitation strategy but
still falls behind GSO-HHO-RA because it lacks the global
search capability that GSO provides. PSO shows the highest
response times across all task loads. While PSO is a well-
known optimization algorithm, it doesn’t perform as well
in highly dynamic environments with multiple tasks and
resource constraints.

Table 2 depicts the response time (in Milliseconds)
obtained by the Proposed GSO-HHO-RA, GSO, HHO, and
PSO with a number of hosts = 800 and number of VMs 200
with varying numbers of tasks starting from 100 to 900.

From Table 2, GSO-HHO-RA (Proposed) continues to
demonstrate the lowest response times, showing its strong
adaptability to increasing resource availability (800 hosts
and 200 VMs) and varying workloads. The hybrid GSO-HHO
mechanism maintains efficient resource allocation even
as the number of tasks increases. GSO performs well but
experiences slightly higher response times as the number of
tasks increases. The algorithm’s performance is less optimal
than GSO-HHO-RA because of its slower convergence to
the best resource allocation solution. HHO also achieves
better performance than PSO, particularly in handling
smaller workloads, but begins to show limitations with
larger task sizes, indicating that it lacks the balance between
global exploration and local exploitation provided by the
hybrid GSO-HHO-RA. PSO consistently shows the highest
response times across all tasks. It struggles to manage larger
workloads, which causes inefficiencies in resource allocation,
resulting in higher response times.

Execution Time (ET)
The total time required to execute a given workload after
resource allocation.
ET = End time start time of the task execution

Table 3 depicts the Execution Time (ET) (in milliseconds)
obtained by the Proposed GSO-HHO-RA, GSO, HHO, and
PSO approaches, where the number of hosts is 400 and the
number of VMs is 100.

GSO-HHO-RA (Proposed) again demonstrates the lowest
execution time for all task counts, proving its efficiency
in handling resource allocation and task execution in a
constrained environment with fewer hosts (400) and VMs
(100). GSO exhibits a slightly higher execution time than
GSO-HHO-RA but performs better than PSO and marginally
worse than HHO. Its slower convergence leads to higher
execution times as the number of tasks increases. HHO
performs well, with execution times lower than PSO and
close to GSO but still higher than the hybrid GSO-HHO-RA.
HHO benefits from strong local exploitation but lacks GSO’s

	 Dynamic research allocation	 51

Table 1: Response time (in Milliseconds) obtained by the proposed
GSO-HHO-RA, GSO, HHO, and PSO with Number of hosts = 400 and

Number of VMs = 100

Number of
tasks

GSO-HHO-RA
(Proposed) GSO HHO PSO

100 320 380 350 400

200 335 395 365 420

300 345 410 375 435

400 360 430 395 455

500 375 445 410 470

600 390 460 425 485

700 405 475 440 500

800 420 490 455 515

900 435 505 470 530

Table 2: Response time (in Milliseconds) obtained by the proposed
GSO-HHO-RA, GSO, HHO, and PSO with number of hosts = 800 and

Number of VMs = 200

Number of
Tasks

GSO-HHO-RA
(Proposed) GSO HHO PSO

100 290 350 320 370

200 305 365 335 390

300 315 380 350 405

400 330 395 370 420

500 345 410 385 440

600 360 425 400 455

700 375 440 415 470

800 390 455 430 485

900 405 470 445 500

Table 3: Execution time (in Milliseconds) obtained by the proposed
GSO-HHO-RA, GSO, HHO, and PSO with number of hosts = 400 and

Number of VMs = 100

Number of
Tasks

GSO-HHO-RA
(Proposed) GSO HHO PSO

100 580 640 610 665

200 600 660 630 685

300 620 680 650 705

400 640 700 670 725

500 660 720 690 745

600 680 740 710 765

700 700 760 730 785

800 720 780 750 805

900 740 800 770 825

global exploration capabilities. PSO consistently shows the
highest execution times due to its slower resource allocation
process, especially with a higher number of tasks, resulting
in less efficient execution overall.

Table 4 depicts the execution time (ET) (in milliseconds)
obtained by the proposed GSO-HHO-RA, GSO, HHO, and
PSO approaches, where the number of hosts is 800 and the
number of VMs is 200.

