
Abstract
The integration of the internet of things (IoT) into precision farming has revolutionized agricultural practices by enhancing resource 
management and crop productivity through real-time data monitoring and automation. Precision farming leverages IoT technologies 
to monitor critical environmental factors such as soil moisture, temperature, humidity, and nutrient levels, enabling farmers to make 
data-driven decisions for optimizing crop growth. Despite these advancements, improving the accuracy and efficiency of IoT-based 
crop recommendation systems remains a key challenge, particularly in resource-constrained environments. This study aims to enhance 
the predictive performance of IoT-based crop recommendation systems by developing a novel stacked deep ensemble learning model. 
The proposed model, termed lightweight selective stacking with deep ensemble learning (LSSDEL), focuses on reducing computational 
complexity while maintaining high predictive accuracy. Key methods employed include selective model stacking, L1 regularization for 
model pruning, gradient-free model aggregation, and the implementation of an early stopping mechanism. The system is validated 
using real-world IoT agricultural datasets, emphasizing its scalability and practical applicability. Findings from the study demonstrate 
that the LSSDEL model outperforms traditional models, achieving a prediction accuracy of 97.80% and significant improvements in 
precision, recall, and F1-score. Furthermore, the proposed model reduces execution time by 16.7% compared to existing approaches, 
confirming its computational efficiency.
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Introduction
The internet of things (IoT) is a groundbreaking technology 
that connects devices, systems, and sensors, enabling 
seamless communication in real time (Ranjan et al., 2024). 
Among its diverse applications, IoT has made a significant 
impact on precision farming, an advanced approach 
to managing agricultural resources (Vinod et al., 2024). 
Precision farming leverages technologies to monitor 
crop growth, soil conditions, and environmental factors, 
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allowing for data-driven decision-making that enhances 
crop productivity and optimizes resource usage (Getahun 
et al., 2024). IoT’s role in precision farming is pivotal as it 
provides continuous, real-time data, enabling farmers to 
make informed adjustments that lead to more efficient and 
sustainable farming practices (Soussi et al., 2024).

A key component of precision farming is the use of 
sensors embedded in the environment to monitor critical 
factors like soil moisture, temperature, humidity, and 
nutrient levels (Mehedi et al., 2024). IoT enables the collection 
and analysis of this data in real time, helping farmers respond 
quickly to changing conditions (Fuentes et al., 2024). For 
example, IoT devices can notify farmers when irrigation is 
needed or when specific nutrients are lacking, facilitating 
precise interventions that improve crop health and minimize 
resource wastage. This real-time insight allows for more 
effective management of resources and ensures that crops 
receive exactly what they need to thrive.

Beyond data collection and monitoring, IoT plays a 
crucial role in automating farming processes (Dhal et 
al., 2024). By integrating IoT systems with automated 
equipment, such as irrigation systems or fertilizing drones, 
farming operations can be managed with greater efficiency 
(Mohamed et al., 2021). This reduces the margin for human 
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error and ensures that resources like water, fertilizers, and 
pesticides are applied precisely where and when they are 
needed (Ahmad et al., 2020). This level of automation not 
only boosts crop yields but also promotes more sustainable 
farming practices by minimizing the overuse of resources 
(Getahun et al., 2024).

One of the key applications of IoT in precision farming is 
crop recommendation, a process where data from various 
sensors is used to determine the best crops to plant based 
on environmental and soil conditions (Alahmad et al., 2023). 
Crop recommendation systems consider factors such as the 
type of soil, the amount of rainfall, temperature patterns, and 
market demands to suggest the most suitable crops for a 
given region (Pande et al., 2021). These systems help farmers 
make informed decisions, ensuring that they choose crops 
that are likely to thrive in specific conditions, thus reducing 
the risk of crop failure and improving overall productivity 
(Altieri et al., 2015).

IoT-based crop recommendation systems utilize data 
analytics and machine learning algorithms to process the 
information gathered from the environment (Musanase et 
al., 2023). These systems can continuously learn from past 
data, becoming more accurate in predicting which crops 
will yield the best results (Van et al., 2020). Additionally, 
IoT platforms can provide farmers with actionable insights 
through easy-to-use dashboards, ensuring that even those 
with limited technical knowledge can benefit from the 
technology (Paul et al., 2022).

