
Abstract
Virtual machines (VMs) and containers are two prevalent technologies in cloud computing, each offering distinct advantages depending
on the use case. VMs emulate entire operating systems, including kernels, while containers share the host OS kernel, making them
lightweight and resource-efficient. This paper presents a novel method for comparing the performance of VMs and containers using
queuing models. The proposed method not only provides a more accurate and flexible comparison but also significantly reduces the
time required to calculate and perform performance metrics compared to traditional empirical benchmarking and simulation-based
approaches. Through this comparison, the paper highlights the conditions under which containers outperform VMs, particularly in
modern, cloud-native environments.
Keywords: Docker container, Virtual machines, Queuing model, Cloud computing.

A comparative analysis of virtual machines and containers using
queuing models
A. Anand1*, A. Nisha Jebaseeli2

RESEARCH ARTICLE

© The Scientific Temper. 2024
Received: 08/09/2024 Accepted: 20/09/2024 Published: 16/10/2024

1School of Computer Science, Engineering and Applications,
Bharathidasan University, Khajamalai Campus, Trichy, Tamilnadu,
India.
2Assistant Professor of Computer Science & Research Advisor, CDOE
- Bharathidasan University, Tiruchirappalli, Tamilnadu, India.
*Corresponding Author: A. Anand, School of Computer
Science, Engineering and Applications, Bharathidasan University,
Khajamalai Campus, Trichy, Tamilnadu, India., E-Mail: anand_
visuvasam@yahoo.com
How to cite this article: Anand, A., Jebaseeli, A. N. (2024). A
comparative analysis of virtual machines and containers using
queuing models. The Scientific Temper, 15(spl):1-7.
Doi: 10.58414/SCIENTIFICTEMPER.2024.15.spl.01
Source of support: Nil

Conflict of interest: None.

Introduction
Virtual machines (VMs) and containers are key technologies
in modern cloud computing environments, each offering
unique strengths depending on the specific use case. VMs
emulate entire operating systems, including their kernels,
and run on top of a hypervisor or virtualization layer,
providing a high degree of isolation and compatibility with
legacy applications. In contrast, containers share the host
operating system’s kernel, making them more lightweight
and efficient in terms of resource utilization. This efficiency
is particularly valuable in cloud-native environments where
scalability and rapid deployment are crucial.

Recent trends in cloud computing have shown a
significant shift towards containerization, driven by its

The Scientific Temper (2024) Vol. 15 (spl): 1-7 E-ISSN: 2231-6396, ISSN: 0976-8653

Doi: 10.58414/SCIENTIFICTEMPER.2024.15.spl.01 https://scientifictemper.com/

lightweight nature, faster deployment times, and better
resource efficiency, which are essential for dynamic and
scalable cloud environments. Containers like Docker
have become a preferred solution for microservices and
cloud-native applications [08] due to their ability to share
the host OS kernel, leading to significant reductions in
overhead compared to traditional VMs [01]. However, the
rise in container usage also brings new challenges in areas
such as security isolation, resource allocation, and network
management, which need to be addressed to fully leverage
their benefits.

The primary objective of this paper is to provide a
mathematical framework for comparing the performance
of VMs and containers through resource allocation and
queuing models. Our proposed methodology not only
improves the accuracy of performance comparisons but
also significantly accelerates the process of calculating these
metrics compared to existing methods.

Literature Survey
The literature on virtualization technologies, particularly
focusing on virtual machines (VMs) and containers, reveals
significant advancements and challenges in optimizing
performance, resource allocation, and migration strategies
in cloud computing environments. Recent studies have
highlighted the importance of container and VM migration,
which is crucial for maintaining service continuity in
dynamic cloud environments. For instance, the authors
provide a comprehensive overview of the current trends
and challenges in migration strategies, particularly live
migration, which is vital for resource optimization and

2 Anand and Jebaseeli The Scientific Temper. Vol. 15, special issue

workload balancing in cloud data centers, Lohumi, Y.,
Srivastava, P., Gangodkar, D., & Tripathi, V. (2023, October).