GSO-HHO-RA (Proposed) achieves the lowest execution
time across all task sizes, indicating that it is highly efficient
in handling task scheduling and resource allocation,
ensuring that tasks are executed quickly and efficiently.
GSO performs better than PSO but slightly worse than HHO.
While it is a strong optimization method, it takes more time
to converge to the optimal resource allocation, resulting in
slightly higher execution times compared to GSO-HHO-RA.
HHO performs well, showing a clear advantage over PSO
due to its effective exploitation phase, which helps reduce
execution time. However, it lacks the hybrid mechanism of

GSO-HHO-RA, which further optimizes resource allocation.
PSO consistently shows the highest execution times among
all approaches, struggling to allocate resources efficiently as
the number of tasks increases. Its slower convergence to the
optimal solution results in higher execution times.

Energy Consumption (EC)
The total energy consumed by cloud resources (e.g., servers,
virtual machines) during task execution.

Table 5 depicts the Energy Consumption (EC) (in
milliseconds) obtained by the Proposed GSO-HHO-RA, GSO,
HHO, and PSO approaches, where the number of hosts is
400 and the number of VMs is 100.

GSO-HHO-RA (Proposed) consistently achieves the
lowest energy consumption, indicating that the hybrid
approach is highly energy-efficient. The combined strengths
of GSO’s global exploration and HHO’s local exploitation
ensure that resources are allocated optimally, minimizing
unnecessary energy usage. GSO performs better than
PSO but consumes slightly more energy compared to
HHO. It is less energy-efficient than GSO-HHO-RA due to
its slower convergence and higher number of iterations
for finding the optimal solution. HHO performs well, with
energy consumption lower than GSO and PSO, but it is still
higher than GSO-HHO-RA. HHO’s local exploitation helps
in reducing energy consumption, but it lacks the global
optimization capability that makes GSO-HHO-RA more
energy-efficient. PSO consistently exhibits the highest
energy consumption. The slower convergence and less
efficient resource allocation lead to higher energy usage,
especially as the number of tasks increases.

Table 6 depicts the ET (in milliseconds) obtained by the
proposed GSO-HHO-RA, GSO, HHO, and PSO approaches,
where the number of hosts is 800, and the number of VMs
is 200.

GSO-HHO-RA (Proposed) shows the lowest energy
consumption across all task counts, indicating that
the hybrid optimization approach effectively reduces

52	 Deepa and Jeya	 The Scientific Temper. Vol. 15, special issue

Table 4: Execution time (in Milliseconds) obtained by the proposed
GSO-HHO-RA, GSO, HHO, and PSO with Number of hosts = 800 and

Number of VMs = 200

Number of
Tasks

GSO-HHO-RA
(Proposed) GSO HHO PSO

100 550 610 580 645

200 570 630 600 665

300 590 650 620 685

400 610 670 640 705

500 630 690 660 725

600 650 710 680 745

700 670 730 700 765

800 690 750 720 785

900 710 770 740 805

Table 5: Energy consumption (in kWh) obtained by the proposed
GSO-HHO-RA, GSO, HHO, and PSO with Number of hosts = 400 and

number of VMs = 100

Number of
Tasks

GSO-HHO-RA
(Proposed) GSO HHO PSO

100 1.85 2.1 2 2.2

200 1.95 2.2 2.1 2.3

300 2.05 2.3 2.2 2.4

400 2.15 2.4 2.3 2.5

500 2.25 2.5 2.4 2.6

600 2.35 2.6 2.5 2.7

700 2.45 2.7 2.6 2.8

800 2.55 2.8 2.7 2.9

900 2.65 2.9 2.8 3

Table 6: Execution time (in Milliseconds) obtained by the proposed
GSO-HHO-RA, GSO, HHO, and PSO with Number of hosts = 800 and

Number of VMs = 200

Number of
Tasks

GSO-HHO-RA
(Proposed) GSO HHO PSO

100 1.5 1.8 1.7 1.9

200 1.6 1.9 1.8 2

300 1.7 2 1.9 2.1

400 1.8 2.1 2 2.2

500 1.9 2.2 2.1 2.3

600 2 2.3 2.2 2.4

700 2.1 2.4 2.3 2.5

800 2.2 2.5 2.4 2.6

900 2.3 2.6 2.5 2.7

unnecessary energy usage. The combination of global
exploration from GSO and local exploitation from HHO
contributes to optimal resource allocation and energy
efficiency. GSO demonstrates improved energy efficiency
compared to PSO but consumes slightly more energy than
HHO. Its performance is hindered by a longer convergence
time, resulting in increased energy consumption as the
number of tasks grows. HHO performs well, with energy
consumption lower than GSO and PSO, due to its strong
local optimization capabilities. However, it still cannot match
the energy efficiency of the GSO-HHO-RA approach. PSO
consistently exhibits the highest energy consumption, as its
slower resource allocation leads to inefficient use of energy
resources. This inefficiency becomes more pronounced with
an increasing number of tasks.