The role of IoT in addressing these challenges cannot 
be overstated. By offering real-time monitoring and data 
analysis, IoT allows for the more efficient use of resources, 
ensuring that farming is both sustainable and economically 
viable. Precision farming solutions that incorporate IoT 
can help reduce water consumption, optimize fertilizer 
application, and minimize the environmental impact of 
farming. Moreover, IoT-driven crop recommendation 
systems ensure that the right crops are grown in the right 
conditions, thereby enhancing food security.

In the work by Kiruthika and Karthika (2023), the IDCSO-
WLSTM approach was proposed for crop recommendation. 
This model utilized a deep learning-based weighted long 
short-term memory (WLSTM) framework, enhanced by 
an improved dynamic crow search optimization (IDCSO) 
algorithm. The model demonstrated improved prediction 
performance over traditional models but still faced 
challenges in terms of scalability and computational 
efficiency, particularly when handling high-dimensional 
datasets (Kiruthika et al., 2023). Despite its merits, the IDCSO-
WLSTM approach had limitations in optimizing model 
complexity and computational resource usage, making it 
less ideal for real-time IoT systems.

To address the above research gap, the objectives of this 
paper are as follows:

•	 To improve the predictive accuracy of IoT-based crop 
recommendation systems by leveraging a stacked deep 
ensemble learning approach.

•	 To reduce computational complexity through selective 
model stacking, model pruning, and regularization 
techniques.

•	 To apply gradient-free model aggregation and early 
stopping to ensure optimal model performance with 
minimal computational overhead.

•	 To validate the proposed LSSDEL model using real-world 
IoT agricultural datasets and compare it with existing 
methods.

The significance of this research lies in its potential to 
contribute to the development of more effective IoT-based 
crop recommendation systems. These systems can have 
a profound impact on smallholder farmers, who often 
struggle with limited access to resources and information. 
By providing them with data-driven recommendations, 
IoT technologies can help level the playing field, ensuring 
that even small farms can compete with larger industrial 
agricultural operations. This democratization of technology 
in agriculture could lead to greater economic stability for 
rural communities and contribute to reducing poverty in 
agricultural regions.

This paper is structured as follows: Section 2 presents the 
methodology, describing the LSSDEL approach, including 
its model stacking, pruning, and voting mechanisms. 
Section 3 details the experimental setup and results, with 
a discussion of the performance of the proposed method. 
Section 4 summarizes the key findings and contributions 
of this chapter.

Methodology
The proposed LSSDEL technique follows a structured 
workflow designed to enhance the predictive accuracy of 
IoT-based crop recommendation systems while maintaining 
computational efficiency. The micro-level architecture of 
the proposed work integrates several key components, 
each playing a critical role in the overall model training 
and prediction process (see Figure 1). The workflow 
begins by selecting and preprocessing the input dataset, 

Figure 1: Workflow of LSSDEL
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which consists of environmental and soil-related features 
(e.g., nitrogen, phosphorus, potassium, temperature, pH, 
humidity, and rainfall) and crop labels. After preprocessing, 
a set of base models is trained using multiple machine 
learning algorithms. These models undergo a selection 
process, where only the top-performing ones are chosen 
for inclusion in the ensemble.

To optimize the performance of the selected models, L1 
regularization is applied for pruning, reducing unnecessary 
complexity by eliminating irrelevant or redundant features. 
This is followed by gradient-free model aggregation, 
where the predictions of the pruned models are combined 
through a weighted voting mechanism based on their 
cross-validation performance. Additionally, an early 
stopping mechanism is implemented to prevent overfitting 
and ensure that each model is trained only until further 
improvements are minimal. This not only reduces the 
computational cost but also enhances the efficiency of the 
ensemble.

