
Abstract
The rapid adoption of cloud computing has transformed IT resource management by providing scalable, flexible, and cost-effective
solutions. Despite these benefits, cloud computing presents critical security challenges, particularly in protecting sensitive data
during transmission and storage. This paper introduces the enhanced cloud data security (ECDS) technique, a new approach aimed at
strengthening data protection within cloud infrastructures. ECDS incorporates substitution and permutation methods to secure data
and utilizes a combination of encryption strategies to ensure that encrypted data remains inaccessible to unauthorized users. ECDS is a
symmetric cryptographic system that uses the same key for encryption and decryption. It is 256-bit block cipher encryption and it uses
312-but keys. The ECDS is implemented in Python and compared against DES and blowfish encryption techniques. Extensive testing
and performance analysis reveal that ECDS significantly enhances security and efficiency compared to traditional encryption methods.
This paper contributes to the ongoing efforts to secure cloud computing environments for safeguarding sensitive data in the cloud.
Keywords: Cloud computing security, Data protection, Cryptographic, Symmetric encryption, Data encryption.

ECDS: Enhanced cloud data security technique to protect data
being stored in cloud infrastructure
Aruljothi Rajasekaran*, Jemima Priyadarsini R.

RESEARCH ARTICLE

© The Scientific Temper. 2024
Received: 10/10/2024 Accepted: 06/11/2024 Published : 20/12/2024

Department of Computer Science, Bishop Heber College
(Autonomous), Tiruchirapalli, Tamil Nadu. Affiliated with
Bharathidasan University, Tiruchirapalli, India.
*Corresponding Author: Aruljothi Rajasekaran, Department
of Computer Science, Bishop Heber College (Autonomous),
Tiruchirapalli, Tamil Nadu. Affiliated with Bharathidasan University,
Tiruchirapalli, India., E-Mail: aruljothi07@gmail.com
How to cite this article: Rajasekaran, A., Priyadarsini, J. R. (2024).
ECDS: Enhanced cloud data security technique to protect data
being stored in cloud infrastructure. The Scientific Temper,
15(4):3113-3121.
Doi: 10.58414/SCIENTIFICTEMPER.2024.15.4.19
Source of support: Nil

Conflict of interest: None.

Introduction
Cloud computing offers a technological solution that
provides on-demand access to a variety of configurable
computing resources—such as servers, storage, applications,
and services—via the internet. This system enables both
businesses and individuals to utilize scalable and flexible IT
resources without requiring significant upfront investments
in hardware and infrastructure (I. Sudha et al., 2024). The
pay-as-you-go model of cloud computing enhances
collaboration, streamlines operations, and brings cost
efficiencies, allowing users to adjust resources according to
their needs (Pronika et al., 2021). Despite these advantages,
cloud computing also introduces several security challenges,

The Scientific Temper (2024) Vol. 15 (4): 3113-3121 E-ISSN: 2231-6396, ISSN: 0976-8653

Doi: 10.58414/SCIENTIFICTEMPER.2024.15.4.19 https://scientifictemper.com/

particularly concerning data protection, privacy, and
compliance. Protecting data during transmission and
storage is critical, as breaches and leaks can have severe
repercussions (Ravinder et al., 2024). The multi-tenant nature
of cloud environments can result in data segregation issues,
potentially causing data from different clients to mix. There
are also risks associated with unauthorized access and
insider threats, where malicious actors or even employees
could exploit system vulnerabilities (Prabhu K et al., 2024).
Furthermore, the complexity of managing and securing the
numerous interfaces and APIs involved in cloud services
necessitates robust monitoring mechanisms to prevent
exploitation (Selvaraj R et al., 2023).

With the increasing sophistication of data breaches and
cyber-attacks, safeguarding sensitive information in the
cloud is more crucial than ever (S. F. Esmaeili et al., 2024).
Researchers have been exploring advanced cryptographic
methods and innovative security models to address these
concerns. The “Enhanced Cloud Data Security (ECDS)”
technique represents a new approach aimed at bolstering
data protection within cloud infrastructures. ECDS uses
substitution and permutation techniques to secure data
both in transit and at rest. It also employs a blend of
encryption methods to ensure that encrypted data remains
inaccessible to unauthorized users. By integrating these
advanced security measures, ECDS enables to protection
of sensitive information from both internal and external

The Scientific Temper. Vol. 15, No. 4 Rajasekaran and Priyadarsini 3114

threats, including unauthorized access by malicious
insiders and external hackers (Selvaraj R et al., 2023a). This
paper details the implementation of the ECDS technique,
highlighting its effectiveness in enhancing data security
in cloud environments. Through extensive testing and
performance analysis, the ECDS technique has shown
significant improvements in security and efficiency over
traditional encryption methods.

