
Abstract
In today’s context, urban flooding has emerged as a pervasive and significant global challenge, resulting in substantial economic losses 
spanning both human lives and property damage. With a concerning rise in urban flood-related fatalities and financial impacts, there’s 
an urgent call for enhanced flood risk management strategies. Although floods, as natural disasters, cannot be entirely prevented or 
eliminated, their catastrophic effects can be significantly reduced or mitigated. Cutting-edge technologies like the internet of things 
(IoT) and artificial Intelligence offer promising solutions for flood prediction. These advancements facilitate early warning systems, 
enabling pre-emptive evacuation measures to safeguard lives and minimize economic repercussions. This work aims to develop and 
implement a system leveraging IoT-derived data with an edge computing framework. It also uses machine learning techniques for 
fuzzy-based fused framework to provide rainfall prediction early flood warnings, focusing on risk mitigation as a proactive approach 
to address this pressing issue.
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Introduction
Natural disasters like cyclones, thunderstorms, tornadoes, 
cloudbursts, floods, earthquakes, avalanches, and landslides 
are primary causes of both human casualties and property 
damage (Zhou, Xu and Fujita,2018). Among these, floods 
stand out, responsible for a significant 32% of damages 
and nearly 26% of global deaths (Sivaramakrishnan and 
Singh, 2003 and Dhar and Nandargi, 2019). Unlike riverine 
floods, urban floods arise from excessive runoff in densely 
populated areas, lacking adequate drainage (Gupta and Nair, 
2011; Hung, Babel, Weesakul and Tripathi, 2008).
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Urban flooding, unlike its traditional counterparts, remains 
a widely discussed yet hidden challenge due to data 
deficiencies. Rapid urbanization, coupled with climate 
change, has made waterlogging a pressing issue, notably 
in India over the past few decades. Urbanization rates 
have soared from 18% in 1960 to 35% in 2019, expected to 
surpass 50% by 2050 due to employment opportunities 
and smart city development (Sukhwani, 2020). However, 
this swift urban growth leads to various challenges—lack of 
preparedness, poverty, inadequate infrastructure planning, 
uncontrolled settlements, and industrial expansion 
(Machado and Diliey, 2009 and Jarah et al., 2019).

The unchecked surge in population and settlements 
results in drain blockages and overloading, causing 
waterlogging and subsequent urban floods (Vorobevskii 
et al., 2020). Urbanization alters natural catchment areas, 
rendering land surfaces impermeable (Awakimjan, 2015 
and; Zameer et al., 2013). The primary causes of urban 
floods lie in the incapacity of natural and drainage systems 
to manage runoff discharge and precipitation volume 
in urban zones. High rainfall and impermeable surfaces, 
alongside dense construction, contribute to escalated 
urban flood instances (Gaitan et al., 2016 and Yao et al., 
2016). Additionally, sustained moderate rainfall and intense, 
localized convective storms within narrow watersheds can 
swiftly elevate water levels, leading to urban flash flooding 
(Abdullah et al., 2014, Abdullah et al., 2018, Coulthard et al., 
2007 and Mohtar et al., 2020.)
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India’s diverse topography and meteorological conditions 
contribute to an escalating frequency of urban floods 
(Dhiman et al., 2019). Numerous Indian cities have 
experienced devastating urban floods due to unplanned 
urbanization and climate change, including Kerala 
(2018), Hyderabad (2016, 2000), Chennai (2015, 2004), 
Srinagar (2014), Guwahati (2010), Delhi (2009, 2002, 2003), 
Surat (2006), and Mumbai (2005) (Rafiq et al.,2016). The 
Northeastern region faces heightened risks, particularly 
Guwahati, which has suffered recurrent urban flooding crises 
(Davis, 2014 and Borah, 2019). While urban flooding cannot 
be entirely prevented, employing advanced technology to 
mitigate its impacts becomes imperative. Technological 
interventions, especially leveraging IoT, offer promise in 
reducing the impact of climate change on urban flooding, 
crucial for sustaining a city’s economic growth (Miller and 
Hutchins,2017). Recent years have emphasized the necessity 
of urban flood control due to their increasing frequency 
and severity, urging a focus on technological interventions 
to minimize property damages (Chen et al., 2014, Zanella et 
al., 2014 and Hu and Ni, 2017)