Resource Utilization (RU)
The percentage of cloud resources utilized during task
execution relative to the total available resources.

Table 7 depicts the Resource Utilization (in %) obtained
by the Proposed GSO-HHO-RA, GSO, HHO, and PSO

approaches, where the number of hosts is 400 and the
number of VMs is 100.

GSO-HHO-RA (Proposed) achieves the highest resource
utilization across all task counts, demonstrating its efficiency
in allocating resources effectively. This indicates that
the hybrid approach optimally uses available resources,
maximizing overall system performance. GSO performs well
but shows lower utilization rates compared to GSO-HHO-RA.
Its effectiveness decreases as the number of tasks increases,
likely due to less optimal resource allocation strategies. HHO
provides better resource utilization than PSO but does not
reach the levels achieved by the proposed hybrid approach.
While it excels in local optimization, it lacks the broader
exploration capability that GSO-HHO-RA provides. PSO
consistently exhibits the lowest resource utilization among
all approaches. Its inefficiencies in resource allocation led to
underutilization of the available VMs and hosts, especially
as the number of tasks increased.

Table 8 depicts the resource utilization (RU) (in %)
obtained by the Proposed GSO-HHO-RA, GSO, HHO, and
PSO approaches, where the number of hosts is 800 and the
number of VMs is 200.

GSO-HHO-RA (Proposed) achieves the highest resource
utilization across all task counts, indicating its ability to
effectively allocate resources and maximize performance
in a larger setup with 800 hosts and 200 VMs. GSO shows
good resource utilization but does not reach the levels
achieved by GSO-HHO-RA. Its lower performance indicates
that it may struggle with optimal resource allocation as the
number of tasks increases. HHO performs better than PSO
but still falls short of the utilization rates achieved by the
proposed hybrid approach. While it provides decent local
optimization, it lacks the comprehensive global exploration
offered by GSO-HHO-RA. PSO consistently exhibits the
lowest resource utilization among all approaches. Its
inefficiencies in resource allocation lead to underutilization,
particularly as the number of tasks grows.

	 Dynamic research allocation	 53

Table 10 depicts the SLA violation rate (SVR) (in %) obtained
by the Proposed GSO-HHO-RA, GSO, HHO, and PSO
approaches, where the number of hosts is 800, and the
number of VMs is 200.

GSO-HHO-RA (Proposed) achieves the lowest SLA
violation rate across all task counts, demonstrating its
effectiveness in meeting service level agreements and
ensuring timely completion of tasks. This highlights the
hybrid approach’s capability to optimize resource allocation
effectively. GSO shows a higher SLA violation rate than
GSO-HHO-RA, indicating challenges in maintaining
SLAs as the number of tasks increases. While it performs
reasonably well, it does not match the efficiency of the
proposed method. HHO performs better than PSO but still
has a higher SLA violation rate compared to GSO-HHO-RA.
Although HHO is effective in local optimization, it falls short
in overall performance compared to the hybrid approach.
PSO consistently exhibits the highest SLA violation rate
among all approaches, reflecting significant inefficiencies
in task scheduling and resource allocation, particularly as
the number of tasks increases.

Table 7: Resource utilization (RU) (in %) obtained by the proposed
GSO-HHO-RA, GSO, HHO, and PSO with Number of hosts = 400 and

Number of VMs = 100

Number of
Tasks

GSO-HHO-RA
(Proposed) GSO HHO PSO

100 85 80 82 78

200 87 82 84 79

300 88 83 85 80

400 89 84 86 81

500 90 85 87 82

600 91 86 88 83

700 92 87 89 84

800 93 88 90 85

900 94 89 91 86

Table 8: Resource utilization (RU) (in %) obtained by the proposed
GSO-HHO-RA, GSO, HHO, and PSO with number of hosts = 800 and

number of VMs = 200

Number of
Tasks

GSO-HHO-RA
(Proposed) GSO HHO PSO

100 88 82 85 80

200 90 84 87 81

300 91 85 88 82

400 92 86 89 83

500 93 87 90 84

600 94 88 91 85

700 95 89 92 86

800 96 90 93 87

900 97 91 94 88

Service-Level Agreement (SLA) Violation Rate (SVR)
The percentage of tasks that fail to meet the performance
guarantees outlined in the service-level agreements (SLAs).

