
Abstract
Energy efficiency in wireless sensor networks (WSNs) is a crucial and fundamental design consideration. These networks typically consist 
of numerous small, resource-constrained sensor nodes, frequently placed in isolated or difficult-to-reach areas. This research presents 
a comprehensive methodology for improving the performance and energy efficiency of WSNs deployed in a designated target area. 
The research begins with the deployment of sensor nodes equipped with location information and the initialization of critical network 
parameters. Novel techniques are introduced for efficient node clustering using a Haversine-based K-means Clustering algorithm 
(HKMC) and an advanced hybrid optimization model, teaching-learning soccer league optimization (TLSLO), for optimal cluster head 
selection within clusters. Data aggregation at cluster heads is crucial for conserving energy, and data compression techniques, including 
the novel weighted discrete wavelet transform (WDWT)), are employed to reduce data transmission size. Furthermore, deep learning 
models in the form of recurrent artificial neural networks (RANN) predict energy consumption patterns, enabling the optimization 
of node sleep-wake schedules for a prolonged network lifetime. Simulated using Python, the proposed protocol’s performance is 
evaluated, demonstrating its superiority in terms of energy efficiency, latency, network lifetime, and data delivery ratio compared to 
existing routing protocols. This research offers a holistic approach to improving WSNs enhancing their efficiency and sustainability in 
resource-constrained environments.
Keywords: Wireless sensor networks, Energy efficiency, Modified K-means clustering, Teaching-learning soccer league optimization, 
Recurrent artificial neural network.
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Introduction
Various applications can be supported by WSNs depending 
on where the sensor nodes are placed. Despite differences in 
the objectives of application scenarios, the nodes’ principal 
duty is to sense the data and communicate it to the BS. The 
usage of energy-efficient routing methods is required to 
execute this operation successfully. When building routing 
algorithms, it is important to consider the resources required 
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for the anticipated application scenarios as well as the 
sensor nodes’ energy use. Furthermore, the employment 
of conventional routing protocols with WSNs is prohibited 
by their high routing costs, which rise with network size 
and dynamic circumstances. Therefore, a routing method 
that considers network flexibility and sensor node power 
constraints is required. The routing protocols significantly 
influence the potential energy efficiency of a WSN. The 
clustering hierarchy algorithm-based routing protocols are 
crucial for enhancing energy efficiency in particular. The 
WSNs are broken up into homogeneous and heterogeneous 
networks as well. Each node in homogeneous networks 
receives the same amount of energy in the beginning, but 
each node in heterogeneous networks receives a variable 
quantity of leftover energy, Banerjee, A., Sufian, A., Sadiq, A. 
S., & Mirjalili, S. (2021), Wang, Z., Ding, H., Li, B., Bao, L., & Yang, 
Z. (2020), Roopali, & Kumar, R. (2020), Maheshwari, P., Sharma, 
A. K., & Verma, K. (2021), Mehta, D., & Saxena, S. (2022).

The location-based routing systems mainly rely on 
location information. In order to offer information regarding 
route discovery, network upkeep, data transfer, and node 
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security of private information. The WSN’s ability to reduce 
data flooding over the whole network in large part depends 
on direct data transfer between nodes. By measuring the 
distance between sensor nodes where energy is released, 
location routing serves as a major measurement tool. The 
most important location-based routing protocols are GAF, 
MECN, GEAR, AFR, MAR, GRC, and SMECN. Only one node 
is active at the moment in each cell in the geographic grid 
that GAF generates, despite each cell having numerous 
neighboring cells. GAF seeks to extend the network’s 
lifespan and reduce energy use. Mobile ad hoc networks 
and WSNs are its main applications. MECN is a low-power, 
GPS-based routing technology that aims to cut down on 
the network’s total power use. Since direct communication 
requires more energy than transferring data across several 
relay nodes, this protocol’s concept is to send data packets 
through intermediary nodes rather than directly to the base 
station. By selecting neighbors using energy-conscious 
measures, the geographic protocol GEAR balances network 
longevity and energy use. The protocol incorporates a cost 
function that calculates the cost of contacting a neighbor 
depending on the neighbor’s location and residual level. 
AFR is an ad hoc routing system that is based on Euclidean 
planar networks, which separate a plane’s nodes and edges 
into areas known as faces. AFR employed face routing to 
go through the faces in a limited fashion. The protocol 
repeats the same processes using an eclipse that is twice 
the size of face routing cannot transport the data to the 
target place. Using the hierarchical position-based routing 
protocol MAR, the network is split into a geographic grid 
and cluster heads depending on the mobility measure. The 
node with the lowest mobility measure, therefore, is the 
cluster head. Because node energy is not taken into account 
when selecting a cluster head, this protocol has a major 
problem. The GRC protocol uses cluster-based routing, 
choosing the cluster leaders based on node locations and 
energy levels. Also utilized to restore packet loss is the 
inter-cluster communication phase. By characterizing a 
minimal graph according to the minimum energy property, 
SMECN, a routing protocol, improves MECN, Del-Valle-Soto, 
C., Mex-Perera, C., Nolazco-Flores, J. A., Velázquez, R., & 
Rossa-Sierra, A. (2020), Kamarei, M., Patooghy, A., Alsharif, 
A., & Hakami, V. (2020), Gupta, N. K., Yadav, R. S., & Nagaria, 
R. K. (2020), Almesaeed, R., & Jedidi, A. (2021), Jayarajan, 
P., Kanagachidambaresan, G. R., Sundararajan, T. V. P., 
Sakthipandi, K., Maheswar, R., & Karthikeyan, A. (2020), Mittal, 
M., Iwendi, C., Khan, S., & Rehman Javed, A. (2021), Alsafi, S., 
& Talab, S. A. (2020).