IoT, with its real-time sensors, significantly enhances 
flood monitoring and data capture, surpassing traditional 
systems (Amaxilatis et al., 2019; Dong and Yang, 2019). Its 
ability to generate images and sensor data improves overall 
supervision, enabling early flood detection by monitoring 
regular features for disaster warnings, ultimately preventing 
damage (Mosquera and Dilley,2009).

Major contributions of this work include:
• Development of an IoT based LoRa framework for 

tracking road and drainage water level and other 
weather parameters from the study Area. 

• Integration of Artificial Intelligence with IoT for 
efficient prediction of rainfall at the Edge devices.

• Development of an efficient fuzzy based machine 
learning fusion approach for an optimized and 
improvised prediction. 

Literature Review
Recently, IoT applications have seen substantial use in 
managing and monitoring entire environments (Jiao 
and Liu, 2018). One primary application focuses on urban 
flood monitoring, aiming to address challenges, exploit 
advantages, and enhance effectiveness. To ensure accurate 
analysis for predicting and preventing urban floods, 
researchers are actively exploring IoT applications in 
disaster prediction, prevention, and flood impact analysis 
(Orozco and Caballero, 2018). Several studies delve into 
implementing IoT-based applications. A comprehensive 
assessment of using computer vision and IoT-based sensors 
for flood monitoring and mapping has been conducted and 
the study has also highlighted the significance of IoT sensors 
in gathering intelligence for early warnings and evacuations 
(Arshad et al., 2019). In another work, prediction models 

have been developed using IoT sensor data and machine 
learning for forecasting regional inundation (Yang and 
Chang, 2020). Li et al. (2022) devised an intelligent system 
leveraging GIS technology and rainwater simulation models 
to prevent waterlogging and control floods. Similarly, the 
FloodX project has been launched, which utilizes alternative 
and conventional sensors for urban flood monitoring (Vitry 
et al., 2017). In another approach, Artificial Intelligence was 
integrated with third-party weather forecasts and local 
sensor data to create a prediction system for urban floods. 
The work specifically used artificial neural networks and 
machine learning alongside IoT for flood prediction, aiming 
to enhance prediction accuracy (Wang and Abdelrahman, 
2023). Likewise, an early monitoring system was proposed 
employing Computer Vision and IoT cloud for identifying 
flood severity levels and issuing community alerts (Soh et al., 
2022). Additionally, hardware-based sensor prototypes have 
been developed, implementing lightweight AI algorithms 
on edge devices like Raspberry Pi for flood monitoring 
(Samikwa et al., 2020). Another study has explored IoT 
applications in monitoring river water levels, developing 
specialized systems for this purpose (Moreno et al., 2019). 
Various communication technologies, including LPWAN 
like LoRa, have been incorporated into IoT-based flood 
monitoring for cost-effective and energy-efficient systems 
(Ragnoli et al., 2020). Solar energy, microcontrollers, and 
power management techniques have been suggested 
for IoT-based flood early warning systems (Uranus et al., 
2022). The necessity of early warning systems and real-time 
monitoring powered by IoT for disaster prediction and 
flood impact analysis has been emphasized by Kitagami 
et al. (2016).

