
Abstract
The rapid adoption of cloud computing has transformed IT resource management by providing scalable, flexible, and cost-effective 
solutions. Despite these benefits, cloud computing presents critical security challenges, particularly in protecting sensitive data 
during transmission and storage. This paper introduces the enhanced cloud data security (ECDS) technique, a new approach aimed at 
strengthening data protection within cloud infrastructures. ECDS incorporates substitution and permutation methods to secure data 
and utilizes a combination of encryption strategies to ensure that encrypted data remains inaccessible to unauthorized users. ECDS is a 
symmetric cryptographic system that uses the same key for encryption and decryption. It is 256-bit block cipher encryption and it uses 
312-but keys. The ECDS is implemented in Python and compared against DES and blowfish encryption techniques. Extensive testing 
and performance analysis reveal that ECDS significantly enhances security and efficiency compared to traditional encryption methods. 
This paper contributes to the ongoing efforts to secure cloud computing environments for safeguarding sensitive data in the cloud.
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Introduction
Cloud computing offers a technological solution that 
provides on-demand access to a variety of configurable 
computing resources—such as servers, storage, applications, 
and services—via the internet. This system enables both 
businesses and individuals to utilize scalable and flexible IT 
resources without requiring significant upfront investments 
in hardware and infrastructure (I. Sudha et al., 2024). The 
pay-as-you-go model of cloud computing enhances 
collaboration, streamlines operations, and brings cost 
efficiencies, allowing users to adjust resources according to 
their needs (Pronika et al., 2021). Despite these advantages, 
cloud computing also introduces several security challenges, 
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particularly concerning data protection, privacy, and 
compliance. Protecting data during transmission and 
storage is critical, as breaches and leaks can have severe 
repercussions (Ravinder et al., 2024). The multi-tenant nature 
of cloud environments can result in data segregation issues, 
potentially causing data from different clients to mix. There 
are also risks associated with unauthorized access and 
insider threats, where malicious actors or even employees 
could exploit system vulnerabilities (Prabhu K et al., 2024). 
Furthermore, the complexity of managing and securing the 
numerous interfaces and APIs involved in cloud services 
necessitates robust monitoring mechanisms to prevent 
exploitation (Selvaraj R et al., 2023).

With the increasing sophistication of data breaches and 
cyber-attacks, safeguarding sensitive information in the 
cloud is more crucial than ever (S. F. Esmaeili et al., 2024). 
Researchers have been exploring advanced cryptographic 
methods and innovative security models to address these 
concerns. The “Enhanced Cloud Data Security (ECDS)” 
technique represents a new approach aimed at bolstering 
data protection within cloud infrastructures. ECDS uses 
substitution and permutation techniques to secure data 
both in transit and at rest. It also employs a blend of 
encryption methods to ensure that encrypted data remains 
inaccessible to unauthorized users. By integrating these 
advanced security measures, ECDS enables to protection 
of sensitive information from both internal and external 
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threats, including unauthorized access by malicious 
insiders and external hackers (Selvaraj R et al., 2023a). This 
paper details the implementation of the ECDS technique, 
highlighting its effectiveness in enhancing data security 
in cloud environments. Through extensive testing and 
performance analysis, the ECDS technique has shown 
significant improvements in security and efficiency over 
traditional encryption methods.

The subsequent sections of this paper delve into the 
specific methodologies employed by the ECDS technique, 
assess its performance, and compare its effectiveness with 
existing security solutions. This study aims to contribute 
to the ongoing efforts to secure cloud computing 
environments and establish a reliable framework for 
protecting sensitive data in the cloud.

Related works
This section reviews related works pertinent to the proposed 
ECDS technique. An improved Blowfish algorithm for 
data encryption, combined with an elliptic-curve-based 
algorithm for key security and an MD5-based digital 
signature for data integrity, was proposed to enhance overall 
security measures by Hossein Abroshan (2021). This hybrid 
solution showed notable improvements in execution time, 
throughput, and memory consumption. It also provides 
robust protection against common cyber threats and 
ensures that the encryption process is scalable, allowing it 
to efficiently handle large datasets.

