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A lightweight selective stacking framework for IoT crop
recommendation

S. Sindhu’, L. Arockiam

Abstract

The integration of the internet of things (loT) into precision farming has revolutionized agricultural practices by enhancing resource
management and crop productivity through real-time data monitoring and automation. Precision farming leverages loT technologies
to monitor critical environmental factors such as soil moisture, temperature, humidity, and nutrient levels, enabling farmers to make
data-driven decisions for optimizing crop growth. Despite these advancements, improving the accuracy and efficiency of loT-based
crop recommendation systems remains a key challenge, particularly in resource-constrained environments. This study aims to enhance
the predictive performance of loT-based crop recommendation systems by developing a novel stacked deep ensemble learning model.
The proposed model, termed lightweight selective stacking with deep ensemble learning (LSSDEL), focuses on reducing computational
complexity while maintaining high predictive accuracy. Key methods employed include selective model stacking, L1 regularization for
model pruning, gradient-free model aggregation, and the implementation of an early stopping mechanism. The system is validated
using real-world loT agricultural datasets, emphasizing its scalability and practical applicability. Findings from the study demonstrate
that the LSSDEL model outperforms traditional models, achieving a prediction accuracy of 97.80% and significant improvements in
precision, recall, and F1-score. Furthermore, the proposed model reduces execution time by 16.7% compared to existing approaches,

confirming its computational efficiency.
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Introduction

The internet of things (IoT) is a groundbreaking technology
that connects devices, systems, and sensors, enabling
seamless communication in real time (Ranjan et al., 2024).
Among its diverse applications, loT has made a significant
impact on precision farming, an advanced approach
to managing agricultural resources (Vinod et al., 2024).
Precision farming leverages technologies to monitor
crop growth, soil conditions, and environmental factors,
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allowing for data-driven decision-making that enhances
crop productivity and optimizes resource usage (Getahun
et al., 2024). loT's role in precision farming is pivotal as it
provides continuous, real-time data, enabling farmers to
make informed adjustments that lead to more efficient and
sustainable farming practices (Soussi et al., 2024).

A key component of precision farming is the use of
sensors embedded in the environment to monitor critical
factors like soil moisture, temperature, humidity, and
nutrient levels (Mehedi et al., 2024). 10T enables the collection
and analysis of this data in real time, helping farmers respond
quickly to changing conditions (Fuentes et al., 2024). For
example, loT devices can notify farmers when irrigation is
needed or when specific nutrients are lacking, facilitating
precise interventions that improve crop health and minimize
resource wastage. This real-time insight allows for more
effective management of resources and ensures that crops
receive exactly what they need to thrive.

Beyond data collection and monitoring, loT plays a
crucial role in automating farming processes (Dhal et
al., 2024). By integrating loT systems with automated
equipment, such as irrigation systems or fertilizing drones,
farming operations can be managed with greater efficiency
(Mohamed et al., 2021). This reduces the margin for human
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error and ensures that resources like water, fertilizers, and
pesticides are applied precisely where and when they are
needed (Ahmad et al., 2020). This level of automation not
only boosts crop yields but also promotes more sustainable
farming practices by minimizing the overuse of resources
(Getahun et al., 2024).

One of the key applications of loT in precision farming is
crop recommendation, a process where data from various
sensors is used to determine the best crops to plant based
on environmental and soil conditions (Alahmad et al., 2023).
Crop recommendation systems consider factors such as the
type of soil, the amount of rainfall, temperature patterns, and
market demands to suggest the most suitable crops for a
givenregion (Pande et al., 2021). These systems help farmers
make informed decisions, ensuring that they choose crops
that are likely to thrive in specific conditions, thus reducing
the risk of crop failure and improving overall productivity
(Altieri et al., 2015).

loT-based crop recommendation systems utilize data
analytics and machine learning algorithms to process the
information gathered from the environment (Musanase et
al., 2023). These systems can continuously learn from past
data, becoming more accurate in predicting which crops
will yield the best results (Van et al., 2020). Additionally,
loT platforms can provide farmers with actionable insights
through easy-to-use dashboards, ensuring that even those
with limited technical knowledge can benefit from the
technology (Paul et al., 2022).