Utilizing wireless sensors driven by IoT is another 
avenue for flood monitoring and forecasting, coupled 
with computational models like ANNs (Bande and Shete, 
2017). Mane et al. highlighted IoT’s potential in precise 
flood prediction through data mining and wireless sensor 
networks (Mane and Mokashi, 2015). The role of IoT in real-
time monitoring and managing urban public safety and 
emergency data was one in a study (Du and Zhu, 2012). 
A literature study was conducted on IoT-based flood data 
handling, proposing an architecture for IoT infrastructure 
in flood monitoring (Ghapar et al., 2018). IoT-based sensors 
play a vital role in urban flood monitoring, installed in 
flood-prone areas like drainage networks, lagoons, and 
lakes to gather water levels and relevant data (Keung et 
al.,2018 and Liu et al., 2022). These sensors transmit data 
through advanced technologies such as LoRa, which 
consumes minimal power and operates on a Long-Range 
basis, beneficial in low-connectivity or infrastructurally 
inadequate regions.

Incorporating edge computing into urban flood 
monitoring systems proves crucial, enabling local data 
processing at edge devices, reducing latency, and enhancing 
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response times (Liu et al.,2022). This is particularly valuable in 
time-sensitive applications like flood monitoring, ensuring 
real-time data analysis for swift alerts and evacuation orders. 
Edge computing supports decentralized flood monitoring 
systems with on-site sensors and predictive algorithms. 
Summing up, the literature on IoT-based flood monitoring 
underscores the role of IoT sensors, computer vision, AI 
algorithms, and communication tech in early alerts, severity 
measurement, and flood prediction. Integrating diverse data 
sources like local sensors, meteorological forecasts, and 
remote sensing elevates precision and efficiency in flood 
monitoring and emergency response. Developing hardware 
prototypes and leveraging cost-effective communication 
technologies remains critical in advancing this field.

Methodology
The primary aim of this work was to deploy IoT devices within 
the specified study area, detailed in the subsequent section. 
These devices would utilize advanced communication 
protocols like long range (LoRa) to establish an independent 
network, enabling real-time data transmission without 
reliance on satellite uplinks or mobile networks. Moreover, 
these devices would conduct live monitoring of drainage 
water levels, overlaying this information on base maps, 
including roads and settlements. Additionally, the project 
includes the development of an android app designed 
to track flash floods in the area. It will showcase real-time 
videos and photos captured by cameras placed in various 
zones, aiding in the monitoring and analysis of flood events. 
The app will also provide alternate routes based on flash 
flood alerts, ensuring user safety. Furthermore, the project 
involves crafting a prototype unified user interface (UUI) 
for control room operations during flood scenarios. This 
interface will receive incident alarms and dispatch alerts 
via an SMS gateway to the emergency response team. This 
comprehensive approach aims to efficiently manage rescue 
and relief activities. The subsequent sections elaborate on 
the different components and tasks accomplished within 
this project.

Study Area
The study zone designated for investigation was pinpointed 
as the Anil Nagar and Zoo Road localities within Guwahati 
City, situated in Assam, India (represented in Figure 1).  
Guwahati, the principal city in the Northeastern region, 
serves as the gateway to the seven sister states. Recognized 
for its vibrant cultural heritage, lush landscapes, and 
historical significance, this urban hub embodies diverse 
attractions. Anil Nagar, nestled in the southern precincts 
of Guwahati City, aligns along the banks of the Bharalu 
River, a tributary of the formidable Brahmaputra River. This 
area features low-lying terrain encompassing a blend of 
residential quarters, commercial hubs, and open expanses. 
Under this study’s purview, a humid subtropical climate 

prevails, characterized by distinct wet and dry seasons. 
The monsoon, spanning from June to September, brings 
considerable rainfall to the region. Anil Nagar, in particular, 
contends with vulnerability to sudden floods during this 
period, attributed to its geographical layout and inadequate 
drainage infrastructure.

Anil Nagar, in the city of Guwahati, faces severe flood 
risks, leading to significant economic losses and disruptions 
in daily life. The escalating vulnerability to flash floods 
stems from rapid urbanization, inadequate drainage, and 
intense monsoon rains. Heavy rainfall swiftly raises water 
levels in the Bharalu River and its tributaries, resulting in 
waterlogging and inundation of residential areas and streets. 
With a mix of commercial and residential properties and a 
dense population, the area’s low-lying residences, roads, 
critical infrastructure, and utilities are highly susceptible 
to submersion during flash floods. Initially, a small portion 
from the Kamrup Metro District has been selected for the 
pilot study. The selection of this area for study is due to 
its extreme susceptibility to urban flooding, necessitating 
effective monitoring and a warning system. The solution 
developed to address this issue could potentially be 
extended to other flood-prone regions within Guwahati 
and across the nation.