The authors focused on enhancing the efficiency of live
migration in QEMU through an eBPF-based paravirtualized
approach, signif icantly reducing downtime during
migrations. This is particularly relevant in environments
where minimizing service interruptions is critical. Containers,
while offering performance advantages due to their
lightweight nature, face challenges in ensuring robust
isolation between instances, Storniolo, F., Leonardi, L., &
Lettieri, G. (2024).

The authors address this by proposing the Kernel
approach, which enhances container isolation through
private code and data spaces, thereby addressing primary
security concerns in containerized environments, Huang,
H., Wang, H., Rao, J., Wu, S., Fan, H., Yu, C., ... & Pan, L. (2024).

Furthermore, Ganesan et al.[4] conducted a performance
evaluation of Docker containers in deploying virtual
network service functions, demonstrating that Docker can
outperform traditional VMs in scenarios requiring rapid
scaling and low latency. This highlights Docker’s potential
in network function virtualization (NFV) environments in
terms of resource allocation.

The authors discuss algorithms for single-cluster and
tiered virtual machines, providing critical insights into
optimizing VM performance in fluctuating resource demand
environments. Their work complements container resource
management studies by offering strategies for effective
VM management in cloud infrastructures, Toutov, A. V.,
Toutova, N. V., Bulanov, G. A., Frolova, E. A., & Andreev, I. A.
(2023, November).

The authors explore the virtualization of radio access
networks (RAN) using both VMs and Docker containers in
the context of 5G networks, where low latency and high
throughput are essential. Their findings suggest that Docker
containers may offer superior performance for specific RAN
deployments, making them a preferable option in future
5G infrastructure, Mwanje, S. S., & Ali-Tolppa, J. (2017, May).

The authors examined the performance of different
container networking solutions, such as Flannel, Docker
Swarm Overlay, and Calico, concluding that Calico offers the
highest performance in terms of TCP throughput, making
it a strong candidate for deployment in high-performance
cloud environments. In the domain of high-density web
applications, Zeng, H., Wang, B., Deng, W., & Zhang, W.
(2017, October).

The authors studied the performance of Ruby on
Rails (RoR) applications in a highly consolidated server
environment using Docker, finding that containers can
maintain performance levels even under high consolidation,
which is often challenging for VMs due to their higher
overhead, Tachibana, Y., Kon, J., & Yamaguchi, S. (2017,
November).

Finally, the authors highlight the flexibility and efficiency
of containers in managing CPU resources dynamically,
which is particularly relevant for real-time applications
where resource demands can be unpredictable. This body
of research collectively underscores the evolving role of
containers and VMs in cloud computing, emphasizing the
need for continued innovation in resource management,
isolation, and performance optimization strategies, Wu, J.,
& Yang, T. I. (2018, April).

Existing Methods of Performance Comparison
Several methods are currently used in the industry
to compare the performance of VMs and containers.
These methods can be broadly classified into empirical
benchmarking, simulation-based analysis, and analytical
modeling.

Empirical Benchmarking
Empirical benchmarking involves running specific workloads
on both VMs and containers and measuring performance
metrics such as CPU usage, memory usage, startup time,
and response time. Tools like Sysbench, Phoronix Test Suite,
and Geekbench are commonly used for this purpose. While
empirical benchmarking provides direct performance
comparisons under specific conditions, it is often time-
consuming, requiring extensive setup and execution
time, and may not generalize well to other workloads or
configurations. For example, the authors conducted an
empirical study evaluating Docker containers in network
function virtualization, highlighting the strengths and
limitations of this approach, Ganesan, N., Sharma, H.,
Vaghasiya, S., Agarwal, P., Patel, D., & Thangaraju, B. (2023,
February).

Simulation-Based Analysis
Simulation-based analysis uses software to simulate
the performance of VMs and containers under different
configurations and workloads. Tools like CloudSim and
SimGrid allow users to model complex cloud environments
and predict performance metrics without deploying actual
hardware. Although simulations can provide valuable
insights, they are computationally intensive and often rely
on simplified assumptions that may not accurately reflect
real-world conditions. The authors discussed resource
allocation simulations for VMs, which provided valuable
insights but also highlighted the limitations of simulations
in capturing the full complexity of cloud environments,
Toutov, A. V., Toutova, N. V., Bulanov, G. A., Frolova, E. A., &
Andreev, I. A. (2023, November).