A novel method introduced by Huthaifa A. et al. 
(2022) integrates XOR operations with genetic algorithms 
to improve data encryption and decryption, focusing 
on protecting the encryption key from loss or theft. 
This approach has proven effective in a Java-based 
application, enhancing security measures by introducing 
unpredictability into the encryption process, which makes 
it more challenging for unauthorized parties to decrypt the 
data. Additionally, by splitting the encrypted data and keys 
into two separate files stored on different cloud platforms, 
the method further strengthens security by distributing risk.

A dual-layer security approach using symmetric 
encryption (AES and Blowfish) and steganography was 
proposed by Faluyi B I et al. (2022). In this method, data is 
encrypted and then hidden within an image using the least 
significant bit (LSB) technique, which effectively protects 
cloud-stored data. This technique not only secures the data 
but also conceals its existence, making it a highly stealthy 
security measure. The implementation of this approach 
in Python demonstrated its feasibility and adaptability to 
various cloud environments and platforms.

A review of hybrid cryptographic models by Sherief 
Murad et al. (2022) explored the integration of symmetric 
and asymmetric encryption, which provides enhanced 
security and performance for cloud data compared to using 
individual cryptographic methods. These hybrid models 

combine the speed and efficiency of symmetric encryption 
with the robust key management capabilities of asymmetric 
encryption, resulting in more resilient security frameworks. 
The study also emphasized the necessity for continuous 
improvement and adaptation of these models to address 
the evolving security threats in cloud computing.

A method for securing data in public and private clouds 
by separating encryption, key generation, and storage 
services was presented by Dr. Nisha Jebaseli et al. (2022). This 
model, known as symmetric encryption as a service (SEaaS), 
demonstrated strong security and efficient performance 
in real-time cloud environments. By decentralizing key 
management, this approach reduces the risk of key exposure 
and enhances data privacy. The proposed techniques were 
rigorously tested and showed compatibility with existing 
cloud infrastructures, with minimal impact on performance.

A hybrid cryptographic model combining elliptic curve 
cryptography (ECC) and Diffie-Hellman key exchange (DHKE) 
was introduced by R. Sabitha et al. (2023) to enhance cloud 
data protection. This approach significantly improves both 
data security and operational efficiency through its three key 
stages: authorization, key generation, and data encryption 
ensuring a comprehensive security protocol. The use of ECC 
reduces computational overhead, resulting in a faster and 
more efficient encryption process, which is essential for 
real-time cloud applications.

A hybrid cryptographic method using hyper-elliptic 
curve cryptography (HECC) to enhance cloud storage 
security was proposed by N. Krishnamoorthy et al. (2023). 
Their method demonstrated improvements in encryption 
efficiency, reduced computational load, and increased 
overall security. The key evaluation and verification steps 
ensure that the encryption keys are robust and reliable. 
This approach effectively addresses major concerns such as 
secure data transfer and optimal resource utilization within 
cloud architectures, making it a versatile solution for various 
cloud environments.

A comprehensive examination of various cryptographic 
techniques, including symmetric, asymmetric, homomorphic 
encryption, and multi-party computation (MPC), was 
conducted to maintain data confidentiality, integrity, and 
authenticity in cloud computing by Rambabu Nalagandla 
et al., (2023). The study emphasized the need for advanced 
cryptographic algorithms to counter the risks posed by 
quantum computing. It also highlighted key management 
challenges and the computational intensity of these 
methods, indicating the necessity for efficient and scalable 
cryptographic solutions. To address emerging threats, the 
adoption of post-quantum cryptography was suggested as 
a means to future-proof data security.