Materials Used
The system is structured around two device categories: 
water-sensing nodes and base stations. These components, 
detailed in Table 1, have been specifically selected and 
tailored to ensure optimal functionality, reliability, and 
durability for the system’s development.

Architecture
The design of this study follows a layered structure consisting 
of four distinct layers. This structured approach allows for 
an iterative and systematic method to address challenges, 
refine processes, and ensure smooth functionality. Figure 2  
visually demonstrates the layered architecture of the 
proposed system.

Figure 1: Study area map; Anil Nagar in Kamrup Metro District
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Device layer
This layer encompasses the water sensing nodes, pivotal 
devices designed to measure water levels in specific zones 
such as roads and drainage systems, crucial for identifying 
potential flash flood scenarios. These nodes are engineered 
with versatility to function across diverse situations and 
effectively operate in multiple flood-prone areas. To 
facilitate seamless data transmission, these devices integrate 
LoRa communication modules, enabling real-time flood 
monitoring even without internet connectivity. Operating 
autonomously, these nodes are powered by rechargeable 
battery packs equipped with solar panels, eliminating 
reliance on conventional electricity sources. The nodes 
employ contact-type water level sensors installed within 
PVC pipes, positioned 200 cm apart, to detect water levels. 

Additionally, their battery packs are solar-charged, ensuring 
independent operation regardless of electric supply 
disruptions during disasters.

Edge layer
This layer is the base station, a comprehensive assembly 
of diverse sensors capable of capturing an extensive 
range of weather parameters, including wind speed, 
rainfall, wind direction, atmospheric pressure, humidity, 
altitude, and air quality metrics. Serving as the central hub, 
it receives transmitted data from water sensing nodes 
and LoRa receivers. It then merges information gathered 
from weather sensors and water sensing nodes. This 
amalgamated data can be uploaded to a cloud server via 
internet connectivity, encompassing weather data and 
various weather parameters. Additionally, the base station 
can locally process data, ensuring data retention in scenarios 
where network connectivity for cloud uploads is unavailable. 
However, a consistent power supply is essential to sustain 
base station operations. Equipped with a camera module, 
the base station can capture real-time flood situations, 
enhancing its monitoring capabilities during flood incidents.

Cloud layer
Within this layer, the information gathered from the device 
layer (Water Sensing Nodes) and the edge layer (Base 
Stations) is consolidated and stored, forming a vital resource 
for future urban flood analyses. Google Firebase serves as 
the storage platform for all data, encompassing both current 
and historical datasets. This layer ensures scalability robust 
storage, and offers security measures alongside remote 
monitoring capabilities.

Application layer
This segment manages the interaction between the 
application and the real-time database. To facilitate this, 
two distinct applications have been developed: a) An 
Android application catering to the general public and b) a 
dashboard designed for stakeholders involved in Disaster 
Management operations.

Figure 3 illustrates the design of both the water sensing 
nodes and base station components. The figure shows how 
the water sensing nodes were installed on roads with the 
existing electric poles of streetlights. These nodes were 
powered by a battery pack and recharged by solar panels. 

Table 1: Components used for design of water sensing nodes (left) 
and base station (right)

Water sensing nodes Base station

Arduino Nano Raspberry Pi 4

868 Mhz Lora 868 Mhz Lora

Lora antenna Lora Antenna

Water level sensor (contact Type 
sensor) BMP180

2S 3P Battery pack with BMS Air quality measurement

Enclosure Encloser

PCB with components Base station assembly

Connectors Anemometer and tripling rain 
gauge

Solar panel and charge controller Web-Cam

Voltage regulator PCB with components

Figure 2: Layered architecture

Figure 3: Design of base station and water sensing nodes
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The base station is also supposed to be installed within the 
range of 5 km and it requires an uninterrupted power supply. 
The components used for the water sensing nodes, as well 
as the base station, are given in Table 1.