The role of loT in addressing these challenges cannot
be overstated. By offering real-time monitoring and data
analysis, loT allows for the more efficient use of resources,
ensuring that farming is both sustainable and economically
viable. Precision farming solutions that incorporate loT
can help reduce water consumption, optimize fertilizer
application, and minimize the environmental impact of
farming. Moreover, loT-driven crop recommendation
systems ensure that the right crops are grown in the right
conditions, thereby enhancing food security.

In the work by Kiruthika and Karthika (2023), the IDCSO-
WLSTM approach was proposed for crop recommendation.
This model utilized a deep learning-based weighted long
short-term memory (WLSTM) framework, enhanced by
an improved dynamic crow search optimization (IDCSO)
algorithm. The model demonstrated improved prediction
performance over traditional models but still faced
challenges in terms of scalability and computational
efficiency, particularly when handling high-dimensional
datasets (Kiruthika et al., 2023). Despite its merits, the IDCSO-
WLSTM approach had limitations in optimizing model
complexity and computational resource usage, making it
less ideal for real-time loT systems.

To address the above research gap, the objectives of this
paper are as follows:

« To improve the predictive accuracy of loT-based crop
recommendation systems by leveraging a stacked deep
ensemble learning approach.

« Toreduce computational complexity through selective
model stacking, model pruning, and regularization
techniques.

- To apply gradient-free model aggregation and early
stopping to ensure optimal model performance with
minimal computational overhead.

- Tovalidate the proposed LSSDEL model using real-world
loT agricultural datasets and compare it with existing
methods.

The significance of this research lies in its potential to
contribute to the development of more effective loT-based
crop recommendation systems. These systems can have
a profound impact on smallholder farmers, who often
struggle with limited access to resources and information.
By providing them with data-driven recommendations,
loT technologies can help level the playing field, ensuring
that even small farms can compete with larger industrial
agricultural operations. This democratization of technology
in agriculture could lead to greater economic stability for
rural communities and contribute to reducing poverty in
agricultural regions.

This paperis structured as follows: Section 2 presents the
methodology, describing the LSSDEL approach, including
its model stacking, pruning, and voting mechanisms.
Section 3 details the experimental setup and results, with
a discussion of the performance of the proposed method.
Section 4 summarizes the key findings and contributions
of this chapter.

Methodology

The proposed LSSDEL technique follows a structured
workflow designed to enhance the predictive accuracy of
loT-based crop recommendation systems while maintaining
computational efficiency. The micro-level architecture of
the proposed work integrates several key components,
each playing a critical role in the overall model training
and prediction process (see Figure 1). The workflow
begins by selecting and preprocessing the input dataset,

Load the data Data preprocessing

Gradient-Free Model Model Pruning with Selective Model
Aggregation L1 Regularization Stacking

Final Prediction

Figure 1: Workflow of LSSDEL

Base model training

Early Stopping
Mechanism
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which consists of environmental and soil-related features
(e.g., nitrogen, phosphorus, potassium, temperature, pH,
humidity, and rainfall) and crop labels. After preprocessing,
a set of base models is trained using multiple machine
learning algorithms. These models undergo a selection
process, where only the top-performing ones are chosen
for inclusion in the ensemble.

To optimize the performance of the selected models, L1
reqgularization is applied for pruning, reducing unnecessary
complexity by eliminating irrelevant or redundant features.
This is followed by gradient-free model aggregation,
where the predictions of the pruned models are combined
through a weighted voting mechanism based on their
cross-validation performance. Additionally, an early
stopping mechanism isimplemented to prevent overfitting
and ensure that each model is trained only until further
improvements are minimal. This not only reduces the
computational cost but also enhances the efficiency of the
ensemble.

Selective Model Stacking

Selective model stacking is a core component of the
proposed LSSDEL technique, designed to optimize the
integration of multiple machine learning models in the
context of loT-based crop recommendation systems. The
primary goal of this approach is to enhance predictive
accuracy by leveraging the strengths of various base
models while maintaining computational efficiency. Unlike
conventional stacking methods that indiscriminately
combine all models, the selective approach introduced here
applies a rigorous selection process based on performance
metrics, ensuring that only the top-performing models
contribute to the final prediction.

Let D ={(x,¥)¥L, be the dataset where x; € R?
represents the i-th instance with d features and »; € R is the
corresponding label. The base models M = {M,,M,,.... M, }
are trained on the dataset Dy, = D. Each model ; is
trained to minimize a loss function £(M;, D,,,;,) and provides
predictions ¥;; = M;(x,) for the validation set b, c b.