A hybrid security model was introduced that combines 
the cat swarm optimization algorithm for task scheduling 
with a quantum key distribution protocol (QKDP) to enhance 
cloud computing security by Jayachandran R. et al., (2024). 
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This model improved resource allocation, reduced energy 
consumption, and ensured secure key exchanges, offering a 
robust solution for cloud environments. The ICS-TS algorithm 
enhances task scheduling by minimizing make-span 
time and increasing throughput. By integrating quantum 
cryptography, the model provides secure key distribution, 
making it highly resilient to cyber-attacks. Experimental 
results demonstrated the model’s effectiveness in securing 
cloud data while optimizing resource utilization. Table 1 
shows the comparison of related work discussed in this 
section using some common parameters like objective, 
methods, encryption technique used, findings, advantages 
and limitations.

Methodology
The proposed ECDS technique is designed to convert 
plaintext into ciphertext using a combination of binary 
conversion, key generation, grey code transformation, 

matrix manipulation, and repeated permutations. This 
methodology details the step-by-step process to ensure 
data security through this encryption method.

Steps in the Proposed Methodology 

Step 1: Data acquisition and conversion
Objective: Convert the plaintext (PT) data into a format 
suitable for encryption.
• Input: Plaintext (PT).
• Process: Convert each character in the plaintext to its 

ASCII binary representation, turning each character into 
a sequence of 0s and 1s.

• Output: Binary data ready for further processing.

Step 2: Block segmentation
• Objective
Prepare the binary data for encryption by dividing it into 
manageable blocks.

Table 1: Comparison of existing works in cloud data security

Authors year Objective Methods used Encryption 
techniques Key findings Advantages Limitations

(Hossein 
Abroshan, 
2021)

Enhance cloud 
security while 
maintaining 
performance

Combination of improved 
Blowfish algorithm and 
elliptic-curve-based key 
encryption

Symmetric and 
asymmetric 
encryption

Reduced encryption 
time, improved 
throughput 
and memory 
consumption

Efficient 
encryption and 
decryption

Key 
management 
complexity

(Huthaifa A. et 
al., 2022)

Enhance data 
security in cloud 
computing

XOR operations with genetic 
algorithms

Symmetric 
encryption

Effective encryption 
and decryption

Robust security Implementation 
complexity

(Faluyi B I et al., 
2022)

Enhance cloud 
data security using 
cryptography and 
steganography

Combination of AES, Blowfish, 
and LSB steganography

Symmetric 
encryption and 
steganography

Improved data 
security and privacy

Dual-layer 
security

Implementation 
complexity

(Sherief Murad 
et al., 2022)

Enhance cloud 
security and 
performance

Hybrid cryptographic models 
review

Symmetric and 
asymmetric 
encryption

Improved security 
and performance

Leverages 
strengths of both 
encryption types

Continuous 
optimization 
required

(Dr. Nisha 
Jebaseli et al., 
2022)

Ensure data 
security in 
hybrid cloud 
environments

Hybrid cryptographic 
techniques

Symmetric 
encryption

Secure data transfer 
and storage

Secure key 
management

Implementation 
complexity

(R. Sabitha et 
al., 2023)

Enhance data 
protection in cloud 
storage

Hybrid cryptography model 
using ECC and DHKE

Symmetric and 
asymmetric 
encryption

Enhanced security, 
secure key 
management

Efficient, secure 
key transfers

Implementation 
complexity

(N. 
Krishnamoorthy 
et al., 2023)

Improve cloud 
storage security

Hybrid cryptographic 
approach using HECC

Symmetric and 
asymmetric 
encryption

Enhanced data 
security and 
performance

Improved 
encryption 
efficiency

Resource-
intensive

(Rambabu 
Nalagandla et 
al., 2023)

Safeguard 
cloud-stored data 
using advanced 
cryptographic 
techniques

Various encryption methods, 
including homomorphic 
encryption and MPC

Symmetric and 
asymmetric 
encryption

Enhanced data 
confidentiality, 
integrity, and 
authenticity

Robust 
protection

High 
computational 
demands

(Jayachandran 
R. et al., 
2024)

Enhance data 
security in cloud 
computing

Hybrid security model 
combining improved 
Cat Swarm Optimization 
algorithm and Quantum Key 
Distribution Protocol (QKDP)

Symmetric and 
asymmetric 
encryption

Improved resource 
allocation, 
reduced energy 
consumption, 
secure key transfer

Optimized 
resource usage, 
robust security

Computational 
complexity
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• Process: Divide the binary data into 256-bit blocks. Each 
block will be processed independently in the following 
steps.