The LEACH protocol uses a hierarchical-based cluster 
method and is generally implemented on outdoor 
application-specific sensor networks. This protocol assigns 
a maximum number of sensor nodes to each set of sensors, 
which are divided into several categories. For instances 

when detected properties, like temperature, rapidly vary, a 
hierarchical protocol called TEEN was developed. APTEEN 
is a protocol for improving LEACH. It improves LEACH 
by including HT, ST, and counting time, all of which may 
respond to crises and limit the amount of data that the node 
transmits. Location-based routing methods, which take 
advantage of nodes’ locations to speed up communication, 
are utilized in WSN. Other names for it include position-
based routing systems and geographical routing protocols. 
These protocols extend network life and use less energy. This 
paper discusses the Location-Based Energy-Efficient Routing 
Protocol for WSN. The main contribution of the paper is as 
follows: Subramani, N., Mohan, P., Alotaibi, Y., Alghamdi, S., 
& Khalaf, O. I. (2022), Anand, R., Singh, J., Pandey, D., Pandey, 
B. K., Nassa, V. K., & Pramanik, S. (2022), Abdul-Wahab, Y., 
Alhassan, A. B., & Salifu, A. M. (2020).
•	 The Haversine-based K-means Clustering algorithm 

(HKMC) is a variation of the traditional K-means 
clustering algorithm that incorporates the Haversine 
formula to cluster data points with latitude and 
longitude information.

•	 The data aggregation module receives the compressed 
data, multiplies the DWT query output by weight, and 
introduces a weighted DWT (WDWT). The weighting can 
be used to highlight important features or reduce the 
impact of less relevant information in the data.

•	 Within each cluster, a cutting-edge hybrid optimization 
model- teaching-learning soccer league optimization 
( TLSLO),  combining teaching learning-based 
optimization (TLBO) and soccer league competition 
(SLC) (proposed), is utilized to select the optimal CH. 
The TLBO-based imitation operator is introduced to 
efficiently choose the CH from the available nodes.

•	 The integration of deep learning models, such as the 
proposed «recurrent artificial neural network» (RANN), 
which combines recurrent neural network (RNN) 
and artificial neural network (ANN) techniques, is a 
promising approach for predicting energy consumption 
patterns. The output of the RNN is given to the ANN 
model as an input.

The remaining portions of the paper is structured as 
follows: Section 2 of this article talks about related research 
on WSN. Section 3, describes the proposed location-based 
routing for WSN. Section 4, discussed the results obtained 
for the proposed model. The conclusion is presented in 
Section 5.

Literature Review
The most recent publications on the various routing 
methods used in WSNs are included in this section.

The authors have suggested a routing technique for 
heterogeneous clustered networks. First, the enhanced WPA 
was used to optimize the deployment of heterogeneous 
nodes. The CLWPA and the heterogeneous network routing 
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method were integrated. Finally, the performance of the 
method was compared to three other popular routing 
algorithms using simulation tests. The simulation findings 
show that the CLWPA improves node energy consumption 
uniformity, ensures that all nodes survive longer, successfully 
suppresses the phenomena of early cluster head death, and 
concentrates node death time, Xiu-Wu, Y. U., Hao, Y. U., Yong, 
L., & Ren-rong, X. (2020).

The authors have introduced the E-ALWO algorithm, 
which was utilized to establish a reliable and routing 
mechanism that uses less energy by forwarding the data 
packets to the recipient. The E-ALWO algorithm is created 
via combining the EWMA concept with ALO and WOA. The 
proposed model performs the CH routing process in such a 
manner that the energy and latency restrictions were used 
to determine the CH using the ALWO method. The proposed 
E-ALWO method, which was based on the fitness measure, 
was used to find the quickest and safest way for data transfer, 
Suresh Kumar, K., & Vimala, P. (2021).

The authors have employed the PSO approach to build 
the cluster in the WSN, and a fuzzy-based E-FEERP was 
presented to best use battery energy, the average SN to BS 
node density, distance, and communication quality to send 
data from CH to the BS. Simulated network performance 
metrics, including energy consumption, throughput, packet 
delivery ratio, RE, load balancing ratio, and network lifespan, 
show improvement when compared to those of existing 
techniques, Narayan, V., Daniel, A. K., & Chaturvedi, P. (2023).

The authors have recommended a cutting-edge 
technique called MCH-EOR. It deals with the limited lifetime 
of the sensor nodes of the neighboring base station. The 
high volume of people using the washbasin from different 
cluster heads contributes to the low-life issue. The MCH-EOR 
employs a method for choosing energy-efficient cluster 
heads that accounts for a number of factors, including 
coverage, residual energy, cost, and closeness. Optimising 
SailFish identified the best path from the CH to the sink node, 
Mehta, D., & Saxena, S. (2020).

The authors have suggested a unique Q-learning-based 
energy-efficient routing technique that is mindful of data 
aggregation. The recommended approach makes use of 
reinforcement learning to maximize rewards at each sensor 
node and determine the best path. The efficiency of the 
data aggregation based on sensor type, communication 
energy, and node residual energy were used to define 
rewards. Next, sensor-type dependent reward aggregation 
was used. Employed simulations to assess the suggested 
routing technique’s effectiveness and compare it to the 
performance of the more well-established energy-aware 
routing algorithms, Yun, W. K., & Yoo, S. J. (2021).

The authors have introduced a fuzzy control-based EARP 
in which the optimal forwarder node was selected using the 
fuzzification, fuzzy inference, and defuzzification methods. 
The suggested protocol creates a fuzzy control model using 

connection quality and remaining node energy. The results 
of the simulation indicate that the proposed EARP performs 
better, including an improvement in network lifespan and 
increased data transmission reliability, Wang, X., Zheng, G., 
Ma, H., Bai, W., Wu, H., & Ji, B. (2021).

