
Abstract
Ensuring the quality of service (QoS) in cloud computing environments requires efficient resource allocation mechanisms to manage 
dynamic workloads and meet user demands. This paper proposes a dynamic resource allocation strategy that integrates gravitational 
search optimization (GSO) with Harris Hawks optimization (HHO) to optimize resource utilization and maintain QoS in cloud infrastructures. 
The proposed hybrid approach combines the global search capabilities of GSO, inspired by the law of gravity, with the exploitation 
and exploration strategies of HHO, mimicking the cooperative hunting behavior of Harris hawks. This synergy enables adaptive and 
efficient allocation of computational resources based on real-time workload fluctuations, reducing response times, minimizing energy 
consumption, and preventing Service Level Agreement (SLA) violations. By predicting workload variations and adjusting resource 
allocation dynamically, the proposed method ensures higher reliability, scalability, and cost-effectiveness compared to traditional resource 
allocation techniques. Simulation results demonstrate that the GSO-HHO-based approach outperforms conventional optimization 
algorithms in balancing the trade-offs between performance and resource efficiency, making it a robust solution for maintaining QoS 
in cloud computing environments.
Keywords: Cloud computing, quality of service, Optimization techniques, Dynamic resource allocation.
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Introduction
Resource allocation is a critical component of cloud 
computing, where computing resources such as CPU, 
memory, storage, and network bandwidth must be allocated 
efficiently to meet the demands of users and applications. 
Cloud computing operates in a highly dynamic environment, 
where multiple users share infrastructure, and workloads 
fluctuate in real time. As cloud service providers (CSPs) 
aim to deliver scalable, flexible, and on-demand services, 
effective resource allocation becomes crucial to ensure 
optimal performance, minimize costs, and maintain the 
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quality of service (QoS) commitments laid out in Service 
Level Agreements (SLAs), Belgacem, A. (2022), Saidi, K., & 
Bardou, D. (2023), Jawhar, M. M., & Osman, H. M. (2022), Xu, 
H., Xu, S., Wei, W., & Guo, N. (2023).

Resource allocation in cloud computing involves 
assigning resources to tasks or virtual machines (VMs) based 
on the current demand and workload while keeping the 
infrastructure utilization at optimal levels. The goal is to 
allocate just enough resources to ensure that all applications 
receive the necessary resources to function properly without 
over-provisioning, which can lead to wastage or under-
provisioning, which can lead to performance degradation 
and SLA violations. Efficient resource allocation ensures 
high availability, low latency, scalability, and energy 
efficiency while adhering to QoS requirements like response 
time, throughput, and fault tolerance, Mohamed, Y. A., & 
Mohamed, A. O. (2022, July), Chen, F., Lu, A., Wu, H., Dou, R., 
& Wang, X. (2022).

In traditional computing environments, static resource 
allocation was sufficient, where predefined resources were 
assigned based on historical workloads. However, cloud 
environments present unique challenges, such as workload 
variability, multi-tenancy, and dynamic scaling requirements, 
making static allocation inefficient. As cloud workloads vary 
over time, with users running diverse applications that may 
have unpredictable resource demands, a static allocation 



46	 Deepa and Jeya	 The Scientific Temper. Vol. 15, special issue 

approach often results in underutilized resources during 
periods of low demand or performance bottlenecks during 
peak loads. Consequently, there is a strong need for dynamic 
resource allocation mechanisms that can adapt in real time 
to changing conditions.

Background Study On Resource Allocation
Cloud computing has evolved into a prominent paradigm 
for delivering on-demand computing services over the 
internet, enabling users to access and utilize resources 
such as processing power, storage, and networking 
without the need for direct infrastructure ownership. The 
inherent flexibility, scalability, and cost-efficiency of cloud 
computing make it highly suitable for diverse applications 
across industries, ranging from web hosting and big data 
analytics to machine learning and internet of things (IoT) 
services, Kumar, N., & Kumar, S. (2022), Umer, A., Nazir, B., & 
Ahmad, Z. (2022).

One of the foundational aspects of cloud computing 
is the efficient management of resources, which directly 
impacts performance, cost-effectiveness, and quality 
of service (QoS). Resource allocation, in particular, is a 
key process in which available computational resources 
are dynamically assigned to meet the needs of cloud 
applications while optimizing for performance, energy 
consumption, and economic factors, Umer, A., Nazir, B., & 
Ahmad, Z. (2022), Osypanka, P., & Nawrocki, P. (2022), Shi, 
F., & Lin, J. (2022).

This background study explores the historical context, 
resource allocation models, and challenges faced in cloud 
computing environments, followed by a discussion of 
existing optimization techniques for dynamic resource 
allocation.