• Output: A series of 256-bit blocks.

Step 3: Key generation

• Objective
Generate cryptographic keys necessary for the encryption 
process.
• 256-bit Key (K1):

• Process: Generate a 256-bit binary key (K1) to be 
used for initial XOR operations.

• Output: Key K1.
• 56-bit Key (K2):

• Process: Generate a 56-bit binary key (K2), which will 
be divided into subkeys for matrix permutation and 
repetition control.

• Output: Key K2.
• The total key size is 312-bit

Step 4: Grey code transformation

• Objective
Enhance data complexity by transforming binary segments 
into grey code.
• Process: Split each 256-bit block into 8-bit segments. 

Convert each segment into its grey code equivalent, 
where each successive value differs by only one bit.

• Output: A 256-bit block represented in grey code.

Step 5: One’s complement calculation

• Objective
Further obscure the data by inverting the bits.
• Process: Merge the grey code segments back into a 

single 256-bit block. Calculate the one’s complement 
by inverting each bit (changing 0s to 1s and vice versa).

• Output: A complemented 256-bit block.

Step 6: XOR operation

• Objective
Use cryptographic key K1 to modify the complemented block.
• Process: Perform an XOR operation between the 

complemented block and the 256-bit key (K1). The XOR 
operation produces a new 256-bit block where each bit 
is the result of the XOR between corresponding bits of 
the operands.

• Output: An XORed 256-bit block.

Step 7: Decimal conversion

• Objective
Convert binary data into a format suitable for matrix operations.
• Process: Divide the XORed 256-bit block into 8-bit 

segments and convert each segment into its decimal 
equivalent.

• Output: A list of 32 decimal values.

Step 8: Matrix formation

• Objective
Structure the data into a matrix for permutation operations.
• Process: Create a 6x6 square matrix (SM). Populate the 

matrix with the decimal values, filling from left to right, 
row by row. Fill any remaining cells with a filler character, 
typically ‘X’.

• Output: A populated square matrix (SM).

Step 9: Matrix permutation

• Objective
Increase data complexity through matrix permutations.

Subkey1 for columnar transposition
• Process: Use the first 48 bits of key K2 (subkey1) to 

determine the order of columns for permutation.
• Output:  Permuted matrix based on columnar 

transposition.

Subkey2 for Repetition control
• Process: Use the remaining 8 bits of key K2 (subkey2) 

to determine the number of times the permutation 
process should be repeated.

• Output: Final permuted matrix after the specified 
number of repetitions.

Step 10: Read the values from the matrix row by row character 
conversion

• Objective
Read and convert the processed data back into a readable 
format.
• Process: Convert each decimal value in the final 

permuted matrix back to its ASCII character equivalent.
• Output: A sequence of ASCII characters.

Step 11: Form Final Ciphertext

• Objective
Combine the final characters to produce the encrypted 
output.
• Process: Combine the ASCII characters derived from the 

matrix to form the final ciphertext.
• Output: The final encrypted ciphertext.

This process outlines a complex encryption scheme 
involving binary operations, matrix manipulations, and 
multiple keys to ensure data security.