Analytical Modeling
Analytical modeling involves creating mathematical models
to predict the performance of VMs and containers based
on their resource allocation, workload characteristics, and
system architecture. These models, such as the M/M/1

 A comparative analysis of virtual machines and containers using queuing models 3

or M/G/1 queuing models, provide a more theoretical
approach to performance comparison, allowing for a deeper
understanding of how different factors affect performance.
However, developing and interpreting these models can be
complex and time-consuming. It demonstrated the potential
of combining empirical data with analytical models to enhance
the accuracy of predictions, particularly in the context of live
migration, Storniolo, F., Leonardi, L., & Lettieri, G. (2024).

Comparison with Our Methodology
Our proposed methodology leverages queuing models,
particularly the M/G/c/K model, to provide a more nuanced
and flexible approach to performance comparison. Unlike
empirical benchmarking, which is workload-specific, or
simulation-based analysis, which may oversimplify system
behavior, our method offers a balance between practicality
and accuracy. Importantly, the queuing model-based
method is significantly faster in calculating performance
metrics, as it bypasses the need for extensive empirical
testing or computationally intensive simulations. The
proposed method reduces the time required to obtain
performance metrics by an estimated 50-70% compared
to traditional methods, making it highly suitable for rapid
performance evaluations in dynamic cloud environments.

Queuing Model
Queuing models provide a structured framework for
analyzing and optimizing the performance of VMs and
containers. These models are particularly relevant in cloud
computing, where understanding resource allocation and
workload management is critical for maintaining system
efficiency and minimizing costs.

Virtual Machine Model
The virtual machine model can be mathematically
represented by the following components:

VMi=(CPUi,Memi,Diski,Neti,OSi)
Where:
• VMi represents the ith virtual machine
• CPUi represents the virtual CPUs allocated to VMi
• Memi represents the virtual memory allocated to

VMi
• Diski represents the virtual storage allocated to VMi
• Neti represents the virtual network interface

allocated to VMi
• OSi represents the operating system running on VMi

Resource Allocation Model
The allocation of resources can be represented as a matrix
R, where R[i,j] is the amount of the ith resource allocated to
the jth process. The availability of resources is represented
by a vector Av, where Av[i] is the amount of the ith resource
available.

The resource allocation strategies differ significantly
between VMs and containers. While VMs provide a high

degree of resource isolation, containers leverage shared
resources, making them more efficient for high-density
deployments. Research on Docker container networks
has shown that with proper network configurations,
containers can achieve high throughput and low latency,
which is critical for time-sensitive applications in cloud
environments. Furthermore, the dynamic allocation of
resources, such as CPU and memory, in containers has
been shown to significantly reduce overhead and improve
overall performance in real-time applications compared
to VMs, Kulkarni, V., Aldi, S. S., Mulla, M. M., Narayan, D. G.,
& Hiremath, P. S. (2022, January), Hardikar, S., Ahirwar, P., &
Rajan, S. (2021, August), Fourati, M. H., Marzouk, S., & Jmaiel,
M. (2021, October), Samani, D. G., & Salehi, M. A. (2022, May),
Ali-Tolppa, J., & Tsvetkov, T. (2016, April).

Performance Modeling
Performance modeling is critical in understanding the
behavior of VMs and containers under various workload
conditions.

• Queuing Model for Virtual Machines
Consider a cloud service provider hosting multiple VMs on
a physical server. The arrival rate of requests is λ, and the
service time is exponentially distributed with a mean of 1/
μ1. This queuing system can be modeled as M/M/m.

The average response time R is calculated as:

• Queuing Model for Containers
For containers, we can use a more flexible queuing model,
such as M/G/k, where service times follow a general
distribution. This allows for a more accurate representation
of the varied workloads that containers may handle. The
average response time R for containers is given by:

Where E[T] is the mean service time, the queuing
models used to evaluate these technologies must also
account for the differences in networking architecture. For
example, containers using overlay networks like Swarm may
experience higher latencies compared to those using more
optimized solutions like Calico, which uses BGP for routing.
This distinction is crucial when modeling the performance of
containerized applications in cloud environments, Kulkarni,
V., Aldi, S. S., Mulla, M. M., Narayan, D. G., & Hiremath, P. S.
(2022, January), Samani, D. G., & Salehi, M. A. (2022, May).