Resource Allocation Models in Cloud Computing
Resource allocation in cloud computing involves 
managing several types of resources, including, Hameed, 
A., Khoshkbarforoushha, A., Ranjan, R., Jayaraman, P. P., 
Kolodziej, J., Balaji, P., ... & Zomaya, A. (2016), Naeem, M., 
Anpalagan, A., Jaseemuddin, M., & Lee, D. C. (2013):
•	 Compute resources: CPU cycles, memory, and storage.
•	 Network resources: Bandwidth, latency, and network 

paths.
•	 Energy resources: Power consumption and cooling 

requirements.
Several models have been proposed over the years for 
resource allocation in cloud computing:

Static Resource Allocation
In this model, resources are allocated to tasks or VMs 
based on predefined configurations or historical data. 
Static allocation is easy to implement but suffers from 
inefficiencies, particularly in highly dynamic cloud 

environments. This can result in over-provisioning during 
low-demand periods or under-provisioning during peak 
demand, leading to SLA violations or resource wastage, 
Petrovska, I., & Kuchuk, H. (2022).

Dynamic Resource Allocation
Dynamic resource allocation is the process of continuously 
monitoring workload demands and adjusting the resource 
allocation in real time. DRA improves resource utilization 
and efficiency by reallocating resources based on current 
demand. It is critical for maintaining QoS in cloud 
environments, as workloads can fluctuate rapidly, making 
static allocation inadequate, Si Salem, T., Iosifidis, G., & 
Neglia, G. (2022).

On-Demand Resource Allocation
This model dynamically provisions resources only when they 
are needed, based on user requests or system demands. 
This approach underpins the cloud’s “pay-as-you-go” billing 
model, where users are charged for resources consumed on 
a per-usage basis, Han, H., Bai, X., Hou, Y., & Qiao, J. (2022).

Predictive Resource Allocation
Predictive resource allocation uses machine learning or 
statistical models to forecast future workload patterns based 
on historical data. The goal is to proactively adjust resource 
allocation before demand spikes occur, reducing latency and 
preventing bottlenecks, Chen, J., Wang, Y., & Liu, T. (2021).

Hybrid Resource Allocation
Hybrid approaches combine multiple models, such as static 
and dynamic allocation, to achieve an optimal balance 
between performance and resource utilization. Hybrid 
models can be particularly useful in cloud environments 
where different types of workloads coexist (e.g., a mix of 
long-running batch jobs and latency-sensitive real-time 
tasks), Teekaraman, Y., Manoharan, H., Basha, A. R., & 
Manoharan, A. (2023).

Gravitational Search Optimization Approach
Gravitational search optimization (GSO) is a population-
based metaheuristic algorithm inspired by Newton’s law 
of gravity and motion. First introduced by Esmat Rashedi in 
2009, GSO models individuals (or agents) in the search space 
as objects that attract one another based on their masses, 
with the force of attraction being proportional to their 
fitness. The stronger an agent’s fitness (mass), the greater its 
gravitational pull, which influences the movement of other 
agents toward it. This enables GSO to explore and exploit the 
search space in an efficient manner, making it well-suited for 
solving complex optimization problems, including dynamic 
resource allocation in cloud computing environments, 
Hashemi, A., Dowlatshahi, M. B., & Nezamabadi-Pour, H. 
(2021), Ahmadabadi, J. Z., Mood, S. E., & Souri, A. (2023).
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Key Concepts

Agents
Each agent represents a potential solution in the search 
space. The performance of an agent is evaluated using a 
fitness function.

Mass
Each agent is assigned a mass based on its fitness; better 
solutions have higher mass.

Gravity
The gravitational force attracts agents toward better 
solutions.

Basic Steps of GSO

Initialization
Randomly initialize the positions and masses of the agents.

Fitness evaluation
Calculate the fitness of each agent based on the objective 
function.

Gravitational force calculation
For each agent, calculate the gravitational force exerted by 
other agents.

Update positions
Update the positions of the agents based on the calculated 
gravitational forces.

Iteration
Repeat the fitness evaluation and position update for a 
predetermined number of iterations or until convergence.

Mathematical Formulation

Gravitational force
The gravitational force between two agents i and j is given 
by:

	 (1)

Where  is the gravitational force between agents i and 
j. G is the gravitational constant.  are the masses 
of agents i and j.  is the distance between agents i and j. 

Distance calculation
The distance between two agents i and j in a multi-
dimensional space can be calculated as:

		  (2)

Where D is the number of dimensions.  and  are the 
coordinates of agents iii and j in dimension k.

Net gravitational force
The net gravitational force acting on agent i from all other 
agents is calculated as:

		  (3)

Where N is the total number of agents.

Acceleration
The acceleration of agent i due to the net gravitational force 
is given by:

		  (4)

Position update
The position of agent i is updated using the acceleration:

		  (5)

Where  is the current position of agent i.  is the 
time step.