ECDS Technique Procedures
The encryption process involves several steps to convert 
plaintext into ciphertext using binary conversion, key 
generation, and matrix manipulation. It starts with converting 
the plaintext (PT) into its ASCII binary representation. The 
binary data is divided into 256-bit blocks, and a 256-bit 
binary key (K1) is generated for XOR operations to enhance 
security. Each 256-bit block is divided into 8-bit segments, 
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converted into grey codes (where successive values differ 
by one bit), and merged back into a 256-bit block. This 
block undergoes one’s complement (inverting all bits) and 
is then XORed with K1, producing a new 256-bit block. This 
block is converted into 32 decimal values, which fill a 6x6 
matrix (SM) row by row. Any remaining cells are filled with 
‘X’. A 56-bit key (K2) is generated and split into subkey1 (48 
bits) and subkey2 (8 bits). Subkey1 determines the column 
order for matrix permutation, while subkey2 specifies 
the permutation count. The matrix undergoes columnar 
transposition based on subkey1, repeated as per subkey2, 
adding encryption complexity. Finally, each decimal in the 
matrix is converted back to its ASCII equivalent, forming 
the final ciphertext.

This multi-step encryption ensures the data is highly 
secure, obfuscating it against unauthorized access and 
interpretation through systematic binary conversion, key-
based XOR operations, and matrix manipulations.

Pseudo-code of ECDS
INPUT: Plaintext (PT) data

binary data = convertToBinary(PT)
for each 256-bit block in binaryData:
    K1 = generate256BitKey()
    greyCodeBlocks = []
    for each 8-bit block in 256-bit block:
        greyCodeBlocks.append(convertToGreyCode(8-bit 

block))
    mergedBlock = mergeBlocks(greyCodeBlocks)
    complementedBlock = onesComplement(mergedBlock)
    XORedBlock = xorBlocks(complementedBlock, K1)
    decimalValues = convertToDecimal(XORedBlock)
    SM = createMatrix(6, 6)
    fillMatrix(SM, decimalValues, ‘X’)
    K2 = generate56BitKey()
    subkey1 = first48Bits(K2)
    subkey2 = last8Bits(K2)
    permutedMatrix = columnarTranspose(SM, subkey1)
    for i = 1 to subkey2:
        permutedMatrix = columnarTranspose(permutedMatrix, 

subkey1)
    cipherText = “”
    for each decimal in permutedMatrix:
        cipherText += convertToASCII(decimal)
    finalCipherText += cipherText
OUTPUT: finalCipherText

Experiment with Sample Data
Let’s take a sample 256-bit plaintext and carry out the 
encryption steps one by one. The plaintext considered 
for the sample experiment is “Welcome, this is a sample 
text message”, which is 256 bits long when converted to 
binary. The below details walk through the steps, providing 
explanations along the way.

Step 1: User’s data is taken for encryption
Plaintext (PT): “Welcome, this is a sample text message”

Step 2: Convert PT data to ASCII binaries
Now, convert each character in the plaintext to its ASCII 
binary representation.

W: 01010111 e: 01100101 l: 01101100 c : 
01100011 o: 01101111

m: 01101101 e: 01100101 ,: 00101100 t : 
01110100 h: 01101000

i: 01101001 s: 01110011 i: 01101001 s : 
01110011 a: 01100001

s: 01110011 a: 01100001 m: 01101101 p : 
01110000 l: 01101100

e: 01100101 t: 01110100 e: 01100101 x : 
01111000 t: 01110100

m: 01101101 e: 01100101 s: 01110011 s : 
01110011 a: 01100001 g: 01100111 e: 01100101

Step 3: Consider the 256-bit block of data for encryption
Now, the first 256 bits from the binary representation (32 
characters * 8 bits each).

01010111011001010110110001100011011011110110110101
100101 001011000111010001101000011010010111001101101
00101110011 0110000101110011011000010110110101110000
0110110001100101 011101000110010101111000011101000110
11010110010101110011 01110011011000010110011101100101

Step 4: Generate a 256-bit binary key K1
Let’s assume K1 is:

11001010 10100101 10010101 11100010 11010010 
01110111 10011001 10010110 10101010 01100001 11100101 
10010101 10010101 11000011 10101010 11110110 11011001 
11010100 10100101 10111001 10011010 11101001 10110101 
10101001 11010101 11001001 10101001 10101101 11010101 
10011001 11010100 10101001

Step 5: Split PT into 8-bit blocks and find the grey code for 
each block
The plaintext 356-bit block is split into 8-bit segments and 
convert each segment into its grey code equivalent.