The performance of each model p; is evaluated using
k-fold cross-validation. For each fold k, the accuracy of M;
is given by:

Py, = %EfziAccuracy[h{,.,D,‘:a') )

where D}2'is the validation fold in the k-th iteration of
the cross-validation. The top k models with cross-validation
accuracy exceeding a threshold T, are selected for the
stacking ensemble:

Mselected = EM_;-' EM]| PMJ.- = Tacc:} (2)

To further optimize the selection process, the pruned
models undergo L1 regularization during training. The
regularizationterm A Z¢_ |w;| is added to the loss function to

penalize unnecessary model complexity, where w; denotes
the weight vector associated with the features in model ;
. The objective function to be minimized for each model
becomes:

L?'sg (Mjr Dtrain) = L[Mj’ Dtrain) + )LE_?:JJ W_;l| (3)

After model selection and pruning, the predictions of
the selected models are combined using weighted voting.
Let 3, denote the prediction of the i-th instance by the j-th
model. The final prediction ¥, for instance x; is obtained
by aggregating the predictions of the selected models,
where each model’s vote is weighted according to its cross-

validation performance:
¥, = argmax, Lyp e, o gPrr; - U, = €} )

where 1{-} is the indicator function, and c denotes the
possible classes (in this case, crop types). This weighted
voting mechanism ensures that models with higher
performance contribute more to the final prediction, thus
improving the ensemble’s overall accuracy.

Furthermore, to ensure that the training process remains
efficient, the training of each model incorporates an early
stopping mechanism. The validation loss £, [M}-,DVE”) is
monitored at each iteration t, and the training is halted
if the validation loss fails to improve by a margin € over a

predefined number of iterations Tpyicnce:

Stop M; if L (M t) — L (Mt —1)<e V¥t > Tpatence

5)

By combining selective model stacking, L1 regularization,

and weighted voting, the LSSDEL technique effectively

reduces model complexity while maximizing predictive

performance, making it ideal for real-time loT-based

crop recommendation systems where both accuracy and
efficiency are critical.

Model Pruning with L1 Regularization

Model pruningisa critical stepin optimizing machine learning
models, particularly in ensemble learning frameworks such
as the LSSDEL approach. The primary objective of model
pruning is to eliminate unnecessary parameters, reduce
overfitting, and enhance computational efficiency without
sacrificing predictive accuracy. In the LSSDEL technique,
pruning is achieved using L1 regularization, which imposes
a sparsity constraint on the model’s weight parameters.
This section outlines the mathematical formulation and
application of L1 regularization in the context of model
pruning.

Let M, beone ofthe selected base modelsintheensemble,
trained on the dataset D = {(x,,¥,)}¥,, where x; € R? are
the feature vectors, and ¥; €R are the corresponding
labels. The weight vector for model ; is denoted by
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w; = {W;, Wis, ..., Wiz L representing the contributions of each
feature in the prediction process.

The goal of L1 regularization is to minimize the following
regularized loss function:

‘cLl [Mjr Dtrain) = L(M}-, Dtrain) + RE§:1|W;'J:| (6)

where £(M,, Dy, )is the original loss function (e.g., mean
squared error or logistic loss), and 2 is the regularization
parameter that controls the degree of penalization. The
term Z¢_, |w,, | introduces sparsity by driving some weights
w;, towards zero, effectively removing the influence of less
important features from the model.

The optimization of the L1-regularized loss function is
performed using gradient-based methods. The gradient of
the regularized loss with respect to the weights is given by:

ac ac .
;};=ﬂ+}t-5|gn[w}.k) 7)
where =< is the gradient of the original loss function,

dw

R

and sign(w;, ) is the signum function, defined as:

1, Wy > 0

sign(wy ) =171 Wi < 0 8)
0, wy =0

This gradient update pushes small weights toward
zero, thereby pruningirrelevant or redundant features. The
iterative update rule for the weights in model M; becomes:

(41 { a .
wiet = w i —n(ﬁ+l-5|gn[wjk)) ©)

where 1 is the learning rate, and t denotes the iteration
step. This process continues until convergence, with many of
the weights becoming zero because of the L1 regularization
term, effectively pruning the model.