Mass assignment
The mass of each agent can be updated based on its fitness 
as follows:

		 (6)

Where  is the fitness of the best agent,  is the 
fitness of the worst agent, and  is the fitness of agent i.

Algorithm Steps
Step 1: Initialize the population of agents.
Step 2: Evaluate the fitness of each agent.
Step 3: Calculate the mass for each agent based on fitness.
Step 4: Compute the gravitational forces and update the 
positions.
Step 5:  Repeat steps 2-4 until convergence criteria are met.

Harris Hawks Optimization Approach
Harris Hawks optimization (HHO) is a metaheuristic 
algorithm inspired by the cooperative hunting strategy of 
Harris Hawks. It is widely applied in optimization problems, 
and its dynamic and adaptive nature makes it suitable for 
complex problems.

HHO mimics the predatory behavior of Harris hawks, 
particularly their surprise pounce mechanism. The algorithm 
alternates between exploration (searching for prey) and 
exploitation (attacking the prey). In cloud computing, HHO 
can be used to allocate resources (like CPU, memory, and 
bandwidth) dynamically by optimizing performance metrics 
such as response time, cost, and energy efficiency, Zivkovic, 
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M., Bezdan, T., Strumberger, I., Bacanin, N., & Venkatachalam, 
K. (2021), Alabool, H. M., Alarabiat, D., Abualigah, L., & Heidari, 
A. A. (2021).

Key Components for Dynamic Resource Allocation

Hawks (Agents)
Each hawk represents a potential solution, such as a specific 
resource allocation configuration.

Prey (Best Solution)
The best resource allocation solution (in terms of fitness, 
such as cost minimization or performance maximization) is 
the target for all hawks.

Energy level (Exploration vs Exploitation)
Hawks adapt their behavior based on the “energy” of the 
system, switching between exploration (searching for a 
better resource allocation) and exploitation (fine-tuning 
the current allocation).

HHO Algorithm Phases

Exploration phase
The hawks search for prey by randomly adjusting resource 
allocation configurations to explore the solution space. 
The goal is to avoid local optima and find diverse potential 
configurations.

Transition to exploitation
Based on the hawk’s energy, the algorithm dynamically 
adjusts to move from exploration to exploitation. In cloud 
computing, this transition corresponds to refining the best-
found resource allocation solutions.

Exploitation phase
The hawks attack the prey by narrowing down the solution 
space and fine-tuning resource allocations. In dynamic 
resource allocation, this involves optimizing resource 
usage according to the current workload and performance 
constraints.

Mathematical Function

Hawk’s position update
The position of hawks, representing resource allocation 
configurations, is updated based on the current prey (best 
solution) and energy levels.

During exploration

	 (7)

Where  is the current position (resource allocation) of 
hawk i,  is a randomly selected position (another 
resource configuration),  and  are random numbers in 
[0,1], controlling randomness.

During exploitation (Soft besiege strategy)

		  (8)

Where  is the position of the prey (best resource 
configuration),  is the difference between current 
hawk position and prey, and E and J are constants controlling 
energy dissipation and jump strength.

Energy level (E)
The energy level decreases over time, controlling the 
transition between exploration and exploitation.

		  (9)

Where  is the initial energy (random between -1 and 1), 
t is the current iteration and T is the maximum number of 
iterations.

Escape energy and attack mode
The algorithm switches between different pounce strategies 
based on the prey’s escape energy E.

•	 When : Exploration is emphasized.
•	 When : Exploitation is emphasized.

Fitness function
In cloud computing, the fitness function evaluates the 
performance of resource allocation. It can be formulated 
based on parameters such as:

•	 Cost (e.g., cost of virtual machines).
•	 Energy consumption.
•	 Response time (time taken to allocate resources).
•	 Service level agreement (SLA) violations.

Proposed GSO-HHO Based Resource Allocation 
(GSO-HHO-RA) Approach 
The GSO-HHO Based Resource Allocation (GSO-HHO-RA) 
approach is a hybrid optimization strategy combining 
gravitational search optimization (GSO) and Harris Hawks 
optimization (HHO) for efficient resource allocation in 
cloud computing. By leveraging the strengths of both 
algorithms, GSO-HHO-RA aims to enhance the performance, 
cost-efficiency, and energy optimization in dynamic cloud 
environments where resource demands fluctuate frequently.

Resource allocation is a critical issue in cloud computing 
environments due to the dynamic and unpredictable nature 
of workloads. The allocation process involves assigning VMs 
and other computational resources to user tasks efficiently 
to meet service level agreements (SLAs) while minimizing 
costs and energy consumption.