For example:
• Binary: 01010111
• Grey Code: 01111100
Perform this conversion for all 8-bit blocks. The grey 

codes are:
01111100 01011011 01010010 01010010 01010000 

01011110 01011011 00111010 01011010 01011100 01011101 
01001110 01011101 01001110 01010011 01001110 01010011 
01011110 01001100 01011110 01011011 01011011 01011011 
01001100 01011010 01011100 01011011 01001110 01001110 
01010011 01011100 01011010

Step 6: Now find the 1’s complement
The grey code blocks of 256-bit are involved in calculating 
the one’s complement.
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• Grey coded block
01111100 01011011 01010010 01010010 01010000 01011110 
01011011 00111010 01011010 01011100 01011101 01001110 
01011101 01001110 01010011 01001110 01010011 01011110 
01001100 01011110 01011011 01011011 01011011 01001100

01011010 01011100 01011011 01001110 01001110 01010011 
01011100 01011010

• 1’s complement block
10000011 10100100 10101101 10101101 10101111 10100001 
10100100 11000101 10100101 10100011 10100010 10110001 
10100010 10110001 10101100 10110001 10101100 10100001 
10110011 10100001 10100100 10100100 10100100 10110011

10100101 10100011 10100100 10110001 10110001 
10101100 10100011 10100101

Step 7: Find XOR with the 256-bit key K1
Perform XOR between the complemented block and the 
key K1.

• Complemented block
10000011 10100100 10101101 10101101 10101111 10100001 
10100100 11000101 10100101 10100011 10100010 10110001 
10100010 10110001 10101100 10110001 10101100 10100001 
10110011 10100001 10100100 10100100 10100100 10110011

10100101 10100011 10100100 10110001 10110001 
10101100 10100011 10100101

• Key K1
11001010 10100101 10010101 11100010 11010010 01110111 
10011001 10010110 10101010 01100001 11100101 10010101 
10010101 11000011 10101010 11110110 11011001 11010100 
10100101 10111001 10011010 11101001 10110101 10101001

11010101 11001001 10101001 10101101 11010101 
10011001 11010100 10101001

• XOR result
01001001 00000001 00111000 01001111 01111101 11010110 
00111101 01010011 00001111 11000010 01000111 00100100 
00110111 01110010 00000110 01000111 01110101 01110101 
10010110 00011000 00111110 01001101 00010001 00011010

01110000 01101010 00011101 00011100 01100100 
00110101 01100111 00001100

Step 8: Convert the XORed 256-bit block to decimal values
Convert each 8-bit block to its decimal equivalent.

• Decimal values
[73, 1, 56, 79, 125, 214, 61, 83, 15, 194, 71, 36, 55, 114, 6, 71, 117, 
117, 150, 24, 62, 77, 17, 26, 112, 106, 29, 28, 100, 53, 103, 12]

Step 9: Form a 6x6 square matrix (SM)
Create a 6×6 matrix and fill it with the decimal values, left to 
right, row by row. Fill remaining cells with ‘X’.

73 1 56 79 125 214

61 83 15 194 71 36

55 114 6 71 117 117

150 24 62 77 17 26

112 106 29 28 100 53

103 12 X X X X

Step 10: Generate a 56-bit key K2
The K2 is:

K2: 00001001 00100101 00110110 00111001 00100100 
00010001 00000010

Subkey1: 00001001 00100101 00110110 00111001 
00100100 00010001

Decimal equivalents are 9, 37, 54, 57, 36, 17 
Subkey2: 00000010 à 2

Step 11: Permute matrix based on subkey1 using columnar 
transposition
The subkey1 translates to column order [9, 37, 54, 57, 36, 17].