The subsequent sections of this paper delve into the
specific methodologies employed by the ECDS technique,
assess its performance, and compare its effectiveness with
existing security solutions. This study aims to contribute
to the ongoing efforts to secure cloud computing
environments and establish a reliable framework for
protecting sensitive data in the cloud.

Related works
This section reviews related works pertinent to the proposed
ECDS technique. An improved Blowfish algorithm for
data encryption, combined with an elliptic-curve-based
algorithm for key security and an MD5-based digital
signature for data integrity, was proposed to enhance overall
security measures by Hossein Abroshan (2021). This hybrid
solution showed notable improvements in execution time,
throughput, and memory consumption. It also provides
robust protection against common cyber threats and
ensures that the encryption process is scalable, allowing it
to efficiently handle large datasets.

A novel method introduced by Huthaifa A. et al.
(2022) integrates XOR operations with genetic algorithms
to improve data encryption and decryption, focusing
on protecting the encryption key from loss or theft.
This approach has proven effective in a Java-based
application, enhancing security measures by introducing
unpredictability into the encryption process, which makes
it more challenging for unauthorized parties to decrypt the
data. Additionally, by splitting the encrypted data and keys
into two separate files stored on different cloud platforms,
the method further strengthens security by distributing risk.

A dual-layer security approach using symmetric
encryption (AES and Blowfish) and steganography was
proposed by Faluyi B I et al. (2022). In this method, data is
encrypted and then hidden within an image using the least
significant bit (LSB) technique, which effectively protects
cloud-stored data. This technique not only secures the data
but also conceals its existence, making it a highly stealthy
security measure. The implementation of this approach
in Python demonstrated its feasibility and adaptability to
various cloud environments and platforms.

A review of hybrid cryptographic models by Sherief
Murad et al. (2022) explored the integration of symmetric
and asymmetric encryption, which provides enhanced
security and performance for cloud data compared to using
individual cryptographic methods. These hybrid models

combine the speed and efficiency of symmetric encryption
with the robust key management capabilities of asymmetric
encryption, resulting in more resilient security frameworks.
The study also emphasized the necessity for continuous
improvement and adaptation of these models to address
the evolving security threats in cloud computing.

A method for securing data in public and private clouds
by separating encryption, key generation, and storage
services was presented by Dr. Nisha Jebaseli et al. (2022). This
model, known as symmetric encryption as a service (SEaaS),
demonstrated strong security and efficient performance
in real-time cloud environments. By decentralizing key
management, this approach reduces the risk of key exposure
and enhances data privacy. The proposed techniques were
rigorously tested and showed compatibility with existing
cloud infrastructures, with minimal impact on performance.

A hybrid cryptographic model combining elliptic curve
cryptography (ECC) and Diffie-Hellman key exchange (DHKE)
was introduced by R. Sabitha et al. (2023) to enhance cloud
data protection. This approach significantly improves both
data security and operational efficiency through its three key
stages: authorization, key generation, and data encryption
ensuring a comprehensive security protocol. The use of ECC
reduces computational overhead, resulting in a faster and
more efficient encryption process, which is essential for
real-time cloud applications.

A hybrid cryptographic method using hyper-elliptic
curve cryptography (HECC) to enhance cloud storage
security was proposed by N. Krishnamoorthy et al. (2023).
Their method demonstrated improvements in encryption
efficiency, reduced computational load, and increased
overall security. The key evaluation and verification steps
ensure that the encryption keys are robust and reliable.
This approach effectively addresses major concerns such as
secure data transfer and optimal resource utilization within
cloud architectures, making it a versatile solution for various
cloud environments.

A comprehensive examination of various cryptographic
techniques, including symmetric, asymmetric, homomorphic
encryption, and multi-party computation (MPC), was
conducted to maintain data confidentiality, integrity, and
authenticity in cloud computing by Rambabu Nalagandla
et al., (2023). The study emphasized the need for advanced
cryptographic algorithms to counter the risks posed by
quantum computing. It also highlighted key management
challenges and the computational intensity of these
methods, indicating the necessity for efficient and scalable
cryptographic solutions. To address emerging threats, the
adoption of post-quantum cryptography was suggested as
a means to future-proof data security.

A hybrid security model was introduced that combines
the cat swarm optimization algorithm for task scheduling
with a quantum key distribution protocol (QKDP) to enhance
cloud computing security by Jayachandran R. et al., (2024).

3115 Enhanced cloud data security technique to protect data being stored in cloud infrastructure

This model improved resource allocation, reduced energy
consumption, and ensured secure key exchanges, offering a
robust solution for cloud environments. The ICS-TS algorithm
enhances task scheduling by minimizing make-span
time and increasing throughput. By integrating quantum
cryptography, the model provides secure key distribution,
making it highly resilient to cyber-attacks. Experimental
results demonstrated the model’s effectiveness in securing
cloud data while optimizing resource utilization. Table 1
shows the comparison of related work discussed in this
section using some common parameters like objective,
methods, encryption technique used, findings, advantages
and limitations.