While GSO is excellent in exploring the search space 
and avoiding local optima, HHO excels in exploitation 
fine-tuning solutions. By combining these two algorithms, 
GSO-HHO-RA provides a powerful, dynamic mechanism 
for allocating resources in cloud environments. The hybrid 
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approach benefits from GSO’s ability to handle complex 
solution spaces and HHO’s exploitation power to ensure 
optimal or near-optimal solutions.

Dynamic nature of cloud workloads
The unpredictable variation in user requests and workloads 
demands a flexible and adaptive resource allocation 
approach.

Resource efficiency
Cloud providers need to maximize resource utilization 
while minimizing operational costs, which requires robust 
optimization techniques.

Energy consumption
Over-provisioning resources can lead to wasted energy, 
while under-provisioning can result in performance 
degradation. A balanced resource allocation scheme is 
crucial for energy-efficient cloud operations.

The proposed GSO-HHO-RA method integrates the 
GSO’s global search capability with HHO’s local search 
capability. It first uses GSO to perform global exploration 
of the solution space, searching for promising regions 
where the best resource allocation configurations might lie. 
After this, HHO refines the best-found solutions from GSO 
by performing a local search to further optimize resource 
allocation.

Procedure for Proposed GSO-HHO-RA

Step 1: Initialize Cloud Environment and Resources
•	 Define the cloud infrastructure, including the available 

resources such as VMs, CPU, memory, storage, and 
bandwidth.

•	 Identify user workloads or tasks that need resource 
allocation. These tasks may vary in resource requirements 
over time.

Agent representation
Each agent represents a candidate resource allocation 
solution. A candidate solution consists of how the available 
cloud resources are distributed among the incoming tasks 
or workloads.

Solution encoding
Each agent’s position corresponds to a set of parameters 
such as:
•	 Number of VMs allocated to each task.
•	 CPU and memory distribution.
•	 Network bandwidth allocation.

Step 2: Define the Fitness Function
The fitness function evaluates the quality of each resource 
allocation solution. The function should consider multiple 
objectives, such as:
•	 Cost: The cost of using VMs, CPUs, storage, and other 

resources.

•	 Performance: Metrics such as response time, task 
execution time, and throughput.

•	 Energy Efficiency: The energy consumption of the 
allocated resources.

•	 SLA Violations: Penalties for not meeting service-level 
agreements (e.g., performance guarantees).

F=α.Cost+β.Response Time+γ.Energy Consumption+δ.SLA 
Violations
Where α,β,γ,δ are weighting factors for each objective.

Step 3: Initialization of GSO
Randomly initialize the positions of agents (resource 
configurations). These positions correspond to the initial 
resource allocation strategies.

Mass calculation
For each agent, calculate the mass based on its fitness. 
Agents with better fitness (lower cost, faster response time, 
etc.) are assigned higher masses. The mass  for agent i can 
be computed with equation (6).

Step 4: Gravitational Search Optimization (GSO) Phase - Global 
Exploration

Gravitational Force Calculation
Calculate the gravitational force between agents. The force 
between agent i and agent j is given by equation (1).

Update Positions
Update the positions (resource configurations) of agents 
based on the forces acting on them. The new position of 
agent i is computed with equation (5).

Evaluate fitness
After updating positions, evaluate the fitness of the new 
resource configurations.

Repeat GSO
Continue iterating through the GSO process for a defined 
number of iterations or until a convergence criterion (e.g., 
minimal improvement in fitness) is met.

Step 5: Transition to Harris Hawks Optimization (HHO) Phase 
- Local Exploitation
After the GSO phase, select the best solutions (prey) based 
on fitness. These are the most promising resource allocation 
configurations found by GSO.

Initialize hawks
The hawks in HHO are initialized around the best solutions 
(prey). Hawks represent candidate resource allocation 
refinements.

Step 6: Exploration and Exploitation in HHO

Energy Calculation
Calculate the energy level E for each hawk based on the 
iteration count t using equation (9).
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Exploration phase
If the hawk’s energy ∣E∣≥1, perform exploration. 
Hawks explore new positions by adjusting 
resource allocations randomly around the prey. 
The position update during exploration is given 
by equation (7).

Exploitation phase
If ∣E∣<1, switch to exploitation. Hawks focus on 
refining the best solutions (prey). The position 
update during exploitation is given by equation 
(8).

Energy-driven strategy
Depending on the energy level, different pounce strategies 
(soft besiege or hard besiege) are applied to fine-tune the 
solutions.

Step 7: Update Fitness and Select Best Resource 
Allocation
•	 After each iteration of HHO, evaluate the fitness of the 

new solutions and compare them with the current best 
solution (prey).

•	 If a better solution is found, update the prey (best 
resource allocation configuration).

•	 Repeat the HHO process for a specified number of 
iterations or until convergence is achieved.

Step 8: Final Resource Allocation Decision
•	 After completing both the GSO and HHO phases, the 

best resource allocation configuration (prey) is selected 
as the final solution.