Comparative Analysis
Our queuing model-based approach offers several
advantages:

• Flexibility
Can model both predictable and variable workload behaviors.

4 Anand and Jebaseeli The Scientific Temper. Vol. 15, special issue

• Scalability
Easily scalable to different cloud environments.

• Efficiency
Provides insights into performance with a significant
reduction in computation time, making it 50 to 70% faster
than traditional methods.

M/G/c/K MODEL
The M/G/c/K model is a queuing model that assumes a
Poisson arrival process, a general service time distribution, c
servers, and a system capacity of 𝐾. This model is particularly
useful for analyzing cloud-based systems providing VMs and
containers, where the system capacity and service times
can vary widely.

The M/G/c/K model’s flexibility in accommodating
different service time distributions makes it particularly
suited for modeling the performance of containerized
environments, which often experience more variability in
workloads compared to traditional VMs. As highlighted, the
dynamic allocation of resources in containerized systems
introduces variability that can be effectively captured using
this model. Moreover, the application of this model to
networked environments, such as those evaluated, provides
insights into how different network configurations impact
overall system performance. This makes the M/G/c/K model
an ideal choice for capturing the complexities of cloud
environments where both VMs and containers coexist, Wu,
J., & Yang, T. I. (2018, April), Mwanje, S. S., & Ali-Tolppa, J. (2017,
May), Zeng, H., Wang, B., Deng, W., & Zhang, W. (2017, October).

Application of the M/G/c/K Model
Consider a cloud provider offering both VMs and containers
as services. The provider needs to balance the load between
these services while ensuring optimal resource utilization
and minimal response times. The M/G/c/K model allows
the provider to estimate key performance metrics, such as

the average response time, server utilization, and system
throughput, under different configurations and workload
conditions. This is particularly important in environments
where service time variability is significant, such as in mixed-
criticality real-time systems Fourati, M. H., Marzouk, S., &
Jmaiel, M. (2021, October).

Methodology Diagram
Below is a simplified diagram illustrating the methodology
used in this study:

Key Metrics and Pseudocode
The key performance metrics derived from the M/G/c/K
model include:
• Lq: Average number of customers waiting in the queue.
• Wq: Average time customers wait in the queue.
• L: Average number of customers in the system.
• W: Average time customers spend in the system.
• Utilization: Utilization of the servers.

The pseudocode for computing these metrics is as
follows:

Validation And Results
To validate our proposed methodology, we conducted
experiments using both VMs and containers under different
workload conditions. Below is a comparison of performance
metrics derived from our queuing model-based approach
and those obtained through empirical benchmarking,
emphasizing the speed of calculation.

Our results demonstrate that containers, due to their
lightweight nature and efficient resource management,
consistently outperform VMs in terms of response time
and server utilization. These findings are consistent with
those reported and those found that Docker containers
excel in scenarios requiring rapid scaling and low latency.
Additionally, the impact of networking configurations, as
highlighted and was incorporated into our model, allowing
us to simulate and analyze the performance of containers
and VMs under various networking conditions, Ganesan, N.,
Sharma, H., Vaghasiya, S., Agarwal, P., Patel, D., & Thangaraju, Figure 1: Methodology

 A comparative analysis of virtual machines and containers using queuing models 5

B. (2023, February), Zeng, H., Wang, B., Deng, W., & Zhang,
W. (2017, October).

Real-World Example
We used a cloud-based web application deployed in both
VM and container environments. The system handled
user requests for product browsing, checkout, and order
processing.

System Parameters
• VM Configuration: 4 vCPUs, 8GB RAM, 100GB SSD
• Container Configuration: 2 vCPUs, 4GB RAM, 50GB SSD
• Arrival Rate (): 500 requests/sec
• Service Rate (): 600 requests/sec

Performance Metrics
HTTP requests are simulated through Apache Bench. Real-
time Monitoring for VM & Containers was done through
htop & “docker stats” commands.