The authors have introduced an improved energy-
efficient selection of numerous mobile sink paths in WSNs. 
The WSN was first segmented into several zones using the 
QAZP method. The suggested QAZP splits the networks 
into zones utilizing the mobile anchor nodes based on the 
residual energy of the nodes inside the specified limits. 
In order to choose the RP for data transmission based on 
each node’s hop distance and the quantity of data packets 
delivered, a weight was assigned to each node after that. 
WRP was implemented to give each node a weight, Senthil 
Kumar, V., & Prasanth, K. (2020).

The authors have suggested a WSN sink mobility method 
based on the Genetic Algorithm (GA). An ideal number 
of clusters are formed in the network region, and a sink 
movement trajectory is constructed there. The GA process 
determines the best sink sites for each cluster. The mobile 
sink collects data from the associated clusters’ nodes when it 
reaches the best sink sites. The least amount of node energy 
is used in data transmission at the ideal sink position. The 
GA initialises a population of chromosomes for selecting 
the best sink position for a cluster, Singh, M. K., Amin, S. I., 
& Choudhary, A. (2021).

The authors have combined Manhattan and Euclidean 
to create unique frequency hopping and average hop-
length using the DV-Hop wireless sensor network location 
mode, was proposed by the NSGA-II approach for iterative 
optimization. The adaptability of the algorithm is tested 
through simulated experiments in isotropic and anisotropic 
networks. As demonstrated by the results, MDV-Hop can 
greatly increase the positioning flexibility of sensor arrays in 
isotropic and anisotropic systems and rapidly reach highly 
accurate positioning without introducing hardware or traffic, 
Huang, X., Han, D., Weng, T. H., Wu, Z., Han, B., Wang, J., Cui, 
M., & Li, K. C. (2022).

The authors have introduced a unique energy-conscious 
and dependable routing technique is suggested. Under 
certain reliability constraints, it is intended to increase the 
lifespan of WSNs by using multi-hop routing techniques, 
in which the source node forwards the packet to the Base 
Station (BS) via additional nodes functioning as relays. 
The optimal path is the one where the packet has the best 
likelihood of succeeding upon arriving at the base station 
and the nodes’ residual energy distribution is as uniform as 
is practical, Almazaideh, M., & Levendovszky, J. (2020).

Problem statement
WSNs are widely used for various applications, and 
researchers have proposed several routing algorithms and 
techniques to improve the performance of these networks. 
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The existing literature (as outlined in the referenced 
studies) presents a range of routing methods, such as WPA 
optimization, ALO and WOA integration, PSO clustering, 
fuzzy-based E-FEERP, MCH-EOR, Q-learning-based routing, 
fuzzy control-based EARP, mobile sink path selection, 
GA-based sink mobility, and novel frequency hopping 
techniques. While these studies demonstrate advancements 
in various aspects of WSN routing, they lack a comprehensive 
and up-to-date comparative analysis of these techniques, 
making it challenging for researchers, engineers, and 
network designers to choose the most suitable routing 
approach for specific application scenarios.

However, there are several challenges that still need 
to be addressed in the field of WSNs. These challenges 
include optimizing energy efficiency, network reliability, 
and data transmission in heterogeneous and clustered 
networks, as well as addressing issues related to node energy 
consumption, cluster head selection, and data aggregation. 
Additionally, there is a need to improve the network’s overall 
performance metrics such as throughput, load balancing, 
packet delivery ratio, and network lifespan.

Proposed Methodology
A small or large number of nodes called sensor nodes 
compose sensor networks. These nodes come in different 
sizes, and depending on their size, the sensor nodes 
operate effectively in various domains. WSNs include sensor 
nodes that are uniquely constructed in a manner that is 
conventional, such that they have a radio transceiver that 
generates radio waves, a variety of wireless communication 
devices, a microprocessor that controls the monitoring, 
and an energy supply, like a battery. Using sensors of 
various dimensions, the complete network operates 
concurrently, and by utilising a routing algorithm, they are 
primarily focused on delivering data from the source to the 
destination nodes.

Before transmitting the packets, location-based services 
are used to determine the location of the targeted node. By 
providing all layers with positioning services, it is usually 
possible to determine the location of neighbors. Each 
node transmits one of these systems on a regular basis. 
It is the responsibility of the nodes to maintain a specific 
node’s network position. Greed, restricted-directional, 
and hierarchical forwarding are the three main types of 
forwarding strategies that have been applied. For delivering 
the packets over the location services in the first method, 
the transmitting nodes use the destination node’s estimated 
positioning data. This kind of forwarding excludes the setup 
and maintenance phases of the routes. The packets are again 
transmitted to the targeted node when the neighboring 
nodes receive them from a broadcasting node. This keeps 
going till it reaches the target nodes. 

The choice is made in accordance with the algorithm’s 
specifications. Using a hierarchical network topology, 

hierarchical forwarding is another form. Here, the data may 
be processed and forwarded by the nodes with the highest 
energy, while the nodes with lesser energy may send it. 
As a result, the routers’ energy efficiency is improved, and 
the network’s lifespan is prolonged. The location-based 
clustering and routing is shown in Figure 1.