•	 This configuration specifies how resources (VMs, CPU, 
memory, bandwidth) will be dynamically allocated to 
tasks in the cloud environment.

Step 9: Termination
•	 The algorithm terminates when the predefined stopping 

criteria are met (e.g., a maximum number of iterations 
convergence to a specific fitness level).

•	 The final solution is applied to allocate cloud resources 
in real time to the incoming tasks.

Result And Discussion

Response time (RT)
Response time is the time taken from the submission of a 
task to the allocation of resources and task execution. 
RT = Task completion time−Task submission time.

Table 1 depicts the Response Time (in Milliseconds) 
obtained by the Proposed GSO-HHO-RA, GSO, HHO, and 
PSO with a number of hosts = 400 and a number of VMs 
100 with varying numbers of tasks starting from 100 to 900.

From Table 1, GSO-HHO-RA (Proposed) consistently 
achieves the lowest response times, indicating that the 
hybrid approach effectively balances global exploration 

and local exploitation, leading to more efficient resource 
allocation and faster task execution. GSO performs better 
than PSO and slightly worse than HHO. It struggles with 
local exploitation, resulting in longer response times as 
the number of tasks increases. HHO performs better than 
PSO due to its effective local exploitation strategy but 
still falls behind GSO-HHO-RA because it lacks the global 
search capability that GSO provides. PSO shows the highest 
response times across all task loads. While PSO is a well-
known optimization algorithm, it doesn’t perform as well 
in highly dynamic environments with multiple tasks and 
resource constraints.

Table 2 depicts the response time (in Milliseconds) 
obtained by the Proposed GSO-HHO-RA, GSO, HHO, and 
PSO with a number of hosts = 800 and number of VMs 200 
with varying numbers of tasks starting from 100 to 900.

From Table 2, GSO-HHO-RA (Proposed) continues to 
demonstrate the lowest response times, showing its strong 
adaptability to increasing resource availability (800 hosts 
and 200 VMs) and varying workloads. The hybrid GSO-HHO 
mechanism maintains efficient resource allocation even 
as the number of tasks increases. GSO performs well but 
experiences slightly higher response times as the number of 
tasks increases. The algorithm’s performance is less optimal 
than GSO-HHO-RA because of its slower convergence to 
the best resource allocation solution. HHO also achieves 
better performance than PSO, particularly in handling 
smaller workloads, but begins to show limitations with 
larger task sizes, indicating that it lacks the balance between 
global exploration and local exploitation provided by the 
hybrid GSO-HHO-RA. PSO consistently shows the highest 
response times across all tasks. It struggles to manage larger 
workloads, which causes inefficiencies in resource allocation, 
resulting in higher response times.

Execution Time (ET)
The total time required to execute a given workload after 
resource allocation.
ET = End time start time of the task execution

Table 3 depicts the Execution Time (ET) (in milliseconds) 
obtained by the Proposed GSO-HHO-RA, GSO, HHO, and 
PSO approaches, where the number of hosts is 400 and the 
number of VMs is 100.

GSO-HHO-RA (Proposed) again demonstrates the lowest 
execution time for all task counts, proving its efficiency 
in handling resource allocation and task execution in a 
constrained environment with fewer hosts (400) and VMs 
(100). GSO exhibits a slightly higher execution time than 
GSO-HHO-RA but performs better than PSO and marginally 
worse than HHO. Its slower convergence leads to higher 
execution times as the number of tasks increases. HHO 
performs well, with execution times lower than PSO and 
close to GSO but still higher than the hybrid GSO-HHO-RA. 
HHO benefits from strong local exploitation but lacks GSO’s 
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Table 1: Response time (in Milliseconds) obtained by the proposed 
GSO-HHO-RA, GSO, HHO, and PSO with Number of hosts = 400 and 

Number of VMs = 100

Number of 
tasks

GSO-HHO-RA 
(Proposed) GSO HHO PSO

100 320 380 350 400

200 335 395 365 420

300 345 410 375 435

400 360 430 395 455

500 375 445 410 470

600 390 460 425 485

700 405 475 440 500

800 420 490 455 515

900 435 505 470 530

Table 2: Response time (in Milliseconds) obtained by the proposed 
GSO-HHO-RA, GSO, HHO, and PSO with number of hosts = 800 and 

Number of VMs = 200

Number of 
Tasks

GSO-HHO-RA 
(Proposed) GSO HHO PSO

100 290 350 320 370

200 305 365 335 390

300 315 380 350 405

400 330 395 370 420

500 345 410 385 440

600 360 425 400 455

700 375 440 415 470

800 390 455 430 485

900 405 470 445 500

Table 3: Execution time (in Milliseconds) obtained by the proposed 
GSO-HHO-RA, GSO, HHO, and PSO with number of hosts = 400 and 

Number of VMs = 100

Number of 
Tasks

GSO-HHO-RA 
(Proposed) GSO HHO PSO

100 580 640 610 665

200 600 660 630 685

300 620 680 650 705

400 640 700 670 725

500 660 720 690 745

600 680 740 710 765

700 700 760 730 785

800 720 780 750 805

900 740 800 770 825

global exploration capabilities. PSO consistently shows the 
highest execution times due to its slower resource allocation 
process, especially with a higher number of tasks, resulting 
in less efficient execution overall.