The advantage of L1 regularization lies in its ability to
produce sparse solutions. For models with high-dimensional
inputs, such as loT crop recommendation systems where
features like soil nutrients, temperature, humidity, and pH
levels are highly variable, L1 regularization ensures that only
the most relevant features are retained. This reduces the
computational complexity of the model while maintaining
or even improving its predictive accuracy.

Tofurtherillustrate, consider the pruned model M; after
L1 regularization. Let the set of non-zero weights be denoted
asw’ = {w;; | w;, # 0}.The prediction fora new instance x;
after pruning is then given by:

hiA =}3-[w}’-’,xi.) = §=1 Wi * X (10)

where d4* is the number of remaining features after
pruning, and x is the k-th feature of the i-th instance. This
sparse representation reduces the computational burden
during both training and inference.

Additionally, the effectiveness of L1 regularization in pruning
models can be further quantified by measuring the ratio of
pruned weights:

Pruned_Ratio = % (11)

where d is the total number of features before pruning,
and d* is the number of features remaining after pruning.
A high pruning ratio indicates a significant reduction in
model complexity, which is crucial in resource-constrained
loT environments.

Gradient-Free Model Aggregation
Gradient-free model aggregation is a crucial aspect of the
LSSDEL technique, designed to integrate the predictions of
multiple base models without relying on gradient-based
optimization techniques. This approach is particularly well-
suited for ensemble models in loT-based systems where
computational efficiency and scalability are essential.
Instead of using traditional gradient-based methods to
adjust the contributions of individual models, gradient-
free aggregation leverages a weighted voting scheme that
assigns higher importance to models based on their cross-
validation performance, thus ensuring that the ensemble
prediction is robust and accurate.

Let the set of selected base models be denoted by
M, iected = My, M, ..., M, }, where k represents the number
of models selected based on cross-validation accuracy.
For each model M; € M. jecteq, it assigns a weight w; that
reflects its performance during cross-validation. The weight
is proportional to the accuracy of the model, given by:

P

where Py, is the cross-validation accuracy of model
M;, and the sum of the weights for all selected models is
normalized to 1.

Givenaninputinstance x; € R?, each model M; generates
a prediction ¥, = M;(x;). The final aggregated prediction ¥,
for the instance x; is obtained by taking a weighted sum of
the individual model predictions. For a regression task, this
can be expressed as:

=)

L= Zy= W Ty (13)

[

In the case of a classification task, the final prediction
is determined using a weighted voting mechanism. Let C
denote the set of possible classes (e.g., crop types in the loT-
based agricultural dataset), and let 1{ #;; = ¢} be the indicator
function that takes the value 1 if model M; predicts class c
forinstance x;, and 0 otherwise. The aggregated prediction
¥, is given by:

¥, = argmax, Z;le w; - 1{F,; = ¢} (14)
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This weighted voting scheme ensures that models with
higher accuracy during cross-validation contribute more
heavily to the final prediction, thus enhancing the overall
performance of the ensemble.

An essential feature of gradient-free model aggregation
is its ability to handle the variance and biases of individual
models. By assigning weights based on cross-validation
accuracy, the approach naturally adjusts for models that
may perform well on specific portions of the dataset but
poorly on others. This is particularly useful in loT agricultural
datasets where the data may exhibit significant variability
due to environmental conditions such as soil quality,
temperature, or humidity.

In addition to weighted voting, the LSSDEL technique
introduces a confidence-based adjustment to the
aggregation process. Each model M; not only contributes
to its prediction but also provides a measure of confidence
o; (x;) in its prediction, for instance x,. The confidence-
adjusted weight for each model is computed as:

w;(x) = w; - e;(x;) (15)

where e;(x;) represents the confidence score, typically
derived from the probability output of the model. This
adjustment further enhances the robustness of the
final prediction, as models with low confidence in their
predictions are given reduced influence in the aggregation
process.

Thus, the final confidence-adjusted prediction for a
classification task is expressed as:

o

G = k
¥, = argmax .. Xf,

w;(x,) - ¥, = c} (16)
For a regression task, the final prediction is:

i = L=y wylx,) - 75 (17)

The confidence-adjusted model aggregation provides
an additional layer of flexibility, allowing the LSSDEL
technique to account for instance-specific variations in
model performance. This is particularly valuable in scenarios
where certain models may excel under specific conditions
(e.g., certain environmental features) but struggle in others.
By dynamically adjusting the model weights based on both
global cross-validation performance and instance-level
confidence, the LSSDEL technique ensures that the final
prediction is both accurate and reliable.