Methodology
The proposed ECDS technique is designed to convert
plaintext into ciphertext using a combination of binary
conversion, key generation, grey code transformation,

matrix manipulation, and repeated permutations. This
methodology details the step-by-step process to ensure
data security through this encryption method.

Steps in the Proposed Methodology

Step 1: Data acquisition and conversion
Objective: Convert the plaintext (PT) data into a format
suitable for encryption.
• Input: Plaintext (PT).
• Process: Convert each character in the plaintext to its

ASCII binary representation, turning each character into
a sequence of 0s and 1s.

• Output: Binary data ready for further processing.

Step 2: Block segmentation
• Objective
Prepare the binary data for encryption by dividing it into
manageable blocks.

Table 1: Comparison of existing works in cloud data security

Authors year Objective Methods used Encryption
techniques Key findings Advantages Limitations

(Hossein
Abroshan,
2021)

Enhance cloud
security while
maintaining
performance

Combination of improved
Blowfish algorithm and
elliptic-curve-based key
encryption

Symmetric and
asymmetric
encryption

Reduced encryption
time, improved
throughput
and memory
consumption

Efficient
encryption and
decryption

Key
management
complexity

(Huthaifa A. et
al., 2022)

Enhance data
security in cloud
computing

XOR operations with genetic
algorithms

Symmetric
encryption

Effective encryption
and decryption

Robust security Implementation
complexity

(Faluyi B I et al.,
2022)

Enhance cloud
data security using
cryptography and
steganography

Combination of AES, Blowfish,
and LSB steganography

Symmetric
encryption and
steganography

Improved data
security and privacy

Dual-layer
security

Implementation
complexity

(Sherief Murad
et al., 2022)

Enhance cloud
security and
performance

Hybrid cryptographic models
review

Symmetric and
asymmetric
encryption

Improved security
and performance

Leverages
strengths of both
encryption types

Continuous
optimization
required

(Dr. Nisha
Jebaseli et al.,
2022)

Ensure data
security in
hybrid cloud
environments

Hybrid cryptographic
techniques

Symmetric
encryption

Secure data transfer
and storage

Secure key
management

Implementation
complexity

(R. Sabitha et
al., 2023)

Enhance data
protection in cloud
storage

Hybrid cryptography model
using ECC and DHKE

Symmetric and
asymmetric
encryption

Enhanced security,
secure key
management

Efficient, secure
key transfers

Implementation
complexity

(N.
Krishnamoorthy
et al., 2023)

Improve cloud
storage security

Hybrid cryptographic
approach using HECC

Symmetric and
asymmetric
encryption

Enhanced data
security and
performance

Improved
encryption
efficiency

Resource-
intensive

(Rambabu
Nalagandla et
al., 2023)

Safeguard
cloud-stored data
using advanced
cryptographic
techniques

Various encryption methods,
including homomorphic
encryption and MPC

Symmetric and
asymmetric
encryption

Enhanced data
confidentiality,
integrity, and
authenticity

Robust
protection

High
computational
demands

(Jayachandran
R. et al.,
2024)

Enhance data
security in cloud
computing

Hybrid security model
combining improved
Cat Swarm Optimization
algorithm and Quantum Key
Distribution Protocol (QKDP)

Symmetric and
asymmetric
encryption

Improved resource
allocation,
reduced energy
consumption,
secure key transfer

Optimized
resource usage,
robust security

Computational
complexity

The Scientific Temper. Vol. 15, No. 4 Rajasekaran and Priyadarsini 3116

• Process: Divide the binary data into 256-bit blocks. Each
block will be processed independently in the following
steps.

• Output: A series of 256-bit blocks.

Step 3: Key generation

• Objective
Generate cryptographic keys necessary for the encryption
process.
• 256-bit Key (K1):

• Process: Generate a 256-bit binary key (K1) to be
used for initial XOR operations.

• Output: Key K1.
• 56-bit Key (K2):

• Process: Generate a 56-bit binary key (K2), which will
be divided into subkeys for matrix permutation and
repetition control.

• Output: Key K2.
• The total key size is 312-bit

Step 4: Grey code transformation

• Objective
Enhance data complexity by transforming binary segments
into grey code.
• Process: Split each 256-bit block into 8-bit segments.

Convert each segment into its grey code equivalent,
where each successive value differs by only one bit.

• Output: A 256-bit block represented in grey code.

Step 5: One’s complement calculation

• Objective
Further obscure the data by inverting the bits.
• Process: Merge the grey code segments back into a

single 256-bit block. Calculate the one’s complement
by inverting each bit (changing 0s to 1s and vice versa).

• Output: A complemented 256-bit block.