Data collection and Network Initialization
Designing energy-efficient routing protocols is crucial since 
WSNs are made up of tens of thousands of unattended, 
low-power, and resource-constrained sensor nodes. Several 
sensor nodes within communication range of one another 
constitute a cluster, which makes clustering-based routing 
protocols more helpful in the context of energy efficiency. A 
CH, which manages all of the nodes in a cluster, is present in 
every cluster. A WSN may have several base stations (BS), also 
known as sinks, that interact with other networks. In order 
to transfer data to the BS, a CH gathers information that has 
been received from all cluster members. Along with CH, a 
cluster may also have gateway nodes that are employed for 
inter-cluster communication. As a result, clustering methods 
extract a small quantity of accurate, valuable information 
from a vast amount of raw sensed data while consuming less 
energy in the process. In the literature, static sensor node 
clustering techniques for WSN are the norm. Because mobile 
sensor nodes are necessary for WSN applications, including 
habitat monitoring, wildlife monitoring, target tracking, and 
combat surveillance, these protocols are ineffective in these 
contexts. Furthermore, these protocols are ineffective since 
they merely presume that each sensor node is aware of its 
position rather than supporting the localization of sensor 
nodes. For instance, the WSN’s typical static clustering 
protocol is the low energy adaptive clustering hierarchy 
(LEACH) Protocol.

Sensor Nodes
These are the specific gadgets or units that have sensors 
to gather data. These nodes can be any number of sensors, 

Clustering using HKMC approach 

CH selection using 
TLSLO

Location-Based 
Data Aggregation 

using WDWT
Energy management 

using RANN

Node Cluster head (CH)

Figure 1: Block diagram of the proposed location-based routing
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including ones that measure temperature, humidity, motion, 
or other factors important to the study topic.

Location Information
In order for the network to be spatially aware, each sensor 
node will have its own position information. Knowing each 
node’s specific geographic location is made easier with the 
aid of this information. It’s essential for keeping track of and 
analyzing data depending on its source or position in the 
study area.

Network Initialization
A sensor network must have certain parameters configured 
during setup to ensure appropriate operation. Some 
essential criteria include:

•	 Communication Range
This setting establishes the greatest possible distance that a 
sensor node may go while transmitting data to other nodes 
or a centralized data gathering station. How far the signals 
may go throughout the network must be determined.

•	 Data Transmission Rates
Data transmission speed between nodes is controlled by this 
parameter. Setting suitable data transfer speeds depending 
on the unique requirements of the research study is crucial. 
Lower rates can save energy, but higher rates can be required 
for real-time monitoring.

•	 Energy Levels
Monitoring and controlling the energy levels of sensor 
nodes is essential since they frequently run on batteries. To 
reduce the amount of energy consumed to transmit data, 
the energy parameter may be used to specify thresholds or 
criteria for when and how often nodes should do so.

•	 Initial Data Readings
The sensor nodes begin gathering data readings after the 
network is configured and its settings are initialized. The 
study project’s initial data readings serve as its beginning 
point. The information gathered at this point may serve 
as background or baseline information that will serve as 
a benchmark for further measures. Researchers utilise this 
preliminary information to comprehend the environmental 
circumstances and actions of the system or region under 
observation.

Node Clustering Using Haversine based K-means 
Clustering algorithm (HKMC)
To enhance the K-Mean clustering method, several research 
projects have been conducted in the past. They just sought 
to address the shortcomings of the earlier presented 
approach and enhance the clustering outcome. We worked 
on the issue to identify the original cluster (R). We also made 
an effort to locate the original centroid. In the final stage 
of our algorithm, we look for workable points to reduce 

calculation. We discovered a powerful modified k-means 
algorithm when we merged all of these ideas.

K-Means algorithm is one of the most used clustering 
algorithms. It is widely used in many different sectors, such 
as ad hoc networks, sensor networks, and data mining. This 
is an unsupervised learning method that is simple to use 
and organizes a collection of data into the K initial clusters. 
Reducing the distance between the cluster leader and its 
members is its main objective. K clusters are originally chosen 
by the algorithm. There are K clusters to be created from a set 
of points with coordinates 1 ≤ ≤ N. This is accomplished by 
having K-Means randomly select K points xi, each of which 
belongs to cluster C, as centroids from the data set with 1 ≤

 ≤ K of points. The application then assigns each collected 
data point to the nearest centroid. Totaling the squared 
distances between each cluster serves as the objective 
function upon which this process is built. The objective 
function is used to calculate the result is given in Eq. (1).

(1)
In K-means clustering, the Haversine distance formula is 

used when dealing with geographic data, such as latitude 
and longitude coordinates. The Haversine distance is a 
modification of the standard Euclidean distance, designed 
to account for the curvature of the Earth’s surface when 
measuring distances between points on a sphere, like 
the Earth. The Haversine distance formula provides more 
accurate distance measurements for geographic data. 
It considers the spherical shape of the Earth, which is 
important when working with latitude and longitude 
coordinates. Using the standard Euclidean distance in such 
cases would result in distortions and inaccurate clustering. 
When measuring distances between spherical objects, the 
haversine distance is correct. Eq. (2) mentions the equation 
to determine the distance  between a data point 
and a centroid.

(2)
Centroid is represented by  and  where  and  

are data points. In such case the cluster centroid’s distance 
from the point is determined by  = . The 
coordinates of the point are , the centroid is , where 

 and the number of clusters is . As shown in Figure 2, 
after placing the points in each cluster, the K-Means method 
adjusts the location of each centroid by utilizing Eq. (3):

 	 (3)

As depicted in Figure 2, the clusters finally take shape. 
The accompanying pseudo-code for the modified K-means 
clustering is given in Algorithm 1.

Consequently, K-Means has successfully tackled several 
problems that arose throughout the WSN clustering 



	 Energy-Efficient Location-Based Routing Protocol	 37

procedure. There are certain disadvantages, nevertheless, 
especially with the random selection of the initial number of 
clusters and the objective function for assigning each point 
to a cluster because of the frequent changes in the number 
of connected cars and the network structure.