Early Stopping Mechanism

The early stopping mechanism is a vital component of
the LSSDEL technique, ensuring that models within the
ensemble are trained efficiently without overfitting or
excessive computational overhead. The goal of early
stopping is to monitor the validation performance of each
base model during training and halt the training process

when improvements become negligible, thus preventing
unnecessary iterations and reducing computational costs.
This is particularly crucial in the context of loT-based crop
recommendation systems, where real-time predictions and
resource efficiency are critical.

Let M; be a base model in the ensemble, trained on the
datasetb = {(x,,v,)}L,, wherex; € R? arethefeature vectors
and ¥; € R are the corresponding labels. During each training
iteration t, the performance of the model is evaluated on a
validation set D5 = D. Let LL;) (M;) denote the validation
loss atiteration t. The early stopping mechanismiis triggered
if the validation loss does not improve significantly over a
predefined number of iterations, known as the patience
parameter T, tience-

The condition for early stopping can be expressed
mathematically as follows. Let € be the minimum
improvement threshold for the validation loss. The stopping
criterion is defined as:

|r J.)

£ (M) — )| <

f] VtE [tD’ ty + T|3E|tier|c:e] (18)

where t; is the iteration at which the validation loss
stops improving, and T, sence is the maximum number of
iterations allowed without significant improvement.

To further ensure the model does not prematurely halt
training due to random fluctuations in the validation loss,
the early stopping mechanism also incorporates a smoothed
moving average of the validation loss over the last T indow

iterations. The smoothed loss £ e) ¢ (M) is computed as:
e
v;I(M )

The early stopping criterion is then modified to halt
training if theE;moothed validation loss does not improve
by more than over the patience period:

£ ) (19)

Twindow k tTyindow 1 “val 7

c0) — 5P (M) <& Ve toty + Tyaience]  (20)

When this condition is satisfied, training is stopped for
the model M, and the model parameters from the iteration
with the lowest validation loss are retained. Let tpest denote
the iteration where the minimum validation loss £ b=t (a7 )
was achieved. The final model parameters B; are set to:

¢ _ nlthest)
8; =6, 1

This ensures that the model retains the parameters
that yielded the best validation performance, preventing
overfitting that could arise from additional iterations where
the validation loss starts to increase.

The early stopping mechanism can also be enhanced
by introducing a regularization-aware criterion, where the
validation loss is penalized by a regularization term 2(8;),
which accounts for the complexity of the model parameters.
The regularized validation loss is given by:
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(£}
val

£ ) =22 (M) +20(6)) (22)

raw

where L;E;L(M}.) is the raw validation loss, and 4 is the
regularization parameter that controls the influence of the
model complexity on the validation loss. This regularization-
aware early stopping ensures that models not only stop
training when validation loss plateaus but also maintain
simplicity, avoiding over-parameterization.

In the context of the ensemble learning process, early
stopping is applied to each base model M; € M. jecteq- The
training process for the entire ensemble halts when all
base models have either reached the stopping criterion or
completed the maximum number of allowed iterations ;..
This can be expressed in the following equation 23:

Stop training if (¢; = Ty or ):L;) (M;) satisfies early

stopping criterion) ¥M; € M_.|octed. 23
Experimental Results

Experimental Setup

The loT crop recommendation dataset used in this study
consists of multiple environmental features and crop labels
(Vishal, 2024). The dataset was split into training and test

Table 1: Parameter settings for LSSDEL

Parameter Value
Number of base models 5
Base models Random Forest, XGBoost, SVM,

Logistic Regression, Neural

Network
Regularization method L1 (Lasso)
Regularization coefficient (\) 0.01
Cross-validation folds 10

Early stopping patience 20 iterations

Voting method Weighted Voting
Ensemble training iterations 100

Learning rate (n) 0.001

Batch size 64

Pruning threshold 0.05

Table 2: Comparison of accuracy (%)

Method Accuracy (%)
CNN 91.30

LSTM 92.50

GRU 93.10
ResNet 94.00
DenseNet 95.20
IDCSO-WLSTM (Kiruthika & 92.68
Karthika, 2023)

LSSDEL (Proposed) 97.80

sets, with an 80 to 20 ratio. The parameter settings for the
proposed LSSDEL method are presented in Table 1, which
outlines the key hyperparameters and configurations used
during the training and evaluation process. These settings
were fine-tuned to optimize the model’s performance while
maintaining computational efficiency.