Prediction Models
A rainfall prediction system was developed using time 
series data of weather parameters. Various machine learning 
models were trained and tested using 10 years’ worth of 
weather data from Guwahati city. The data was sourced from 
the Indian Meteorological Department (2 years) and NASA 
POWER (10 years). Initially collected data from the devices 
were insufficient for machine learning models, but ongoing 
data collection will enhance future training and improve 
predictions. Different classifiers including Random Forest, 
XGBoost, CatBoost, and KNN, were tested.

Random forest
Breiman introduced random forest (RF) in 2001 specifically 
for classification tasks. This ensemble machine learning 
algorithm utilizes multiple classification trees, hence the 
name “random forest.” When computing regression, it 
combines diverse decision trees for both regression and 
classification (Bowles, 2019). Despite its inclination toward 
variables with higher levels among categorical variables 
with different levels, the RF algorithm is regarded as an 
exceptionally robust learning algorithm in modern times 
(Cutler and Stevens,2012).

Extreme gradient boosting
Extreme Gradient Boosting (XGBoost) represents an 
advanced machine learning technique rooted in the gradient 
boosting algorithm developed by (Chen and Guestrin, 2016). 
It excels in handling overfitting through model regularization. 
This specific algorithm was chosen for the current study due 
to its exceptional speed in execution. XGBoost was applied 
across all three training and testing ratios.

Regarding categorical boosting
The categorical boosting model (CatBoost) operates 
through a four-part technique:
• Data pre-processing involves gathering pollutants and 

alternative meteorological data, addressing missing 
values.

• Analyzing the relationship between meteorological 
variables and pollutants.

• Determining feature importance by assessing 
meteorological parameters and their association with 
air pollutants before model implementation.

• Utilizing models like ARIMAANN, ARIMA-SVM, PCR, DT, 
and CatBoost (Shahriar, 2021).

K-nearest neighbors
K-nearest neighbor (KNN) stands as a non-parametric 
learning algorithm employing the Euclidean, Manhattan, 

and Minkowski distance approaches for classification 
(Bowles,2019). Studies suggest KNN excels when working 
with a minimal number of features (Oswal,2019). The 
calculation of the Euclidean distance involves equation 4, 
demonstrated below, where  and  represent the ith 
data point in the jth predictor and predictand.

  (1)

The following equation is utilised to calculate the KNN 
value

  (2)

 and  denote the predicted and neighboring data, 
respectively, while  represents the kernel function 
utilized. This study leverages seven meteorological features, 
making KNN a preferred choice. As per (Zhang et al., 2017), 
the efficacy of KNN in modeling hinges on the number of 
neighbors (K) used, set to 5 after initial evaluation in this 
study. KNN with K=5 was applied across all three training 
and testing ratios.

This research also introduces a rainfall prediction 
framework (Figure 4) utilizing a fusion technique in machine 
learning for smart cities. The framework primarily comprises 
two layers: training and testing, each comprising multiple 
stages. The initial stage of the training layer involves 
extracting weather attributes from advanced sensors in the 
smart city. However, for this research, a real-time pre-labeled 
dataset for rainfall prediction from a weather forecasting 
website (https://power.larc.nasa.gov/data-access-viewer) 
for Guwahati City was used, encompassing 91991 instances 
and 7 features (6 independent and 1 dependent). The data 
pre-processing phase involves three activities: cleaning, 
normalization, and splitting. Cleaning aims to address 
missing values via mean imputation, while normalization 
standardizes attribute values. These activities facilitate 
classifiers in achieving maximum accuracy. In the third pre-
processing activity, cleaned and normalized data is divided 

Figure 4: Architecture of rainfall prediction framework
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into training and test subsets using an 80:20 split ratio. 
Post-pre-processing, the dataset undergoes classification, 
with both training and test data fed into four techniques 
(RF, XGBoost, CatBoost and KNN. These algorithms are 
iteratively optimized during training and testing to enhance 
accuracy. Following classification, the trained models are 
input into the fuzzy layer, responsible for developing and 
implementing fuzzy logic for final prediction. The input 
into the fuzzy layer for the proposed model is presented 
in Table 2.