CH selection using Teaching-Learning Soccer League 
Optimization (TLSLO)
For the purpose of resolving optimization issues, it is 
possible to simulate competitions between football clubs for 
league success and between players for being an SP or SSP. 
Similar to a football league where every player strives to be 
the best, each solution vector in an optimization issue seeks 
the global optimal location. Accordingly, it is conceivable to 
think of the Super Star Player (SSP), the local optimum, and 
the solution vector for each player in a league, as well as 
the Star Player (SP) for each club. This league consists of  
teams, each of which has two types of players: fixed players 
and substitutes. Each player in the SLC algorithm is a solution 
vector. Each player has an objective function computed for 
them that represents their power and may be determined 
using the formula below:

(4)
The average power value of a team’s fixed players is 

said to represent its overall strength. In a knapsack issue, 
objective function values with bigger values represent 
strong players ( ). The total strength of a team is 
considered to be represented by the average power value 
of its set members. Finding a Team’s Power  is made 
easy with the following formula.

 	 (5)

Where the total number of fixed players on the  team 
is represented by . The team with superior strength often 
prevails in each game. Each team’s chance of winning a game 
is calculated using:

 	 (6)

 	 (7)

Where  represents the probability of success. It should 
be observed that  and ) add up to 1. Each game has 
a winner and a loser, and certain players (solution vectors), 
such as fixed and substitution, go through modifications. 
These adjustments, intended to boost individual and team 
performance, are modeled using the following operators: 
Provocation operator and imitation operator. These are the 
steps involved in the SLC process:

Step 1. Set the problem and the algorithm’s initial parameters
The knapsack issue is explained in Step 1 as follows:

 	 (8)

Subject to  	 (9)
Where . The N is the total 

number of items,  is the item’s profit,  is its weight, 
and  is the knapsack’s capacity. The value Indicates if 
item  is in the knapsack or not. The objective function of 
the knapsack problem is the profit function. The decision 
variables in the problem are whether an item is present or 
absent. Following that, the number of seasons ( Season), 
teams participating in the league ( ), fixed players ( ), 
and substitutes ( ) are established.

Step 2. Samples generation 
To find out how many players are in a league overall, apply 
the following Eq. (10):

 	 (10)
In most problems, it is suggested that  and 

. The number of teams working on high-
dimensional challenges should be increased in order to 
foster variety. This stage involves creating as many randomly 

Figure 2: Clustered formed in the WSN

Algorithm 1: Pseudo-code for the HKMC

Input:
    k (Number of centroids)
    N (Set of data points)
    Ck (List of centroids randomly assigned)
    Output:
    Clusters (Set of clusters along with their respective centroids)
Begin
1: Iterate 
2. For each data point in the set N
3:   Initialize an array distances[k]
4:   For  from 1 to k do
5:     distances [ ] = Calculate the distance using Eq. (1).
6:   End for
7:   The data point should be assigned to the cluster that 
is connected to the closest centroid: cluster_index = 
argmin(distances)
8: End for
9: For each cluster in Ck:
    10: Calculate the new centroid position using Eq. (3).
11. End for
12. Repeat until all data points belong to a cluster or the 
maximum number of iterations is reached.
13. End
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generated solution vectors for the league’s participants, 
one for each player. It’s possible to construct the SLC’s initial 
population via:

 	 (11)

Where  and  represent the maximum and 
minimum boundaries and  is a random vector with a value 
of 0 or 1. The lowest and maximum bounds in this issue are 
0 and 1, respectively. Consequently, the matrix TEAM that 
is created at random is provided as follows.

 	 (12)

Then, a penalty cost associated with each solution 
vector (player’s power) and the goal function (profit) are 
ascertained. In this study, restricted 0-1 knapsack issues 
are addressed using a penalty function technique. In order 
to maximise efficiency, it applies the penalty on unfeasible 
solution vectors and searches the viable region.

 	 (13)

Where the punishment coefficient is denoted by . The 
fitness value of the best impracticable choice is certain to 
be lower than the fitness score of the worst feasible choice 
by this enormous constant.

Step 3. Team evaluation
All players are assigned to teams in this stage and are placed 
according to their calculated power. Each team’s strength is 
determined by the average power of its set players. Players 
are placed into the team’s fixed and substitute positions 
depending on their abilities in this stage. The value of the 
fixed player cost amount is equal to the team’s power.

Step 4. League start 
In this phase, the acting players of the winning teams 
are targeted by the provocation and imitation operators 
accordingly. All conceivable combinations of the league’s 
teams are entered into competitions. Detailed definitions 
of operators are provided in the next section.

•	 TLBO based Imitation operator
The winning team’s FP copies the league’s SSP as well as the 
SP in their own squad to improve their performance going 
forward. In a manner similar to this, the winning team’s 
fixed players’ solution vectors typically favour their own 
team’s solution as well as the best option for the league. The 
following formulae carry out imitation in the SLC algorithm:

 	 (14)
 	 (15)

(16)
Where  is a uniformly distributed random integer 

between 0.2 and 0.8 points. The  team’s star player is 
designated as , whereas and  are arbitrary 
random players and  denotes the  team’s  fixed 
player. The result vector of SSP is the direction in which the 
winning team’s solution vector of fixed players (FP) initially 
moves (Eq. 14). The mean value of the  is calculated using 
the TLBO algorithm to improve the prediction accuracy. At 
any iteration , let  play the nasty character and the 
instructor. will attempt to elevate mean  to its own 
level, making  the new mean (also known as Mnew). Using 
the difference between the old and new means provided 
by, the solution is revised.