Selective Model Stacking
Selective model stacking is a core component of the 
proposed LSSDEL technique, designed to optimize the 
integration of multiple machine learning models in the 
context of IoT-based crop recommendation systems. The 
primary goal of this approach is to enhance predictive 
accuracy by leveraging the strengths of various base 
models while maintaining computational efficiency. Unlike 
conventional stacking methods that indiscriminately 
combine all models, the selective approach introduced here 
applies a rigorous selection process based on performance 
metrics, ensuring that only the top-performing models 
contribute to the final prediction.

Let  be the dataset where  
represents the i-th instance with d features and  is the 
corresponding label. The base models  
are trained on the dataset . Each model  is 
trained to minimize a loss function  and provides 
predictions  for the validation set .

The performance of each model  is evaluated using 
k-fold cross-validation. For each fold k, the accuracy of  
is given by:

 	 (1)

where  is the validation fold in the k-th iteration of 
the cross-validation. The top k models with cross-validation 
accuracy exceeding a threshold  are selected for the 
stacking ensemble:

 	 (2)

To further optimize the selection process, the pruned 
models undergo L1 regularization during training. The 
regularization term  is added to the loss function to 

penalize unnecessary model complexity, where  denotes 
the weight vector associated with the features in model 
. The objective function to be minimized for each model 
becomes:

 	 (3)

After model selection and pruning, the predictions of 
the selected models are combined using weighted voting. 
Let  denote the prediction of the i-th instance by the j-th 
model. The final prediction  for instance  is obtained 
by aggregating the predictions of the selected models, 
where each model’s vote is weighted according to its cross-
validation performance:

 	 (4)

where  is the indicator function, and c denotes the 
possible classes (in this case, crop types). This weighted 
voting mechanism ensures that models with higher 
performance contribute more to the final prediction, thus 
improving the ensemble’s overall accuracy.

Furthermore, to ensure that the training process remains 
efficient, the training of each model incorporates an early 
stopping mechanism. The validation loss  is 
monitored at each iteration t, and the training is halted 
if the validation loss fails to improve by a margin  over a 
predefined number of iterations :

(5)
By combining selective model stacking, L1 regularization, 

and weighted voting, the LSSDEL technique effectively 
reduces model complexity while maximizing predictive 
performance, making it ideal for real-time IoT-based 
crop recommendation systems where both accuracy and 
efficiency are critical.

Model Pruning with L1 Regularization
Model pruning is a critical step in optimizing machine learning 
models, particularly in ensemble learning frameworks such 
as the LSSDEL approach. The primary objective of model 
pruning is to eliminate unnecessary parameters, reduce 
overfitting, and enhance computational efficiency without 
sacrificing predictive accuracy. In the LSSDEL technique, 
pruning is achieved using L1 regularization, which imposes 
a sparsity constraint on the model’s weight parameters. 
This section outlines the mathematical formulation and 
application of L1 regularization in the context of model 
pruning.

Let  be one of the selected base models in the ensemble, 
trained on the dataset , where  are 
the feature vectors, and  are the corresponding 
labels. The weight vector for model  is denoted by 
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 representing the contributions of each 
feature in the prediction process. 

The goal of L1 regularization is to minimize the following 
regularized loss function:

 	 (6)

where  is the original loss function (e.g., mean 
squared error or logistic loss), and  is the regularization 
parameter that controls the degree of penalization. The 
term  introduces sparsity by driving some weights 

 towards zero, effectively removing the influence of less 
important features from the model.

The optimization of the L1-regularized loss function is 
performed using gradient-based methods. The gradient of 
the regularized loss with respect to the weights is given by:

 	 (7)

where  is the gradient of the original loss function, 

and  is the signum function, defined as:

  	 (8)

This gradient update pushes small weights toward 
zero, thereby pruning irrelevant or redundant features. The 
iterative update rule for the weights in model  becomes:

 	 (9)

where  is the learning rate, and t denotes the iteration 
step. This process continues until convergence, with many of 
the weights becoming zero because of the L1 regularization 
term, effectively pruning the model.

The advantage of L1 regularization lies in its ability to 
produce sparse solutions. For models with high-dimensional 
inputs, such as IoT crop recommendation systems where 
features like soil nutrients, temperature, humidity, and pH 
levels are highly variable, L1 regularization ensures that only 
the most relevant features are retained. This reduces the 
computational complexity of the model while maintaining 
or even improving its predictive accuracy.