Prediction Models

IoT framework development
The devices underwent several stages of development, 
progressing through various prototype versions that 
built upon the successes and insights gained from earlier 
iterations. The final model represents an innovative solution 
for flood monitoring, integrating advanced technologies to 
bolster disaster resilience and preparedness. Figures 5, 6, 
and 7 visually illustrate the evolution of these devices across 
their developmental phases.

Mobile application development frameworks
Utilized open-source mobile app development frameworks, 
enabling cross-platform compatibility with Android and iOS 
devices. Additionally, an android-based mobile application 
and a dashboard were developed to provide real-time urban 
flood information with user interaction capabilities. The 
application was structured into three layers using a service-
oriented architecture. These layers consist of the client layer, 

business layer, and database layer, each serving specific 
purposes. Technical specifications include.

Service-oriented architecture
The application architecture operates in three layers, with 
the database layer housing project-related information, 
including geospatial data and project details, ensuring 
secure and structured storage. The client layer, embodied 
by the dashboard and mobile app, serves as the user 
interface for accessing and visualizing data. Users interact 
with these interfaces to view project status, input field 
data, and retrieve pertinent information. The business 

Table 2: Input into the fuzzy layer for the proposed model

Individual model prediction Final rainfall 
predictionRF XGBoost CatBoost KNN

Yes Yes Yes Yes Yes

Yes Yes Yes No Yes

Yes Yes No Yes Yes

Yes Yes No No Yes

Yes No Yes Yes Yes

Yes No Yes No Yes

Yes No No Yes Yes

Yes No No No No

No Yes Yes Yes Yes

No Yes Yes No No

No Yes No Yes No

No Yes No No No

No No Yes Yes No

No No Yes No No

No No No Yes No

No No No No No

Figure 5: Initial prototype showcases water sensing node (Left) and 
base station (Right)

Figure 6: An upgraded and miniaturized water sensing node

Figure 7: Final prototype featuring water sensing node (Left) and 
base station (Right)
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layer functions as an intermediary between the client 
and database layers, managing data logic and processing. 
To facilitate seamless data access, RESTful APIs are 
implemented, allowing the client layer to communicate 
with the business layer, accessing or updating project data 
as required. Adherence to open standards through RESTful 
APIs ensures interoperability and facilitates integration 
with external applications and stakeholders. This service-
oriented architecture enhances modularity, flexibility, and 
efficiency in accessing and managing project information 
for effective monitoring and governance.

Results and Discussion
This section outlines the deployment and configuration 
process of the nodes, establishing connectivity among 
them. An IoT network equipped with sensors and configured 
with LoRa-based infrastructure was installed at selected 
sites within the Anil Nagar Area, detailed in Table 3. Testing 

was conducted to ensure seamless connectivity between 
the IoT devices and the central server using web protocols 
and services. 
This study involved deploying base stations and water 
sensing nodes strategically across the study area. As part of 
this initiative, 2 base stations and 10 water sensing nodes 
were developed and installed. The framework was designed 
with each base station communicating with 5 water sensing 
nodes. Accordingly, 1 base station and 5 water sensing 
nodes were positioned in the Anil Nagar Area, while the 
other base station and the remaining water sensing nodes 
were placed in the vicinity of Zoo Road, near the Assam 
State Zoo. This extension aimed to broaden the scope of 
data collection. The coordinates of these installed devices 
are listed in Table 3.