 	 (17)
If at this particular location, the newly constructed 

solution vector was better than the prior one, the former 
solution vector is replaced. In the absence of such a change, 
the solution vector shifts in the direction of the SP resultant 
vector in Eq. (15). It gets changed out with a fresh solution 
vector if this solution is superior to the previous one. If not, 
the solution vector is forced to travel in the direction of the 
resulting vector of a team member chosen at random, using 
Eq. (16). The player remains in place with no modification if 
none of the suggested motions resulted in a better solution 
vector.

•	 Provocation operator
A replacement of a winning side (S) must perform at a level 
equivalent to the average overall performance score of the 
fixed individuals on their team in order to be eligible to be 
considered a fixed player. The provocative operator in the 
SLC algorithm executes this procedure, which is explained by

 	 (18)
 	 (19)

Where  is the mean value of the resulting 
vectors for f ixed participants in the  team, and 

 are uniformly distributed 
random values.  is the  replacement for the  
team. The weakest substitute player on the winning side 
first moves their solution vector in the direction of the fixed 
players’ gravity center (Eq. 19). It is switched to the new 
solution vector if the recently generated one proves to be 
better than the old one for this new point; otherwise, it is 
left alone. Otherwise, the aforementioned individual will 
slide backward towards the gravitational center.

Step 5. Update the League
After every season, players are categorized according to 
their present power. The top teams in the league standings 
receive the best players, average teams receive middle-tier 
players, and bottom-tier teams receive the worst players 
before the next season begins.
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Step 6. Check the stopping criterion
Until the n-Season termination criterion is satisfied, Steps 3, 
4, and 5 continue in this phase of the technique. 

Location-Based Data Aggregation using Weighted DWT
A mathematical method for analyzing signals and images 
is called the Weighted DWT. A signal or picture is broken 
down into a collection of wavelet coefficients at various sizes, 
which can reveal both low-frequency and high-frequency 
information. The DWT is typically implemented using a filter 
bank approach. The DWT of a signal  at a particular scale 
 and position  is computed as follows:

 	 (20)

Where  represents the wavelet coefficient at scale 
j and position , is the input signal, is the 
wavelet basis function (wavelet) at scale  and position . 
The summation is typically performed overall values of m 
in the range of the wavelet function. The data aggregation 
module receives the compressed data and multiplies the 
DWT query output by weight. The minimum value of the 
data from the DWT is obtained when the query is supplied, 
as described in the preceding section, such that the data is 
multiplied by the weight. The weight is determined by taking 
the logarithmic function of the difference between the data 
recordings at a specific period. The combined information 
is therefore shown as,

 	 (21)

 	 (22)

Where  is the weight function and t represents the 
time. To finalise data aggregation and prepare the data for 
transmission to the cluster head, the aggregated data is 
next submitted to the weighted DWT technique. Last but 
not least, the data is sent to the sink node in a method that 
uses less energy for data connection.

Deep Learning for Predictive Energy Management
The Recurrent Artificial Neural Network (RANN) is a hybrid 
deep learning model that integrates the capabilities of 
RNN and ANN. RNNs are known for their ability to model 
sequences and time-series data, while ANNs are versatile 
for pattern recognition and prediction. The combination of 
these two architectures can enhance the understanding and 
prediction of energy consumption patterns within a WSN.

ANN
A network of artificial neurons makes up an artificial neural 
network (ANN), which is capable of processing inputs, 
adjusting internal states in response to those inputs, and 
computing outputs based on those inputs and internal 
states. Learning can change the weights inside these 
artificial neurons. In the neural network model, the value 
of the output layer is gradually calculated from the input 

layer by using the output of the prior layer as the input for 
the subsequent layer. The ANN uses the following syntax:

 	 (23)

Eq. (23), weight  is the activation function, which 
demonstrates how the input variable  is multiplied by 
weight  and added with bias , this layer’s output is the 
inputs for the following layer, and the end result  is the 
forecast value.

RNN
Traditionally used RNNs combine supervised and 
unsupervised learning. This model’s input sequence data 
might have a length as long as its depth. The design of 
the RNN model consists of a feedback loop that connects 
each layer with the capacity to retain information from the 
previous input. As a result, it may make the model more 
trustworthy. In this model,  is the input layer with index 

at time t, and  is the hidden layer with index at 
time . At time t, layer  with index  is concealed. 

 is the output layer with index e at time t. The hidden 
layer with indexes  is connected to the input via the 
weight matrix U. Layers with the indices s and j are joined 
by the weight matrix W, that were previously concealed. 
The number of input units is m, and the weight matrix  
connects the hidden layer and the output layer with the 
index . There are  hidden units. There are output units. 
The calculations of an RNN are governed by the following 
formulae. The input at the present step and the previously 
concealed state are used to determine  in the first step:

 	 (24)
Where the nonlinear function f is one like tanh or ReLU. 

The first hidden state, which is commonly initialised to all 
zeroes, must be calculated using . The output at step 
t is determined as  in the second step using the formula:

 	 (25)
For recurrent networks, the following formulas are used 

to derive  and :
 	 (26)

 	 (27)
Concatenation is the process of connecting these 

results along a predetermined axis to produce a composite 
representation of the data. The model’s output is the 
last prediction it makes, which is frequently a binary 
classification.