To further illustrate, consider the pruned model  after 
L1 regularization. Let the set of non-zero weights be denoted 
as . The prediction for a new instance  
after pruning is then given by:

 	 (10)

where  is the number of remaining features after 
pruning, and  is the k-th feature of the i-th instance. This 
sparse representation reduces the computational burden 
during both training and inference.

Additionally, the effectiveness of L1 regularization in pruning 
models can be further quantified by measuring the ratio of 
pruned weights:

 	 (11)

where d is the total number of features before pruning, 
and  is the number of features remaining after pruning. 
A high pruning ratio indicates a significant reduction in 
model complexity, which is crucial in resource-constrained 
IoT environments.

Gradient-Free Model Aggregation
Gradient-free model aggregation is a crucial aspect of the 
LSSDEL technique, designed to integrate the predictions of 
multiple base models without relying on gradient-based 
optimization techniques. This approach is particularly well-
suited for ensemble models in IoT-based systems where 
computational efficiency and scalability are essential. 
Instead of using traditional gradient-based methods to 
adjust the contributions of individual models, gradient-
free aggregation leverages a weighted voting scheme that 
assigns higher importance to models based on their cross-
validation performance, thus ensuring that the ensemble 
prediction is robust and accurate.

Let the set of selected base models be denoted by 
, where k represents the number 

of models selected based on cross-validation accuracy. 
For each model , it assigns a weight  that 
reflects its performance during cross-validation. The weight 
is proportional to the accuracy of the model, given by:

 	 (12)

where  is the cross-validation accuracy of model 
, and the sum of the weights for all selected models is 

normalized to 1.
Given an input instance , each model  generates 

a prediction . The final aggregated prediction  
for the instance  is obtained by taking a weighted sum of 
the individual model predictions. For a regression task, this 
can be expressed as:

 	 (13)

In the case of a classification task, the final prediction 
is determined using a weighted voting mechanism. Let C 
denote the set of possible classes (e.g., crop types in the IoT-
based agricultural dataset), and let  be the indicator 
function that takes the value 1 if model  predicts class c 
for instance , and 0 otherwise. The aggregated prediction 

 is given by:

 	 (14)
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This weighted voting scheme ensures that models with 
higher accuracy during cross-validation contribute more 
heavily to the final prediction, thus enhancing the overall 
performance of the ensemble.

An essential feature of gradient-free model aggregation 
is its ability to handle the variance and biases of individual 
models. By assigning weights based on cross-validation 
accuracy, the approach naturally adjusts for models that 
may perform well on specific portions of the dataset but 
poorly on others. This is particularly useful in IoT agricultural 
datasets where the data may exhibit significant variability 
due to environmental conditions such as soil quality, 
temperature, or humidity.

In addition to weighted voting, the LSSDEL technique 
introduces a confidence-based adjustment to the 
aggregation process. Each model  not only contributes 
to its prediction but also provides a measure of confidence 

 in its prediction, for instance . The confidence-
adjusted weight for each model is computed as:

 	 (15)

where  represents the confidence score, typically 
derived from the probability output of the model. This 
adjustment further enhances the robustness of the 
final prediction, as models with low confidence in their 
predictions are given reduced influence in the aggregation 
process.

Thus, the final confidence-adjusted prediction for a 
classification task is expressed as:

 	 (16)

For a regression task, the final prediction is:

 	 (17)

The confidence-adjusted model aggregation provides 
an additional layer of flexibility, allowing the LSSDEL 
technique to account for instance-specific variations in 
model performance. This is particularly valuable in scenarios 
where certain models may excel under specific conditions 
(e.g., certain environmental features) but struggle in others. 
By dynamically adjusting the model weights based on both 
global cross-validation performance and instance-level 
confidence, the LSSDEL technique ensures that the final 
prediction is both accurate and reliable.