The following figure (Figure 8) illustrates the geographical 
arrangement of the water sensing nodes and base stations 
positioned in the Anil Nagar and Zoo Road areas of 
Guwahati, respectively.

Figure 9 illustrates the data gathered from various water 
sensing nodes installed in the Anil Nagar area on August 
7th, 2023. The data records indicate a noticeable increase in 

Table 3: Locations of base stations and their corresponding water 
sensing nodes

S. No. IoT Nodes Latitude Longitude

1 Base Station 1 26.167094 91.76964

2 Water Sensing Node 1 26.166966 91.768945

3 Water Sensing Node 2 26.167037 91.76987

4 Water Sensing Node 3 26.167221 91.769851

5 Water Sensing Node 4 26.167602 91.769996

6 Water Sensing Node 5 26.16791 91.770121

7 Base Station 2 26.162917 91.781961

8 Water Sensing Node 6 26.162194 91.781118

9 Water Sensing Node 7 26.162247 91.781096

10 Water Sensing Node 8 26.162333 91.780781

11 Water Sensing Node 9 26.162885 91.780818

12 Water Sensing Node 10 26.163198 91.780494

Figure 9: Collected data from water sensing nodes (Anil Nagar Area)

Figure 8: Placement of water sensing nodes and base station 1 in Anil Nagar area (left) and Zoo Road area (right), Guwahati, Assam, India
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Time Base Station-Wind Direction Weather API-Wind Direction
00:00:00 205.76 205.53
01:00:00 207.16 207.19
02:00:00 214.38 214.4
03:00:00 223.25 223.32
04:00:00 224.06 223.83
05:00:00 219.38 219.4
06:00:00 214.58 214.72
07:00:00 202.63 202.7
08:00:00 195.21 195.29
09:00:00 204.93 204.93
10:00:00 241.41 241.53
11:00:00 269.33 269.34
12:00:00 287.19 287.43
13:00:00 311.75 312.03
14:00:00 338.39 338.43
15:00:00 9.35 9.09
16:00:00 25.49 25.44
17:00:00 28.75 28.57
18:00:00 45.54 45.76
19:00:00 120.51 120.31
20:00:00 159.27 159.3
21:00:00 168.99 168.82
22:00:00 194.76 194.78

Figure 10: Data was collected through base station vs weather API and their comparison for August 7th 2023

water levels within the locality. Numeric values denote the 
water levels: 0 signifies no water, 1 indicates low water level 
(200 cm), 2 represents moderate water level (400 cm), and 3 
signifies high water level (600 cm). 
Figure 10 presents a snapshot of the data collected at 
base station on August 7th, 2023. Additionally, it includes 
a comparison between the data collected via sensors, 
particularly from the Base Station installed in Zoo Road, and 
the data acquired from a weather API.

Consistency
The data from the base station and the weather API (https://
power.larc.nasa.gov/data-access-viewer/) are highly 
consistent across all metrics, with very close mean, median, 
and standard deviation values.

Temperature and Humidity
Both data sources show almost identical statistics, indicating 
reliable temperature and humidity readings.
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Rainfall and Pressure
Slight variations exist in rainfall and pressure data, but 
overall, the values are very close.

Wind Metrics
Wind speed and direction show minor differences, but the 
overall patterns are similar.

The mobile application developed (Figure 11) offers 
user-friendly interfaces. It displays flooded areas marked by 
red circles on Google Maps and provides alternative routes. 
Users can interact with the app using multiple services, 
including reporting, emergency alerts, and accessing 
weather reports. The developed dashboard is depicted in 
the following figure (Figure 12), showcasing various statistics 
and live streaming feeds of the respective areas.

Following is the discussion of the statistical methods 
used to evaluate the predicted performance of the 
suggested framework, as well as other popular classification 
models like random forest (RF), extreme gradient boosting 
(XGBoost), categorical boosting (CAtBoost), and K-nearest 
neighbour (KNN). Below are several formulae where 
O-negative and O-positive stand for projected negatives and 
positives, respectively, and E-negative and E-positive denote 
expected negatives and expected positives, respectively.