Result and discussion
In this section, the results obtained for the proposed model 
are compared with the existing techniques. The performance 
of the existing techniques like CNN, Long Short-Term 
Memory (LSTM), RNN, and ANN are evaluated in terms of 
performance metrics like energy consumption, energy 
efficiency, latency, network life time, and data delivery ratio. 
The energy consumption is compared in Table 1.
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Table 1 compares several neural network models and a 
suggested model, all evaluated during a 100-simulation-time 
period. The metrics evaluated include energy consumption, 
energy efficiency, latency, network lifetime, and data delivery 
ratio. Among the models, the proposed model stands out 
with the lowest energy consumption (40.32007 units), 
highest energy efficiency (1,500,000 units), significantly 
lower latency (4.217153 units), longest estimated network 
lifetime (2.27E+09 units), and the highest data delivery ratio 
(0.983693). Conversely, the traditional CNN, RNN, LSTM, 
and ANN models exhibit varying performance across these 
metrics, demonstrating the potential advantages of the 
Proposed model in terms of energy efficiency, low latency, 
network longevity, and reliable data delivery, making it a 
promising choice for various applications with stringent 
performance and energy constraints.

Table 2 provides a comparative assessment of 
performance metrics for five neural network models, 
namely CNN, RNN, LSTM, ANN, and a Proposed model, 
conducted over a simulation time of 200. The metrics 
considered encompass energy consumption, energy 
efficiency, latency, network lifetime, and data delivery 
ratio. Notably, the proposed model consistently exhibits 
superior performance, with the lowest energy consumption 
(42.32007 units), highest energy efficiency (1,490,850 units), 

shortest latency (5.982551 units), longest projected network 
lifetime (2.2E+09 units), and the highest data delivery ratio 
(0.980006). Conversely, the traditional CNN, RNN, LSTM, and 
ANN models present varying results across these metrics, 
underscoring the benefits of the proposed model in terms 
of energy efficiency, low latency, network durability, and 
dependable data delivery, making it a compelling choice for 
applications with extended simulation times and stringent 
performance requirements.

Table 3 presents a comparative analysis of performance 
metrics for five neural network models, namely CNN, 
RNN, LSTM, ANN, and a Proposed model, evaluated in a 
simulation time of 300. The metrics considered encompass 
energy consumption, energy efficiency, latency, network 
lifetime, and data delivery ratio. Notably, the proposed 
model consistently outperforms the other models with 
the lowest energy consumption (43.25165 units), highest 
energy efficiency (1,402,561 units), lowest latency (7.56165 
units), longest projected network lifetime (2.16E+09 units), 
and the highest data delivery ratio (0.961635). Conversely, 
the traditional CNN, RNN, LSTM, and ANN models exhibit 
varying performance across these metrics, highlighting 
the advantages of the Proposed model in terms of energy 
efficiency, low latency, network durability, and reliable 
data delivery. These results make the Proposed model a 

Table 1: Comparison of the performance metrics for simulation time 100

Metrics CNN RNN LSTM ANN PROPOSED

Energy consumption 61.75428 52.49008 69.21156 49.80706 40.32007

Energy efficiency 161000.7 1002570 142362.8 1239053 1500000

Latency 13.06257 12.84857 13.92563 11.91647 4.217153

Network lifetime 1.7E+09 1.8E+09 1.6E+09 2.05E+09 2.27E+09

Data delivery ratio 0.912634 0.952634 0.903153 0.962234 0.983693

Table 2: Comparison of the performance metrics for simulation time 200

Metrics CNN RNN LSTM ANN PROPOSED

Energy consumption 64.62988 53.26194 72.56296 51.23165 42.32007

Energy efficiency 1136585 992214.3 1092563 1036220 1490850

Latency 21.2655 19.0316 22.2965 12.26366 5.982551

Network lifetime 1.52E+09 1.8E+09 1.53E+09 1.91E+09 2.2E+09

Data delivery ratio 0.906594 0.946924 0.892316 0.951365 0.980006

Table 3: Comparison of the performance metrics for simulation time 300

Metrics CNN RNN LSTM ANN Proposed

Energy consumption 65.95465 53.86555 72.69897 51.94646 43.25165

Energy efficiency 1092349 985009.2 1051230 1003652 1402561

Latency 21.91635 19.56987 23.64645 12.94157 7.56165

Network lifetime 1.49E+09 1.7E+09 1.51E+09 1.8E+09 2.16E+09

Data delivery ratio 0.900053 0.932067 0.890237 0.949653 0.961635
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compelling choice for applications with extended simulation 
times and stringent performance requirements, further 
reinforcing its suitability in resource-constrained scenarios.

A thorough comparison of the performance metrics for 
each of the five neural network models is shown in Table 4, 
including CNN, RNN, LSTM, ANN, and a proposed model, 
all evaluated under a prolonged simulation time of 400. 
The metrics considered encompass energy consumption, 
energy efficiency, latency, network lifetime, and data 
delivery ratio. Impressively, the proposed model consistently 
stands out with the lowest energy consumption (46.12645 
units), highest energy efficiency (1,392,570 units), shortest 
latency (10.51654 units), longest estimated network lifetime 
(2.07E+09 units), and the highest data delivery ratio 
(0.951165). In contrast, the conventional CNN, RNN, LSTM, 
and ANN models demonstrate variable performance across 
these metrics, emphasizing the merits of the Proposed 
model in terms of energy efficiency, low latency, network 
longevity, and reliable data delivery.

Table 5 offers a comprehensive comparative analysis of 
performance metrics for five neural network models—CNN, 
RNN, LSTM, ANN, and a Proposed model—assessed under an 
extended simulation time of 500. These metrics encompass 
energy consumption, energy efficiency, latency, network 
lifetime, and data delivery ratio. Notably, the Proposed model 
consistently emerges as the standout performer with the 
lowest energy consumption (50.96645 units), highest energy 
efficiency (1,376,259 units), shortest latency (11.95164 units), 
longest estimated network lifetime (2E+09 units), and a high 
data delivery ratio (0.9496). In contrast, the traditional CNN, 
RNN, LSTM, and ANN models exhibit variable performance 
across these metrics, further emphasizing the superiority 
of the Proposed model in terms of energy efficiency, low 
latency, network longevity, and reliable data delivery.