Early Stopping Mechanism
The early stopping mechanism is a vital component of 
the LSSDEL technique, ensuring that models within the 
ensemble are trained efficiently without overfitting or 
excessive computational overhead. The goal of early 
stopping is to monitor the validation performance of each 
base model during training and halt the training process 

when improvements become negligible, thus preventing 
unnecessary iterations and reducing computational costs. 
This is particularly crucial in the context of IoT-based crop 
recommendation systems, where real-time predictions and 
resource efficiency are critical.

Let  be a base model in the ensemble, trained on the 
dataset , where  are the feature vectors 
and  are the corresponding labels. During each training 
iteration t, the performance of the model is evaluated on a 
validation set . Let  denote the validation 
loss at iteration t. The early stopping mechanism is triggered 
if the validation loss does not improve significantly over a 
predefined number of iterations, known as the patience 
parameter .

The condition for early stopping can be expressed 
mathematically as follows. Let  be the minimum 
improvement threshold for the validation loss. The stopping 
criterion is defined as:

 	 (18)

where  is the iteration at which the validation loss 
stops improving, and  is the maximum number of 
iterations allowed without significant improvement.

To further ensure the model does not prematurely halt 
training due to random fluctuations in the validation loss, 
the early stopping mechanism also incorporates a smoothed 
moving average of the validation loss over the last  
iterations. The smoothed loss  is computed as:

 =   	 (19)

The early stopping criterion is then modified to halt 
training if the smoothed validation loss does not improve 
by more than  over the patience period:

 	 (20)

When this condition is satisfied, training is stopped for 
the model , and the model parameters from the iteration 
with the lowest validation loss are retained. Let  denote 
the iteration where the minimum validation loss  
was achieved. The final model parameters  are set to:

 	 (21)

This ensures that the model retains the parameters 
that yielded the best validation performance, preventing 
overfitting that could arise from additional iterations where 
the validation loss starts to increase.

The early stopping mechanism can also be enhanced 
by introducing a regularization-aware criterion, where the 
validation loss is penalized by a regularization term , 
which accounts for the complexity of the model parameters. 
The regularized validation loss is given by:
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 	 (22)

where  is the raw validation loss, and  is the 
regularization parameter that controls the influence of the 
model complexity on the validation loss. This regularization-
aware early stopping ensures that models not only stop 
training when validation loss plateaus but also maintain 
simplicity, avoiding over-parameterization.

In the context of the ensemble learning process, early 
stopping is applied to each base model . The 
training process for the entire ensemble halts when all 
base models have either reached the stopping criterion or 
completed the maximum number of allowed iterations . 
This can be expressed in the following equation 23:

(      satisfies early 

stopping criterion) .	 23

Experimental Results

Experimental Setup
The IoT crop recommendation dataset used in this study 
consists of multiple environmental features and crop labels 
(Vishal, 2024). The dataset was split into training and test 

sets, with an 80 to 20 ratio. The parameter settings for the 
proposed LSSDEL method are presented in Table 1, which 
outlines the key hyperparameters and configurations used 
during the training and evaluation process. These settings 
were fine-tuned to optimize the model’s performance while 
maintaining computational efficiency.

Results and Performance Comparison
The results of the proposed LSSDEL framework, compared 
with several baseline deep learning models and the 
existing method IDCSO-WLSTM (Kiruthika & Karthika, 2023), 
demonstrate a clear improvement in performance across all 
key metrics, as seen in Tables 2 to 7.

As shown in Table 2, the accuracy of the proposed 
LSSDEL framework is 97.80%, which surpasses the accuracy 
of all baseline models, including CNN, LSTM, GRU, ResNet, 
and DenseNet, as well as the IDCSO-WLSTM model from 
the base paper, which achieved an accuracy of 92.68%. 
The substantial improvement in accuracy can be attributed 
to the selective model stacking and gradient-free model 
aggregation techniques implemented in the LSSDEL 
framework, which ensures that only the best-performing 
models contribute to the final ensemble prediction.

In Table 3, the precision of the LSSDEL model reaches 
97.60%, far exceeding the precision of the baseline models 
and the IDCSO-WLSTM method (90.88%). This result 
confirms the capability of LSSDEL to consistently predict 
the correct class with fewer false positives.