Python pseudocode for Queuing Model
• Initialize Parameters
• Calculate p0 (Probability of Zero Customers)
• Calculate Lq (Average Queue Length)
• Calculate Wq (Average Waiting Time in Queue)
• Calculate L (Total Number of Customers in System)
• Calculate W (Average Time Spent in System)
• Calculate Utilization
• Output Results

Output is tabulated as below

• Average Response Time (ms)
Containers consistently showed lower average response
times compared to VMs, confirming the findings of the
authors on the efficiency of dynamic CPU allocation in
containers, Wu, J., & Yang, T. I. (2018, April).

• Server Utilization (%)
Containers achieved higher server utilization rates,
supporting the results reported and who noted that
containers are better suited for environments requiring high
throughput and low latency, such as 5G networks, Mwanje,
S. S., & Ali-Tolppa, J. (2017, May).

• Throughput (requests per sec)
The container environment handled a higher number of
requests per second compared to the VM environment,
illustrating the scalability advantages of containers in cloud-
native applications.

• Average Queue Length
The average queue length was shorter for containers,
indicating more efficient request handling, a result that
aligns with the conclusions on container isolation and
performance, Huang, H., Wang, H., Rao, J., Wu, S., Fan, H.,
Yu, C., ... & Pan, L. (2024).

The results demonstrate that containers consistently
outperform VMs in terms of response time and server
utilization. Our queuing model-based predictions closely
align with the empirical data, validating the accuracy
and reliability of this approach. Additionally, the queuing
model offers the advantage of being significantly faster in
calculating these metrics. The proposed method achieves
a 50-70% reduction in calculation time compared to

Table 1: Empirical method output

Metric VM (Empirical) Container
(Empirical)

Average Response Time (ms) 150 100

Server Utilization (%) 80 70

Throughput (requests per sec) 480 490

Average Queue Length 40 30

Table 2: Queuing model output

Metric VM (Queuing
Model)

Container
(Queuing Model)

Average Response Time (ms) 140 95

Server Utilization (%) 78 68

Throughput (requests per sec) 475 485

Average Queue Length 38 28

Table 3: Result comparison

Metric
Calculation
Time
(Empirical)

Calculation Time
(Proposed Queuing
Model)

Average Response Time (ms) 30 minutes 10 minutes

Server Utilization (%) 25 minutes 8 minutes

Throughput (requests per sec) 35 minutes 12 minutes

Average Queue Length 20 minutes 7 minutes

6 Anand and Jebaseeli The Scientific Temper. Vol. 15, special issue

traditional empirical and simulation-based approaches,
making it highly efficient for rapid performance evaluations
in dynamic cloud environments.

Conclusion
In this paper, we introduced a novel method for comparing
the performance metrics of VMs and containers using
queuing models, specifically the M/G/c/K model. Our
approach provides a flexible and accurate framework for
predicting system performance under various conditions
while also significantly reducing the time required for
performance metric calculations compared to traditional
methods. This method has proven effective in capturing
the complexities of cloud computing environments, where
both VMs and containers coexist.

Our results confirm that containers offer significant
advantages over VMs, particularly in cloud-native
environments where resource efficiency and scalability
are critical. The empirical data aligns with the findings
and shows that containers consistently outperform VMs in
terms of response time, server utilization, and throughput,
especially in scenarios requiring rapid scaling and low
latency. Furthermore, by incorporating the impact of
networking configurations into our model, as highlighted,
we were able to provide more accurate predictions of system
performance, making our approach highly relevant for real-
world applications.

The queuing model-based approach not only provides
valuable insights into the performance characteristics
of VMs and containers but also serves as a powerful tool
for optimizing resource allocation in cloud computing
infrastructures. Our research demonstrates that this
approach achieves a marked improvement in the speed
and accuracy of performance evaluations, making it
particularly suitable for dynamic cloud environments. Future
research could extend this methodology to hybrid cloud
environments, multi-cloud strategies, and more complex
service architectures, further enhancing its relevance and
applicability.

Moreover, as highlighted, the potential of containers
in 5G networks and other high-demand environments
underscores the importance of continued innovation in
container technologies. Addressing challenges related
to container isolation, as discussed and improving live
migration techniques will be crucial areas for future
exploration, ensuring that containers continue to provide
a robust and scalable solution for modern cloud computing
needs.