Results and Performance Comparison

The results of the proposed LSSDEL framework, compared
with several baseline deep learning models and the
existing method IDCSO-WLSTM (Kiruthika & Karthika, 2023),
demonstrate a clearimprovement in performance across all
key metrics, as seen in Tables 2 to 7.

As shown in Table 2, the accuracy of the proposed
LSSDEL framework is 97.80%, which surpasses the accuracy
of all baseline models, including CNN, LSTM, GRU, ResNet,
and DenseNet, as well as the IDCSO-WLSTM model from
the base paper, which achieved an accuracy of 92.68%.
The substantial improvement in accuracy can be attributed
to the selective model stacking and gradient-free model
aggregation techniques implemented in the LSSDEL
framework, which ensures that only the best-performing
models contribute to the final ensemble prediction.

In Table 3, the precision of the LSSDEL model reaches
97.60%, far exceeding the precision of the baseline models
and the IDCSO-WLSTM method (90.88%). This result
confirms the capability of LSSDEL to consistently predict
the correct class with fewer false positives.

When evaluating recall, Table 4 shows that LSSDEL
achieves a recall of 97.80%, again outperforming all

Table 3: Comparison of precision (%)

Method Precision (%)
CNN 89.50
LSTM 90.20
GRU 91.00
ResNet 92.30
DenseNet 93.50
IDCSO-WLSTM (Kiruthika & Karthika, 2023) 90.88
LSSDEL (Proposed) 97.60
Table 4: Comparison of recall (%)

Method Recall (%)
CNN 90.00
LST™M 91.20
GRU 91.90
ResNet 93.50
DenseNet 94.20
IDCSO-WLSTM (Kiruthika & Karthika, 2023) 91.98

LSSDEL (Proposed) 97.80
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Table 5: Comparison of F1-score (%)

Method F1-Score (%)
CNN 89.70
LSTM 90.70
GRU 91.50
ResNet 92.90
DenseNet 93.85
IDCSO-WLSTM (Kiruthika & Karthika, 2023) 91.92
LSSDEL (Proposed) 97.70
Table 6: Comparison of AUC (%)

Method AUC (%)
CNN 89.40
LSTM 90.10
GRU 91.20
ResNet 93.10
DenseNet 94.30
IDCSO-WLSTM (Kiruthika & Karthika, 2023) 91.20
LSSDEL (Proposed) 98.00

Table 7: Comparison of execution time (seconds)

Method Execution time (sec)
CNN 215.5

LSTM 230.1

GRU 2258

ResNet 2453

DenseNet 260.6
IDCSO-WLSTM (Kiruthika & 241.0484

Karthika, 2023)

LSSDEL (Proposed) 200.8

other models, including DenseNet (94.20%) and IDCSO-
WLSTM (91.98%). This high recall indicates that the LSSDEL
framework effectively captures most of the relevant
instances, ensuring reliable recommendations in loT-based
agricultural environments.

The F1-score, a harmonic mean of precision and recall,
further supports the superiority of LSSDEL. As seenin Table 5,
LSSDEL records an F1-score of 97.70%, significantly higher
than both DenseNet (93.85%) and IDCSO-WLSTM (91.92%).
This shows the balanced performance of LSSDEL, providing
robust predictions across all data instances.

The area under curve (AUC) is an important metric for
evaluating classification models (see Table 6). As presented
in Table 5, the AUC for LSSDEL reaches 98.00%, again
surpassing all other methods. This high AUC reflects the
ability of LSSDEL to differentiate between classes effectively,
which is crucial for accurate crop recommendations based
on diverse environmental conditions.

Finally, Table 7 compares the execution time of each model.
The proposed LSSDEL method shows efficiency with an
execution time of 200.8 seconds, which is faster than both
the baseline models (e.g., DenseNet: 260.6 seconds) and
IDCSO-WLSTM (241.0484 seconds). This improvement in
computational efficiency is a direct result of the selective
stacking, model pruning, and early stopping mechanisms
employed in the LSSDEL framework, ensuring faster model
convergence without sacrificing performance.