Table 4 depicts the execution time (ET) (in milliseconds) 
obtained by the proposed GSO-HHO-RA, GSO, HHO, and 
PSO approaches, where the number of hosts is 800 and the 
number of VMs is 200.

GSO-HHO-RA (Proposed) achieves the lowest execution 
time across all task sizes, indicating that it is highly efficient 
in handling task scheduling and resource allocation, 
ensuring that tasks are executed quickly and efficiently. 
GSO performs better than PSO but slightly worse than HHO. 
While it is a strong optimization method, it takes more time 
to converge to the optimal resource allocation, resulting in 
slightly higher execution times compared to GSO-HHO-RA. 
HHO performs well, showing a clear advantage over PSO 
due to its effective exploitation phase, which helps reduce 
execution time. However, it lacks the hybrid mechanism of 

GSO-HHO-RA, which further optimizes resource allocation. 
PSO consistently shows the highest execution times among 
all approaches, struggling to allocate resources efficiently as 
the number of tasks increases. Its slower convergence to the 
optimal solution results in higher execution times.

Energy Consumption (EC)
The total energy consumed by cloud resources (e.g., servers, 
virtual machines) during task execution.

Table 5 depicts the Energy Consumption (EC) (in 
milliseconds) obtained by the Proposed GSO-HHO-RA, GSO, 
HHO, and PSO approaches, where the number of hosts is 
400 and the number of VMs is 100.

GSO-HHO-RA (Proposed) consistently achieves the 
lowest energy consumption, indicating that the hybrid 
approach is highly energy-efficient. The combined strengths 
of GSO’s global exploration and HHO’s local exploitation 
ensure that resources are allocated optimally, minimizing 
unnecessary energy usage. GSO performs better than 
PSO but consumes slightly more energy compared to 
HHO. It is less energy-efficient than GSO-HHO-RA due to 
its slower convergence and higher number of iterations 
for finding the optimal solution. HHO performs well, with 
energy consumption lower than GSO and PSO, but it is still 
higher than GSO-HHO-RA. HHO’s local exploitation helps 
in reducing energy consumption, but it lacks the global 
optimization capability that makes GSO-HHO-RA more 
energy-efficient. PSO consistently exhibits the highest 
energy consumption. The slower convergence and less 
efficient resource allocation lead to higher energy usage, 
especially as the number of tasks increases.

Table 6 depicts the ET (in milliseconds) obtained by the 
proposed GSO-HHO-RA, GSO, HHO, and PSO approaches, 
where the number of hosts is 800, and the number of VMs 
is 200.

GSO-HHO-RA (Proposed) shows the lowest energy 
consumption across all task counts, indicating that 
the hybrid optimization approach effectively reduces 
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Table 4: Execution time (in Milliseconds) obtained by the proposed 
GSO-HHO-RA, GSO, HHO, and PSO with Number of hosts = 800 and 

Number of VMs = 200

Number of 
Tasks

GSO-HHO-RA 
(Proposed) GSO HHO PSO

100 550 610 580 645

200 570 630 600 665

300 590 650 620 685

400 610 670 640 705

500 630 690 660 725

600 650 710 680 745

700 670 730 700 765

800 690 750 720 785

900 710 770 740 805

Table 5: Energy consumption (in kWh) obtained by the proposed 
GSO-HHO-RA, GSO, HHO, and PSO with Number of hosts = 400 and 

number of VMs = 100

Number of 
Tasks

GSO-HHO-RA 
(Proposed) GSO HHO PSO

100 1.85 2.1 2 2.2

200 1.95 2.2 2.1 2.3

300 2.05 2.3 2.2 2.4

400 2.15 2.4 2.3 2.5

500 2.25 2.5 2.4 2.6

600 2.35 2.6 2.5 2.7

700 2.45 2.7 2.6 2.8

800 2.55 2.8 2.7 2.9

900 2.65 2.9 2.8 3

Table 6: Execution time (in Milliseconds) obtained by the proposed 
GSO-HHO-RA, GSO, HHO, and PSO with Number of hosts = 800 and 