When evaluating recall, Table 4 shows that LSSDEL 
achieves a recall of 97.80%, again outperforming all 

Table 1: Parameter settings for LSSDEL

Parameter Value

Number of base models 5

Base models Random Forest, XGBoost, SVM, 
Logistic Regression, Neural 
Network

Regularization method L1 (Lasso)

Regularization coefficient (λ) 0.01

Cross-validation folds 10

Early stopping patience 20 iterations

Voting method Weighted Voting

Ensemble training iterations 100

Learning rate (η) 0.001

Batch size 64

Pruning threshold 0.05

Table 2: Comparison of accuracy (%)

Method Accuracy (%)

CNN 91.30

LSTM 92.50

GRU 93.10

ResNet 94.00

DenseNet 95.20

IDCSO-WLSTM (Kiruthika & 
Karthika, 2023)

92.68

LSSDEL (Proposed) 97.80

Table 3: Comparison of precision (%)

Method Precision (%)

CNN 89.50

LSTM 90.20

GRU 91.00

ResNet 92.30

DenseNet 93.50

IDCSO-WLSTM (Kiruthika & Karthika, 2023) 90.88

LSSDEL (Proposed) 97.60

Table 4: Comparison of recall (%)

Method Recall (%)

CNN 90.00

LSTM 91.20

GRU 91.90

ResNet 93.50

DenseNet 94.20

IDCSO-WLSTM (Kiruthika & Karthika, 2023) 91.98

LSSDEL (Proposed) 97.80
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other models, including DenseNet (94.20%) and IDCSO-
WLSTM (91.98%). This high recall indicates that the LSSDEL 
framework effectively captures most of the relevant 
instances, ensuring reliable recommendations in IoT-based 
agricultural environments.

The F1-score, a harmonic mean of precision and recall, 
further supports the superiority of LSSDEL. As seen in Table 5,  
LSSDEL records an F1-score of 97.70%, significantly higher 
than both DenseNet (93.85%) and IDCSO-WLSTM (91.92%). 
This shows the balanced performance of LSSDEL, providing 
robust predictions across all data instances.

The area under curve (AUC) is an important metric for 
evaluating classification models (see Table 6). As presented 
in Table 5, the AUC for LSSDEL reaches 98.00%, again 
surpassing all other methods. This high AUC reflects the 
ability of LSSDEL to differentiate between classes effectively, 
which is crucial for accurate crop recommendations based 
on diverse environmental conditions.

Finally, Table 7 compares the execution time of each model. 
The proposed LSSDEL method shows efficiency with an 
execution time of 200.8 seconds, which is faster than both 
the baseline models (e.g., DenseNet: 260.6 seconds) and 
IDCSO-WLSTM (241.0484 seconds). This improvement in 
computational efficiency is a direct result of the selective 
stacking, model pruning, and early stopping mechanisms 
employed in the LSSDEL framework, ensuring faster model 
convergence without sacrificing performance.

Discussion
The results obtained from the proposed LSSDEL framework 
highlight its remarkable efficiency and superiority over 
traditional models, including the approach by Kiruthika 
& Karthika (2023) (See Figure 2). One of the most critical 
factors contributing to this efficiency is the careful design 
of the LSSDEL algorithm, which integrates selective model 
stacking, L1 regularization, gradient-free model aggregation, 
and early stopping. These components enable LSSDEL 
to provide substantial improvements in both predictive 
performance and computational efficiency.

In terms of accuracy, the proposed LSSDEL method 
achieved 97.80%, which is a notable improvement over the 
92.68% accuracy reported by Kiruthika & Karthika (2023), 
representing an efficiency increase of approximately 5.52%. 
This higher accuracy can be attributed to the selective 
stacking mechanism, which ensures that only the top-
performing models contribute to the final ensemble. This 
selective stacking prevents underperforming models from 
degrading the overall performance, as seen in non-selective 
ensemble approaches.

The precision of LSSDEL, at 97.60%, shows a marked 
improvement over the 90.88% precision of the work 
by Kiruthika & Karthika (2023), reflecting an increase of 
approximately 7.40%. This increased precision indicates 
that the proposed method has fewer false positives and 
demonstrates a better ability to make correct predictions. 
The L1 regularization applied in LSSDEL plays a significant 
role in this improvement by pruning irrelevant features and 
thus reducing noise in the models, which improves precision.