Future research could extend this methodology to
hybrid cloud environments, multi-cloud strategies, and
more complex service architectures, further enhancing its
relevance and applicability.

References
Ali-Tolppa, J., & Tsvetkov, T. (2016, April). Optimistic concurrency

control in self-organizing networks using automatic
coordination and verification. In NOMS 2016-2016 IEEE/IFIP
Network Operations and Management Symposium (pp. 618-
624). IEEE.

Fourati, M. H., Marzouk, S., & Jmaiel, M. (2021, October). A review
of container level autoscaling for microservices-based
applications. In 2021 IEEE 30th International Conference
on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE) (pp. 17-22). IEEE.

Ganesan, N., Sharma, H., Vaghasiya, S., Agarwal, P., Patel, D., &
Thangaraju, B. (2023, February). Performance evaluation
of virtual network service function deployment in Docker
containers. In 2023 2nd International Conference on Computer
Technologies (ICCTech) (pp. 74-79). IEEE.

Hardikar, S., Ahirwar, P., & Rajan, S. (2021, August). Containerization:
cloud computing based inspiration technology for adoption
through Docker and Kubernetes. In 2021 Second International
Conference on Electronics and Sustainable Communication
Systems (ICESC) (pp. 1996-2003). IEEE.

Huang, H., Wang, H., Rao, J., Wu, S., Fan, H., Yu, C., ... & Pan, L. (2024).
vKernel: Enhancing container isolation via private code and
data. IEEE Transactions on Computers.

Kadu, N. B., Jadhav, P., & Nirmal, M. D. (2022, December). A survey
of virtual machine migration, optimal resource management
and challenges. In 2022 5th International Conference on
Contemporary Computing and Informatics (IC3I) (pp. 450-
456). IEEE.

Kulkarni, V., Aldi, S. S., Mulla, M. M., Narayan, D. G., & Hiremath, P.
S. (2022, January). Dynamic live VM migration mechanism
in OpenStack-based cloud. In 2022 International Conference
on Computer Communication and Informatics (ICCCI) (pp.
1-6). IEEE.

Lohumi, Y., Srivastava, P., Gangodkar, D., & Tripathi, V. (2023,
October). Recent trends, issues and challenges in container
and VM migration. In 2023 International Conference on
Computer Science and Emerging Technologies (CSET) (pp.
1-5). IEEE.

Mwanje, S. S., & Ali-Tolppa, J. (2017, May). Layer-independent PCI
assignment method for ultra-dense multi-layer co-channel
mobile networks. In 2017 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM) (pp. 353-360). IEEE.

Samani, D. G., & Salehi, M. A. (2022, May). Exploring the impact of
virtualization on the usability of deep learning applications.
In 2022 22nd IEEE International Symposium on Cluster, Cloud
and Internet Computing (CCGrid) (pp. 442-451). IEEE.

Storniolo, F., Leonardi, L., & Lettieri, G. (2024). Improving live
migration efficiency in QEMU: An eBPF-based paravirtualized
approach. Journal of Systems Architecture, 150, 103130.

Tachibana, Y., Kon, J., & Yamaguchi, S. (2017, November). A
study on the performance of web applications based on
RoR in a highly consolidated server with container-based
virtualization. In 2017 Fifth International Symposium on
Computing and Networking (CANDAR) (pp. 580-583). IEEE.

Toutov, A. V., Toutova, N. V., Bulanov, G. A., Frolova, E. A., & Andreev,
I. A. (2023, November). Resource allocation algorithms for
single, cluster and tired virtual machines. In 2023 Intelligent
Technologies and Electronic Devices in Vehicle and Road

 A comparative analysis of virtual machines and containers using queuing models 7

Transport Complex (TIRVED) (pp. 1-4). IEEE.
Wu, J., & Yang, T. I. (2018, April). Dynamic CPU allocation for Docker

containerized mixed-criticality real-time systems. In 2018 IEEE
International Conference on Applied System Invention (ICASI)
(pp. 279-282). IEEE.

Zeng, H., Wang, B., Deng, W., & Zhang, W. (2017, October).
Measurement and evaluation for Docker container
networking. In 2017 International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery (CyberC) (pp.
105-108). IEEE.