  (3)

  (4)

During the testing phase using random forest (RF), out of 
9261 instances, 8094 were classified as negative, while 8213 
instances were identified as positive out of 9138 (as detailed 
in Figure 13). Comparing the expected versus achieved 
output, the testing accuracy stood at 88.6%, with an 11.4% 
miss rate

In the XGBoost testing phase, among 9261 instances, 
8103 were classified as negative, and 8134 instances were 
marked as positive (as depicted in Figure 14). The analysis 
of expected versus achieved output during XGBoost testing 
demonstrated an accuracy of 88.2 and an 11.8% miss rate.

In the testing phase using CatBoost, among 9261 
instances, 8241 were classified as negative, and 8231 
instances were identified as positive (detailed in Figure 15). 
The testing analysis revealed an accuracy of 89.5% and a 
miss rate of 10.5% when comparing the expected versus 
achieved results. 

In KNN’s testing phase, out of 9261 instances, 7213 were 
classified as negative, and 7311 instances were categorized 

Figure 12: Dashboard of the project work with live streaming facility

Figure 11: Screenshots of the android application developed
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Figure 13: Statistical analysis for random forest model
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as positive (referenced in Figure 16). This testing analysis 
exhibited an accuracy of 78.9 and a 21.1% miss rate when 
comparing expected versus achieved results with KNN.

Eventually, the entire testing dataset is fed into the fuzzy 
system for the ultimate prediction. This input includes the 
test data, output class, and predictions from the employed 
classifiers. The proposed fused machine learning-based 
fuzzy system identified 8347 instances as negative out of 
9216 and 8652 instances as positive out of 9138 (outlined 
in Figure 17). When juxtaposing the fuzzy system’s output 

Figure 14: Statistical analysis for XGBoost model
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Figure 15: Statistical analysis for CatBoost model

Figure 16: Statistical analysis for K-nearest neighbor

Figure 17: Statistical analysis for proposed model
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with the expected result, we achieved an accuracy of 92.4% 
and a miss rate of 7.6%. A comprehensive view of the results 
from training and test data using RF, XGBoost, CatBoost, 
KNN, and the proposed fused machine learning technique 
has been provided in Table 4. Notably, the proposed fused 
technique exhibited superior performance compared to the 
four individual machine learning techniques. Additionally, 
Table 4 offers a comparative analysis between the proposed 
fused machine learning algorithms and previously published 
methods for rainfall prediction, considering accuracy and 
miss rates.

Conclusion and Future Work
This article details the development and deployment of 
an IoT framework tailored for monitoring urban flood 
situations, specifically focusing on Anil Nagar and Zoo 
Road areas in Guwahati City, India. The water sensing 
nodes are engineered to monitor water levels on roads 
and detect nearby potential water logging, while the base 
stations collect this data from the sensing nodes. These 
data sets are then uploaded to a cloud server, enabling 
the dissemination of real-time water level information to 
the general public via an Android application. Adopting 
an edge computing strategy, the bass station device has 
been deployed with a rainfall prediction model that can 
use real-time meteorological data from many areas to 
forecast when it will rain in the next 24 hours. Guwahati 
City’s weather data from the last 10 years was used to train 
this model. Four separate prediction models—Random 
forest, extreme gradient boosting, categorical boosting, and 
K-nearest neighbor—are combined in the proposed fuzzy-
based fused framework to forecast rainfall. Additionally, 
disaster management authorities have access to this data, 
aiding in swift decision-making during search and rescue 
operations. This initiative significantly benefits the general 
public, empowering them to view current flood situations in 
their vicinity through the Android application. This visibility 
allows them to choose alternative routes when navigating 
flood-affected areas. Looking ahead, the future scope 
of this work involves advancements that aim to create a 
flood prediction model leveraging water sensing nodes, a 
location-specific rainfall prediction model and a computer 
vision-based approach. 
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