• Before permutation

73 1 56 79 125 214

61 83 15 194 71 36

55 114 6 71 117 117

150 24 62 77 17 26

112 106 29 28 100 53

103 12 X X X X

• After 1st permutation

73 61 55 150 112 103

214 36 117 26 53 x

125 71 117 17 100 x

1 83 114 24 106 12

56 15 6 62 29 x

76 194 71 77 28 x

Step 12: Repeat permutation based on subkey2
The generated subkey2 is 2, so repeat the permutation 
2 times. One transposition is already completed in the 
previous step. The second transposition is as follows.

• After 2nd permutation

73 214 125 1 56 76

103 x x 12 x x

112 53 100 106 29 28

61 36 71 83 15 194

55 117 117 114 6 71

150 26 17 24 62 77
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Step 13: Read the values from the matrix row by row and 
convert each decimal in the matrix to an ASCII character code
values from the matrix:

73 214 125 1 56 76 103 x x 12 x x 112 53 100 106 29 28 61 
36 71 83 15 194 55 117 117 114 6 71 150 26 17 24 62 77

Convert to ASCII character code:
73:I 214:╓ 125: } 1:  56:8 76:L 103:g x x 12:  x x 112:p 53:5 

100:d 106:j 29: ↔ 28: ∟ 61:= 36:$ 71:G 83:S 15: ☼ 194: ┬ 55:7 
117:u 117:u 114:r 6: ♠ 71:G 150: û 26: → 17: ◄ 24: ↑ 62:> 77:M

Step 14: Output the final ciphertext
Combine all ASCII characters to form the final ciphertext.

C i p h e r t e x t :  “ I ╓ } 8 L g x x
xxp5dj↔∟=$GS☼┬7uur♠Gû→◄↑>M”

This sample demonstration shows the step-by-step 
encryption process with the given plaintext, resulting in 
a secure ciphertext through a series of systematic steps, 
including binary conversion, grey code transformation, XOR 
operations, and matrix permutations.

Results and Discussion
The encryption procedure described above exhibits 
conceptual similarities with established encryption 
algorithms like data encryption standard (DES) and Blowfish 
but also presents unique differences in its approach and 
complexity.

DES is a symmetric key algorithm designed for encrypting 
electronic data. Developed in the 1970s, it encrypts data in 
64-bit blocks using a 56-bit key. DES employs 16 rounds 
of a Feistel network, where each round involves a series of 
substitutions and permutations (using S-boxes and P-boxes) 
to transform plaintext into ciphertext. Although DES is 
known for its simplicity and efficiency, its relatively short key 
length renders it susceptible to brute-force attacks, making 
it unsuitable for many modern applications.

Blowfish, created by Bruce Schneier in 1993, is another 
symmetric-key block cipher but offers greater flexibility and 
security than DES. Like DES, Blowfish encrypts data in 64-bit 
blocks, but it supports key lengths ranging from 32 bits to 
448 bits, providing enhanced security. Blowfish utilizes a 
Feistel network with 16 rounds, similar to DES, but with a 
more complex key schedule and larger S-boxes. Blowfish 
is recognized for its speed and effectiveness in software 
implementations, as well as its robustness against various 
cryptanalytic attacks.

The proposed ECDS encryption process described 
here adopts a unique approach. It starts by converting 
plaintext into ASCII binaries and processes data in 256-bit 
blocks, significantly larger than the 64-bit blocks used 
by DES and Blowfish. The process involves generating a 
256-bit key (K1) for initial encryption, followed by grey 
code conversion and the calculation of one’s complement, 
introducing layers of complexity not present in standard 
DES or blowfish. Additionally, the ECDS method incorporates 

matrix manipulation. A 6x6 matrix is populated with decimal 
values derived from XOR operations between the one’s 
complement of the grey-coded plaintext and the key K1.