Number of VMs = 200

Number of 
Tasks

GSO-HHO-RA 
(Proposed) GSO HHO PSO

100 1.5 1.8 1.7 1.9

200 1.6 1.9 1.8 2

300 1.7 2 1.9 2.1

400 1.8 2.1 2 2.2

500 1.9 2.2 2.1 2.3

600 2 2.3 2.2 2.4

700 2.1 2.4 2.3 2.5

800 2.2 2.5 2.4 2.6

900 2.3 2.6 2.5 2.7

unnecessary energy usage. The combination of global 
exploration from GSO and local exploitation from HHO 
contributes to optimal resource allocation and energy 
efficiency. GSO demonstrates improved energy efficiency 
compared to PSO but consumes slightly more energy than 
HHO. Its performance is hindered by a longer convergence 
time, resulting in increased energy consumption as the 
number of tasks grows. HHO performs well, with energy 
consumption lower than GSO and PSO, due to its strong 
local optimization capabilities. However, it still cannot match 
the energy efficiency of the GSO-HHO-RA approach. PSO 
consistently exhibits the highest energy consumption, as its 
slower resource allocation leads to inefficient use of energy 
resources. This inefficiency becomes more pronounced with 
an increasing number of tasks.

Resource Utilization (RU)
The percentage of cloud resources utilized during task 
execution relative to the total available resources.

Table 7 depicts the Resource Utilization (in %) obtained 
by the Proposed GSO-HHO-RA, GSO, HHO, and PSO 

approaches, where the number of hosts is 400 and the 
number of VMs is 100.

GSO-HHO-RA (Proposed) achieves the highest resource 
utilization across all task counts, demonstrating its efficiency 
in allocating resources effectively. This indicates that 
the hybrid approach optimally uses available resources, 
maximizing overall system performance. GSO performs well 
but shows lower utilization rates compared to GSO-HHO-RA. 
Its effectiveness decreases as the number of tasks increases, 
likely due to less optimal resource allocation strategies. HHO 
provides better resource utilization than PSO but does not 
reach the levels achieved by the proposed hybrid approach. 
While it excels in local optimization, it lacks the broader 
exploration capability that GSO-HHO-RA provides. PSO 
consistently exhibits the lowest resource utilization among 
all approaches. Its inefficiencies in resource allocation led to 
underutilization of the available VMs and hosts, especially 
as the number of tasks increased.

Table 8 depicts the resource utilization (RU) (in %) 
obtained by the Proposed GSO-HHO-RA, GSO, HHO, and 
PSO approaches, where the number of hosts is 800 and the 
number of VMs is 200.

GSO-HHO-RA (Proposed) achieves the highest resource 
utilization across all task counts, indicating its ability to 
effectively allocate resources and maximize performance 
in a larger setup with 800 hosts and 200 VMs. GSO shows 
good resource utilization but does not reach the levels 
achieved by GSO-HHO-RA. Its lower performance indicates 
that it may struggle with optimal resource allocation as the 
number of tasks increases. HHO performs better than PSO 
but still falls short of the utilization rates achieved by the 
proposed hybrid approach. While it provides decent local 
optimization, it lacks the comprehensive global exploration 
offered by GSO-HHO-RA. PSO consistently exhibits the 
lowest resource utilization among all approaches. Its 
inefficiencies in resource allocation lead to underutilization, 
particularly as the number of tasks grows.
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Table 10 depicts the SLA violation rate (SVR) (in %) obtained 
by the Proposed GSO-HHO-RA, GSO, HHO, and PSO 
approaches, where the number of hosts is 800, and the 
number of VMs is 200.

GSO-HHO-RA (Proposed) achieves the lowest SLA 
violation rate across all task counts, demonstrating its 
effectiveness in meeting service level agreements and 
ensuring timely completion of tasks. This highlights the 
hybrid approach’s capability to optimize resource allocation 
effectively. GSO shows a higher SLA violation rate than 
GSO-HHO-RA, indicating challenges in maintaining 
SLAs as the number of tasks increases. While it performs 
reasonably well, it does not match the efficiency of the 
proposed method. HHO performs better than PSO but still 
has a higher SLA violation rate compared to GSO-HHO-RA. 
Although HHO is effective in local optimization, it falls short 
in overall performance compared to the hybrid approach. 
PSO consistently exhibits the highest SLA violation rate 
among all approaches, reflecting significant inefficiencies 
in task scheduling and resource allocation, particularly as 
the number of tasks increases.