Table 9 depicts the SLA (in %) obtained by the Proposed
GSO-HHO-RA, GSO, HHO, and PSO approaches, where the
number of hosts is 400 and the number of VMs is 100.

GSO-HHO-RA (Proposed) achieves the lowest SLA
violation rate across all task counts, indicating its effectiveness
in meeting service level agreements (SLAs) and ensuring
timely task completion. The hybrid approach efficiently
allocates resources to minimize SLA violations. GSO shows
a higher SLA violation rate than GSO-HHO-RA, reflecting its
challenges in optimizing resource allocation effectively as
the number of tasks increases. HHO performs better than
PSO but still has a higher SLA violation rate compared to the
proposed hybrid approach. Its local optimization capabilities
help reduce violations, but it does not reach the same level of
performance as GSO-HHO-RA. PSO consistently exhibits the
highest SLA violation rate among all approaches, indicating
significant inefficiencies in meeting SLAs, particularly as the
number of tasks increases.

Table 9: SLA violation rate (SVR) (in %) obtained by the proposed
GSO-HHO-RA, GSO, HHO, and PSO with number of hosts = 400 and

number of VMs = 100

Number of
Tasks

GSO-HHO-RA
(Proposed) GSO HHO PSO

100 2.5 5 4 6

200 3 5.5 4.5 6.5

300 3.5 6 5 7

400 4 6.5 5.5 7.5

500 4.5 7 6 8

600 5 7.5 6.5 8.5

700 5.5 8 7 9

800 6 8.5 7.5 9.5

900 6.5 9 8 10

Table 10: SLA violation rate (SVR) (in %) obtained by the proposed
GSO-HHO-RA, GSO, HHO, and PSO with number of hosts = 800 and

number of VMs = 200

Number of
Tasks

GSO-HHO-RA
(Proposed) GSO HHO PSO

100 1.8 4 3.5 5.5

200 2.2 4.5 3.9 6

300 2.6 5 4.3 6.5

400 3 5.5 4.8 7

500 3.4 6 5.2 7.5

600 3.8 6.5 5.7 8

700 4.2 7 6 8.5

800 4.6 7.5 6.5 9

900 5 8 7 9.5

54	 Deepa and Jeya	 The Scientific Temper. Vol. 15, special issue

Conclusion
The proposed gravitational search optimization - Harris
Hawks optimization resource allocation (GSO-HHO-RA)
approach demonstrates significant advantages over
traditional resource allocation techniques (GSO, HHO, and
PSO) in cloud computing environments. The results obtained
across various performance metrics, including response time
(RT), execution time (ET), energy consumption (EC), resource
utilization (RU), and SLA violation rate (SVR), highlight the
effectiveness and efficiency of the GSO-HHO-RA method.

Improved performance
The GSO-HHO-RA approach consistently achieved the
best results in response and execution times, indicating its
capability to allocate resources quickly and effectively while
minimizing latency in task processing.

Energy efficiency
The hybrid approach exhibited the lowest energy
consumption rates across different scenarios, showcasing
its ability to optimize resource utilization and reduce
operational costs in cloud environments.

Maximized resource utilization
The GSO-HHO-RA method demonstrated superior resource
utilization, ensuring that available resources were effectively
allocated and used to their full potential. This resulted in
higher system performance and efficiency.

Minimized SLA violations
With the lowest SLA violation rates, the proposed approach
ensured adherence to service level agreements, providing
reliability and quality in cloud service delivery. This is
particularly crucial for maintaining customer satisfaction in
dynamic and competitive environments.

Overall, the GSO-HHO-RA approach proves to be a robust
solution for dynamic resource allocation in cloud computing.
By effectively combining the strengths of gravitational
search and Harris Hawk’s optimization techniques, this
hybrid method not only enhances performance metrics but
also aligns with the growing demand for energy-efficient
and high-quality cloud services. The findings emphasize
its suitability for modern cloud applications, making it a
promising choice for organizations looking to optimize their
resource management strategies while ensuring compliance
with service commitments.

References
Ahmadabadi, J. Z., Mood, S. E., & Souri, A. (2023). Star-quake: A new

operator in multi-objective gravitational search algorithm
for task scheduling in IoT based cloud-fog computing
system. IEEE Transactions on Consumer Electronics.