Discussion

The results obtained from the proposed LSSDEL framework
highlight its remarkable efficiency and superiority over
traditional models, including the approach by Kiruthika
& Karthika (2023) (See Figure 2). One of the most critical
factors contributing to this efficiency is the careful design
of the LSSDEL algorithm, which integrates selective model
stacking, L1 regularization, gradient-free model aggregation,
and early stopping. These components enable LSSDEL
to provide substantial improvements in both predictive
performance and computational efficiency.

In terms of accuracy, the proposed LSSDEL method
achieved 97.80%, which is a notable improvement over the
92.68% accuracy reported by Kiruthika & Karthika (2023),
representing an efficiency increase of approximately 5.52%.
This higher accuracy can be attributed to the selective
stacking mechanism, which ensures that only the top-
performing models contribute to the final ensemble. This
selective stacking prevents underperforming models from
degrading the overall performance, as seen in non-selective
ensemble approaches.

The precision of LSSDEL, at 97.60%, shows a marked
improvement over the 90.88% precision of the work
by Kiruthika & Karthika (2023), reflecting an increase of
approximately 7.40%. This increased precision indicates
that the proposed method has fewer false positives and
demonstrates a better ability to make correct predictions.
The L1 regularization applied in LSSDEL plays a significant
role in this improvement by pruning irrelevant features and
thus reducing noise in the models, which improves precision.

For recall, LSSDEL achieved 97.80%, compared to
91.98% in the previous work, leading to an improvement of
around 6.32%. The higher recall signifies that the proposed
framework is better at capturing true positives, which is
especially important in loT-based crop recommendation
systems where missing a relevant recommendation could
be costly. The recall improvement is driven by the robust
feature selection and the confidence-based adjustments
applied during the model aggregation process, ensuring
that important patterns are not overlooked.

In terms of computational efficiency, LSSDEL recorded an
execution time of 200.8 seconds, which is significantly faster
than the 241.0484 seconds reported by Kiruthika & Karthika
(2023). This corresponds to a reduction in execution time of
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Figure 2: Overall comparative results of LSSDEL with existing works

about 16.70%, showcasing the computational advantage of
LSSDEL. The early stopping mechanism, in conjunction with
selective model stacking and pruning, is responsible for this
efficiency. By halting the training process when improvements
are negligible, LSSDEL avoids unnecessary computations,

while the L1 regularization further reduces the complexity of
individual models by removing redundant features.

The AUC of LSSDEL is 98.00%, compared to 91.20%
in the Kiruthika & Karthika (2023) model, representing an
improvement of 7.45%. This significant increase in AUC
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reflects the enhanced ability of LSSDEL to differentiate
between classes more effectively, ensuring that both true
positives and true negatives are correctly identified at
a higher rate. This performance is critical in agricultural
settings, where incorrect classifications could lead to
resource misallocation.

The proposed LSSDEL framework demonstrates
substantial quantitative improvements in terms of accuracy,
precision, recall, and AUC, alongside a significant reduction
in execution time when compared to the Kiruthika & Karthika
(2023) work. These improvements, ranging from 5.52%
to 16.70% across various metrics, highlight the efficiency
and effectiveness of the LSSDEL algorithm. Its ability to
provide highly accurate predictions while maintaining
computational efficiency makes it an ideal solution for real-
time loT-based crop recommendation systems, where both
speed and accuracy are critical.

Conclusion

This introduced the LSSDEL framework for loT-based crop
recommendation systems. The methodology incorporated
selective model stacking, L1 regularization for model
pruning, gradient-free model aggregation, and an early
stopping mechanism. These techniques were designed
to enhance both predictive accuracy and computational
efficiency. The proposed framework was evaluated on a
real-world loT dataset, demonstrating superior performance
across key metrics, including accuracy (97.80%), precision
(97.60%), recall (97.80%), and AUC (98.00%). LSSDEL also
outperformed the IDCSO-WLSTM method from Kiruthika &
Karthika (2023) by reducing execution time by approximately
16.70%. The quantitative improvements in accuracy,
precision, and recall ranged from 5.52 to 7.45%, confirming
the effectiveness of the proposed approach. LSSDEL's
balance of high performance and reduced computational
costs makes it well-suited for real-time agricultural systems
requiring efficient decision-making.
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