Table 7: Resource utilization (RU) (in %) obtained by the proposed 
GSO-HHO-RA, GSO, HHO, and PSO with Number of hosts = 400 and 

Number of VMs = 100

Number of 
Tasks

GSO-HHO-RA 
(Proposed) GSO HHO PSO

100 85 80 82 78

200 87 82 84 79

300 88 83 85 80

400 89 84 86 81

500 90 85 87 82

600 91 86 88 83

700 92 87 89 84

800 93 88 90 85

900 94 89 91 86

Table 8: Resource utilization (RU) (in %) obtained by the proposed 
GSO-HHO-RA, GSO, HHO, and PSO with number of hosts = 800 and 

number of VMs = 200

Number of 
Tasks

GSO-HHO-RA 
(Proposed) GSO HHO PSO

100 88 82 85 80

200 90 84 87 81

300 91 85 88 82

400 92 86 89 83

500 93 87 90 84

600 94 88 91 85

700 95 89 92 86

800 96 90 93 87

900 97 91 94 88

Service-Level Agreement (SLA) Violation Rate (SVR)
The percentage of tasks that fail to meet the performance 
guarantees outlined in the service-level agreements (SLAs).

Table 9 depicts the SLA (in %) obtained by the Proposed 
GSO-HHO-RA, GSO, HHO, and PSO approaches, where the 
number of hosts is 400 and the number of VMs is 100.

GSO-HHO-RA (Proposed) achieves the lowest SLA 
violation rate across all task counts, indicating its effectiveness 
in meeting service level agreements (SLAs) and ensuring 
timely task completion. The hybrid approach efficiently 
allocates resources to minimize SLA violations. GSO shows 
a higher SLA violation rate than GSO-HHO-RA, reflecting its 
challenges in optimizing resource allocation effectively as 
the number of tasks increases. HHO performs better than 
PSO but still has a higher SLA violation rate compared to the 
proposed hybrid approach. Its local optimization capabilities 
help reduce violations, but it does not reach the same level of 
performance as GSO-HHO-RA. PSO consistently exhibits the 
highest SLA violation rate among all approaches, indicating 
significant inefficiencies in meeting SLAs, particularly as the 
number of tasks increases.

Table 9: SLA violation rate (SVR) (in %) obtained by the proposed 
GSO-HHO-RA, GSO, HHO, and PSO with number of hosts = 400 and 

number of VMs = 100

Number of 
Tasks

GSO-HHO-RA 
(Proposed) GSO HHO PSO

100 2.5 5 4 6

200 3 5.5 4.5 6.5

300 3.5 6 5 7

400 4 6.5 5.5 7.5

500 4.5 7 6 8

600 5 7.5 6.5 8.5

700 5.5 8 7 9

800 6 8.5 7.5 9.5

900 6.5 9 8 10

Table 10: SLA violation rate (SVR) (in %) obtained by the proposed 
GSO-HHO-RA, GSO, HHO, and PSO with number of hosts = 800 and 

number of VMs = 200

Number of 
Tasks

GSO-HHO-RA 
(Proposed) GSO HHO PSO

100 1.8 4 3.5 5.5

200 2.2 4.5 3.9 6

300 2.6 5 4.3 6.5

400 3 5.5 4.8 7

500 3.4 6 5.2 7.5

600 3.8 6.5 5.7 8

700 4.2 7 6 8.5

800 4.6 7.5 6.5 9

900 5 8 7 9.5
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Conclusion
The proposed gravitational search optimization - Harris 
Hawks optimization resource allocation (GSO-HHO-RA) 
approach demonstrates significant advantages over 
traditional resource allocation techniques (GSO, HHO, and 
PSO) in cloud computing environments. The results obtained 
across various performance metrics, including response time 
(RT), execution time (ET), energy consumption (EC), resource 
utilization (RU), and SLA violation rate (SVR), highlight the 
effectiveness and efficiency of the GSO-HHO-RA method.

Improved performance
The GSO-HHO-RA approach consistently achieved the 
best results in response and execution times, indicating its 
capability to allocate resources quickly and effectively while 
minimizing latency in task processing.

Energy efficiency
The hybrid approach exhibited the lowest energy 
consumption rates across different scenarios, showcasing 
its ability to optimize resource utilization and reduce 
operational costs in cloud environments.

Maximized resource utilization
The GSO-HHO-RA method demonstrated superior resource 
utilization, ensuring that available resources were effectively 
allocated and used to their full potential. This resulted in 
higher system performance and efficiency.

Minimized SLA violations
With the lowest SLA violation rates, the proposed approach 
ensured adherence to service level agreements, providing 
reliability and quality in cloud service delivery. This is 
particularly crucial for maintaining customer satisfaction in 
dynamic and competitive environments.

Overall, the GSO-HHO-RA approach proves to be a robust 
solution for dynamic resource allocation in cloud computing. 
By effectively combining the strengths of gravitational 
search and Harris Hawk’s optimization techniques, this 
hybrid method not only enhances performance metrics but 
also aligns with the growing demand for energy-efficient 
and high-quality cloud services. The findings emphasize 
its suitability for modern cloud applications, making it a 
promising choice for organizations looking to optimize their 
resource management strategies while ensuring compliance 
with service commitments.
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