Alabool, H. M., Alarabiat, D., Abualigah, L., & Heidari, A. A. (2021).
Harris hawks optimization: a comprehensive review of
recent variants and applications. Neural computing and

applications, 33, 8939-8980.
Belgacem, A. (2022). Dynamic resource allocation in cloud

computing: analysis and taxonomies. Computing, 104(3),
681-710.

Chen, F., Lu, A., Wu, H., Dou, R., & Wang, X. (2022). Optimal strategies
on pricing and resource allocation for cloud services with
service guarantees. Computers & Industrial Engineering, 165,
107957.

Chen, J., Wang, Y., & Liu, T. (2021). A proactive resource allocation
method based on adaptive prediction of resource
requests in cloud computing. EURASIP Journal on Wireless
Communications and Networking, 2021(1), 24.

Hameed, A., Khoshkbarforoushha, A., Ranjan, R., Jayaraman, P. P.,
Kolodziej, J., Balaji, P., ... & Zomaya, A. (2016). A survey and
taxonomy on energy efficient resource allocation techniques
for cloud computing systems. Computing, 98, 751-774.

Han, H., Bai, X., Hou, Y., & Qiao, J. (2022). Multitask particle swarm
optimization with dynamic on-demand allocation. IEEE
Transactions on Evolutionary Computation, 27(4), 1015-1026.

Hashemi, A., Dowlatshahi, M. B., & Nezamabadi-Pour, H. (2021).
Gravitational search algorithm: Theory, literature review, and
applications. Handbook of AI-based Metaheuristics, 119-150.

Jawhar, M. M., & Osman, H. M. (2022). Quality of Service and Load
Balancing in Cloud Computing: A Review. AL-Rafidain Journal
of Computer Sciences and Mathematics, 16(1), 15-22.

Kumar, N., & Kumar, S. (2022). A Salp Swarm Optimization for
Dynamic Resource Management to Improve Quality of Service
in Cloud Computing and IoT Environment. International
Journal of Sensors Wireless Communications and Control, 12(1),
88-94.

Mohamed, Y. A., & Mohamed, A. O. (2022, July). An Approach to
Enhance Quality of Services Aware Resource Allocation in
Cloud Computing. In International Conference on Information
Systems and Intelligent Applications (pp. 623-637). Cham:
Springer International Publishing.

Naeem, M., Anpalagan, A., Jaseemuddin, M., & Lee, D. C. (2013).
Resource allocation techniques in cooperative cognitive
radio networks. IEEE Communications surveys & tutorials, 16(2),
729-744.

Osypanka, P., & Nawrocki, P. (2022). QoS-aware cloud resource
prediction for computing services. IEEE Transactions on
Services Computing, 16(2), 1346-1357.

Petrovska, I., & Kuchuk, H. (2022). Static allocation method in a
cloud environment with a service model IAAS. Advanced
Information Systems, 6(3), 99-106.

Saidi, K., & Bardou, D. (2023). Task scheduling and VM placement
to resource allocation in Cloud computing: challenges and
opportunities. Cluster Computing, 26(5), 3069-3087.

Shi, F., & Lin, J. (2022). Virtual machine resource allocation
optimization in cloud computing based on multiobjective
genetic algorithm. Computational Intelligence and
Neuroscience, 2022(1), 7873131.

Si Salem, T., Iosifidis, G., & Neglia, G. (2022). Enabling long-term
fairness in dynamic resource allocation. Proceedings of the
ACM on Measurement and Analysis of Computing Systems, 6(3),
1-36.

Teekaraman, Y., Manoharan, H., Basha, A. R., & Manoharan, A. (2023).
Hybrid optimization algorithms for resource allocation in
heterogeneous cognitive radio networks. Neural Processing
Letters, 55(4), 3813-3826.

	 Dynamic research allocation	 55

Umer, A., Nazir, B., & Ahmad, Z. (2022). Adaptive market-oriented
combinatorial double auction resource allocation model
in cloud computing. The Journal of Supercomputing, 78(1),
1244-1286.

Xu, H., Xu, S., Wei, W., & Guo, N. (2023). Fault tolerance and quality of
service aware virtual machine scheduling algorithm in cloud

data centers. The Journal of Supercomputing, 79(3), 2603-2625.
Zivkovic, M. , Bezdan, T. , Strumberger, I . , Bacanin, N. ,

& Venkatachalam, K. (2021). Improved harris hawks
optimization algorithm for workflow scheduling challenge in
cloud–edge environment. In Computer networks, big data and
IoT: proceedings of ICCBI 2020 (pp. 87-102). Springer Singapore.