Further security is introduced by permuting this matrix 
multiple times based on a second 56-bit key (K2), which 
is divided into subkeys for columnar transposition and 
repeated permutations. This matrix-based approach is 
distinct from the round-based Feistel networks in DES 
and blowfish. The performance of the proposed method 
is compared with existing methods based on the time 
taken for encryption and decryption. Table 2 shows the 
encryption time comparison between the proposed and 
existing methods.

Table 3 shows the decryption time taken by the three 
encryption techniques in milliseconds.

The DES encryption took the longest among the three 
algorithms, which is expected due to its older design and 
the relatively high number of rounds in its Feistel network. 
The Blowfish encryption was faster than DES, which is due to 
its more modern design and efficient implementation. The 
ECDS encryption process is faster than DES and blowfish. 
Hence, the proposed ECDS performs well based on the time 
taken for encryption and decryption.

The DES and blowfish follow well-established 
cryptographic principles; the ECDS encryption method 
introduces novel steps like grey code conversion and 
matrix permutations. These steps potentially enhance 
security through added complexity. The ECDS encryption 
process blends elements of traditional block ciphers with 
innovative techniques to aim for enhanced security. The 
efficiency of the ECDS is evaluated using a hacking tool 
called ABC Hackman tool. This tool is used to evaluate the 

Table 2: Encryption time comparison

Data size
DES Blowfish ECDS

Milliseconds

100 130 90 75

200 260 180 150

300 390 270 225

400 520 360 300

500 650 450 375

Table 3: Decryption time comparison

Data size
DES Blowfish ECDS

Milliseconds

100 125 85 70

200 255 175 145

300 385 265 220

400 515 355 295

500 645 445 370
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security level of the encryption algorithms. The proposed 
ECDS is incorporated into the hackman tool evaluation to 
measure the security level. The following mathematical 
formula determines the level of security for the encryption 
techniques:

Let C represent the size of the ciphertext recorded in the 
Cloud storage. H refers to the plaintext that was hacked and 
obtained from the text that was encrypted using the ABC 
Hackman system. 

To calculate the amount of security provided by the 
techniques of encryption, 

S ß C – H …(1)
Here, S is the count of texts that are dissimilar to the 

simple text. Next, the security level (SP) is determined as 
percentage by using the following formula:, 

SPßS/C*100 …(2)
Table 4 presents a comparison of the security levels 

between the current and stated encryption method. 
The security levels are assessed using the ABC Hackman 

Tool, which evaluates the extent of data retrieval from 
the encrypted text. The results show that DES achieved 
a security level of 81%, reflecting its older design and 
vulnerability to brute-force attacks due to its 56-bit key 
length. Blowfish, with its variable key lengths ranging 
from 32 to 448 bits, demonstrated an improved security 
level of 85%, benefiting from a more modern and robust 
cryptographic design. The ECDS technique surpassed both, 
achieving a security level of 89%. This higher security level 
is due to ECDS’s innovative approach, which includes grey 
code transformation, matrix manipulations, and multiple 
permutations, adding complexity and enhancing data 
protection. The comparative analysis highlights ECDS’s 
effectiveness in providing superior security for cloud data 
encryption, making it a promising solution for protecting 
sensitive information in cloud environments.

Conclusion
The enhanced cloud data security (ECDS) technique 
presents significant advancements in cloud computing 
security by incorporating novel approaches such as 
grey code transformation, matrix manipulations, and 
hybrid cryptographic algorithms. These innovations 
address critical challenges in protecting sensitive data 
within cloud environments. Comparative analysis with 
established encryption methods like DES and blowfish 
shows that ECDS not only enhances security levels but 
also improves performance efficiency. ECDS achieves a 

higher security rating of 89%, compared to 81% for DES 
and 85% for blowfish, demonstrating its robustness against 
data breaches and unauthorized access. The promising 
results of ECDS, confirmed through extensive testing and 
performance analysis, highlight its potential as a dependable 
solution for protecting sensitive information in the cloud. 
Future research should focus on refining the technique 
further and exploring its applicability across different cloud 
environments to ensure its adaptability and resilience 
against emerging security threats.
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