For recall, LSSDEL achieved 97.80%, compared to 
91.98% in the previous work, leading to an improvement of 
around 6.32%. The higher recall signifies that the proposed 
framework is better at capturing true positives, which is 
especially important in IoT-based crop recommendation 
systems where missing a relevant recommendation could 
be costly. The recall improvement is driven by the robust 
feature selection and the confidence-based adjustments 
applied during the model aggregation process, ensuring 
that important patterns are not overlooked.

In terms of computational efficiency, LSSDEL recorded an 
execution time of 200.8 seconds, which is significantly faster 
than the 241.0484 seconds reported by Kiruthika & Karthika 
(2023). This corresponds to a reduction in execution time of 

Table 5: Comparison of F1-score (%)

Method F1-Score (%)

CNN 89.70

LSTM 90.70

GRU 91.50

ResNet 92.90

DenseNet 93.85

IDCSO-WLSTM (Kiruthika & Karthika, 2023) 91.92

LSSDEL (Proposed) 97.70

Table 6: Comparison of AUC (%)

Method AUC (%)

CNN 89.40

LSTM 90.10

GRU 91.20

ResNet 93.10

DenseNet 94.30

IDCSO-WLSTM (Kiruthika & Karthika, 2023) 91.20

LSSDEL (Proposed) 98.00

Table 7: Comparison of execution time (seconds)

Method Execution time (sec)

CNN 215.5

LSTM 230.1

GRU 225.8

ResNet 245.3

DenseNet 260.6

IDCSO-WLSTM (Kiruthika & 
Karthika, 2023)

241.0484

LSSDEL (Proposed) 200.8
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about 16.70%, showcasing the computational advantage of 
LSSDEL. The early stopping mechanism, in conjunction with 
selective model stacking and pruning, is responsible for this 
efficiency. By halting the training process when improvements 
are negligible, LSSDEL avoids unnecessary computations, 

while the L1 regularization further reduces the complexity of 
individual models by removing redundant features.

The AUC of LSSDEL is 98.00%, compared to 91.20% 
in the Kiruthika & Karthika (2023) model, representing an 
improvement of 7.45%. This significant increase in AUC 

Figure 2: Overall comparative results of LSSDEL with existing works
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reflects the enhanced ability of LSSDEL to differentiate 
between classes more effectively, ensuring that both true 
positives and true negatives are correctly identified at 
a higher rate. This performance is critical in agricultural 
settings, where incorrect classifications could lead to 
resource misallocation.

The proposed LSSDEL framework demonstrates 
substantial quantitative improvements in terms of accuracy, 
precision, recall, and AUC, alongside a significant reduction 
in execution time when compared to the Kiruthika & Karthika 
(2023) work. These improvements, ranging from 5.52% 
to 16.70% across various metrics, highlight the efficiency 
and effectiveness of the LSSDEL algorithm. Its ability to 
provide highly accurate predictions while maintaining 
computational efficiency makes it an ideal solution for real-
time IoT-based crop recommendation systems, where both 
speed and accuracy are critical.

Conclusion
This introduced the LSSDEL framework for IoT-based crop 
recommendation systems. The methodology incorporated 
selective model stacking, L1 regularization for model 
pruning, gradient-free model aggregation, and an early 
stopping mechanism. These techniques were designed 
to enhance both predictive accuracy and computational 
efficiency. The proposed framework was evaluated on a 
real-world IoT dataset, demonstrating superior performance 
across key metrics, including accuracy (97.80%), precision 
(97.60%), recall (97.80%), and AUC (98.00%). LSSDEL also 
outperformed the IDCSO-WLSTM method from Kiruthika & 
Karthika (2023) by reducing execution time by approximately 
16.70%. The quantitative improvements in accuracy, 
precision, and recall ranged from 5.52 to 7.45%, confirming 
the effectiveness of the proposed approach. LSSDEL’s 
balance of high performance and reduced computational 
costs makes it well-suited for real-time agricultural systems 
requiring efficient decision-making.
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