Energy Consumption
When comparing the «Energy Consumption» metric across 
Tables 1 to 5 with increasing simulation times (100–500), a 
notable trend emerges. In all cases, as the simulation time 
extends, there is a general increase in energy consumption 
for all models, which is expected given the longer 
operational duration. 

However, the key observation is that the proposed 
model consistently outperforms the other models by 
consuming the least energy at each simulation time point. 
This consistent trend underscores the remarkable energy 
efficiency of the Proposed model, as it manages to maintain 
low energy consumption even in longer simulations. It 
establishes the proposed model as a highly energy-efficient 
option, particularly suitable for applications demanding 
prolonged operational periods while minimizing energy 
consumption when compared to traditional models like 
CNN, RNN, LSTM, and ANN.

Energy Efficiency
When comparing the «Energy Efficiency» metric across Tables 1  
to 5, which correspond to increasing simulation times from 

Table 4: Comparison of the performance metrics for simulation time 400

Metrics CNN RNN LSTM ANN Proposed

Energy consumption 65.95465 53.86555 72.69897 51.94646 46.12645

Energy efficiency 1031257 989562 992651.4 982666 1392570

Latency 25.31163 20.88498 24.16342 15.12565 10.51654

Network lifetime 1.03E+09 1.51E+09 1.49E+09 1.79E+09 2.07E+09

Data delivery ratio 0.892647 0.928656 0.889565 0.942465 0.951165

Table 5: Comparison of the performance metrics for simulation time 500

Metrics CNN RNN LSTM ANN Proposed

Energy consumption 67.98846 54.02615 74.56617 56.25654 50.96645

Energy efficiency 995562.5 980235.1 990592.7 972655.6 1376259

Latency 25.94652 22.03217 25.03116 15.94644 11.95164

Network lifetime 1.02E+09 1.5E+09 1.49E+09 1.76E+09 2E+09

Data delivery ratio 0.882269 0.920565 0.872362 0.93621 0.9496

Figure 3:
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100 to 500, a notable pattern becomes evident. While there 
are fluctuations in energy efficiency for all models as the 
simulation time varies, the consistent observation is that the 
Proposed model consistently maintains the highest energy 
efficiency among the models at each time point. 

This highlights the remarkable energy optimization 
capabilities of the Proposed model, as it excels in conserving 
energy even as the simulation duration extends. In essence, 
the Proposed model emerges as a standout choice for 
applications requiring not only extended operational periods 
but also the highest energy efficiency, setting it apart from 
conventional neural network models like CNN, RNN, LSTM, 
and ANN in terms of energy-efficient performance.

Latency
When comparing the «Latency» metric across Tables 1 to 5, 
which correspond to increasing simulation times from 100 
to 500, a clear pattern emerges. While there are fluctuations 
in latency for all models as the simulation time varies, 
the consistent observation is that the Proposed model 
consistently maintains the lowest latency among the models 
at each time point. 

This showcases the exceptional processing speed and 
efficiency of the Proposed model, as it consistently delivers 
results with minimal delay, even as the simulation duration 
extends. In essence, the proposed model stands out as 

a superior choice for applications demanding not only 
prolonged operational periods but also minimal latency, 
setting it apart from conventional neural network models 
like CNN, RNN, LSTM, and ANN in terms of low-latency 
performance.

Network lifetime
When comparing the «Network Lifetime» metric across 
Tables 1 to 5, covering simulation times from 100 to 500, a 
clear and consistent trend emerges. The Proposed model 
consistently maintains the longest estimated network 
lifetime among the models at each time point. 

This demonstrates the extraordinary network longevity 
of the Proposed model, as it manages to ensure prolonged 
network operation even as the simulation duration extends. 
The Proposed model stands out as a robust choice for 
applications that require not only extended operational 
periods but also the assurance of a longer network lifespan, 
setting it apart from conventional neural network models 
like CNN, RNN, LSTM, and ANN in terms of network durability 
and sustainability.

Data delivery ratio
When comparing the «Data Delivery Ratio» metric across 
Tables 1 to 5, spanning simulation times from 100 to 500, a 
distinct pattern emerges. 

Figure 4: Figure 6:

Figure 5: Figure 7:
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Although there are variations in data delivery performance 
for all models as the simulation time extends, the Proposed 
model consistently maintains the highest data delivery 
ratio among the models at each time point. This highlights 
the remarkable reliability of the Proposed model in 
successfully delivering data, even in prolonged simulations. 
The Proposed model stands out as an optimal choice 
for applications where the dependable and high data 
delivery ratio is critical, setting it apart from conventional 
neural network models like CNN, RNN, LSTM, and ANN in 
terms of data delivery performance and ensuring reliable 
transmission of critical information.

Conclusion
In conclusion, this research underscores the paramount 
importance of energy efficiency in WSNs and introduces a 
comprehensive approach to enhance their performance in 
designated areas. The deployment of location-aware sensor 
nodes and the optimization of network parameters lay the 
foundation for an energy-efficient framework. Innovations in 
node clustering through Modified K-Means and cluster head 
selection via TLSLO reduce unnecessary communication, 
ultimately extending the network’s lifespan. The integration 
of data compression techniques, notably the I-DWT, further 
conserves energy by minimizing data transmission sizes. 
Moreover, RANN predicts energy consumption patterns, 
enabling smart node scheduling and prolonged network 
lifetime. Extensive Python-based simulations confirm the 
superiority of this holistic approach over existing protocols, 
making it a promising solution for achieving efficiency and 
sustainability in resource-constrained WSNs across various 
applications.
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