Step 6: XOR operation

• Objective
Use cryptographic key K1 to modify the complemented block.
• Process: Perform an XOR operation between the

complemented block and the 256-bit key (K1). The XOR
operation produces a new 256-bit block where each bit
is the result of the XOR between corresponding bits of
the operands.

• Output: An XORed 256-bit block.

Step 7: Decimal conversion

• Objective
Convert binary data into a format suitable for matrix operations.
• Process: Divide the XORed 256-bit block into 8-bit

segments and convert each segment into its decimal
equivalent.

• Output: A list of 32 decimal values.

Step 8: Matrix formation

• Objective
Structure the data into a matrix for permutation operations.
• Process: Create a 6x6 square matrix (SM). Populate the

matrix with the decimal values, filling from left to right,
row by row. Fill any remaining cells with a filler character,
typically ‘X’.

• Output: A populated square matrix (SM).

Step 9: Matrix permutation

• Objective
Increase data complexity through matrix permutations.

Subkey1 for columnar transposition
• Process: Use the first 48 bits of key K2 (subkey1) to

determine the order of columns for permutation.
• Output: Permuted matrix based on columnar

transposition.

Subkey2 for Repetition control
• Process: Use the remaining 8 bits of key K2 (subkey2)

to determine the number of times the permutation
process should be repeated.

• Output: Final permuted matrix after the specified
number of repetitions.

Step 10: Read the values from the matrix row by row character
conversion

• Objective
Read and convert the processed data back into a readable
format.
• Process: Convert each decimal value in the final

permuted matrix back to its ASCII character equivalent.
• Output: A sequence of ASCII characters.

Step 11: Form Final Ciphertext

• Objective
Combine the final characters to produce the encrypted
output.
• Process: Combine the ASCII characters derived from the

matrix to form the final ciphertext.
• Output: The final encrypted ciphertext.

This process outlines a complex encryption scheme
involving binary operations, matrix manipulations, and
multiple keys to ensure data security.

ECDS Technique Procedures
The encryption process involves several steps to convert
plaintext into ciphertext using binary conversion, key
generation, and matrix manipulation. It starts with converting
the plaintext (PT) into its ASCII binary representation. The
binary data is divided into 256-bit blocks, and a 256-bit
binary key (K1) is generated for XOR operations to enhance
security. Each 256-bit block is divided into 8-bit segments,

3117 Enhanced cloud data security technique to protect data being stored in cloud infrastructure

converted into grey codes (where successive values differ
by one bit), and merged back into a 256-bit block. This
block undergoes one’s complement (inverting all bits) and
is then XORed with K1, producing a new 256-bit block. This
block is converted into 32 decimal values, which fill a 6x6
matrix (SM) row by row. Any remaining cells are filled with
‘X’. A 56-bit key (K2) is generated and split into subkey1 (48
bits) and subkey2 (8 bits). Subkey1 determines the column
order for matrix permutation, while subkey2 specifies
the permutation count. The matrix undergoes columnar
transposition based on subkey1, repeated as per subkey2,
adding encryption complexity. Finally, each decimal in the
matrix is converted back to its ASCII equivalent, forming
the final ciphertext.

This multi-step encryption ensures the data is highly
secure, obfuscating it against unauthorized access and
interpretation through systematic binary conversion, key-
based XOR operations, and matrix manipulations.

Pseudo-code of ECDS
INPUT: Plaintext (PT) data

binary data = convertToBinary(PT)
for each 256-bit block in binaryData:
 K1 = generate256BitKey()
 greyCodeBlocks = []
 for each 8-bit block in 256-bit block:
 greyCodeBlocks.append(convertToGreyCode(8-bit

block))
 mergedBlock = mergeBlocks(greyCodeBlocks)
 complementedBlock = onesComplement(mergedBlock)
 XORedBlock = xorBlocks(complementedBlock, K1)
 decimalValues = convertToDecimal(XORedBlock)
 SM = createMatrix(6, 6)
 fillMatrix(SM, decimalValues, ‘X’)
 K2 = generate56BitKey()
 subkey1 = first48Bits(K2)
 subkey2 = last8Bits(K2)
 permutedMatrix = columnarTranspose(SM, subkey1)
 for i = 1 to subkey2:
 permutedMatrix = columnarTranspose(permutedMatrix,

subkey1)
 cipherText = “”
 for each decimal in permutedMatrix:
 cipherText += convertToASCII(decimal)
 finalCipherText += cipherText
OUTPUT: finalCipherText

Experiment with Sample Data
Let’s take a sample 256-bit plaintext and carry out the
encryption steps one by one. The plaintext considered
for the sample experiment is “Welcome, this is a sample
text message”, which is 256 bits long when converted to
binary. The below details walk through the steps, providing
explanations along the way.

Step 1: User’s data is taken for encryption
Plaintext (PT): “Welcome, this is a sample text message”

Step 2: Convert PT data to ASCII binaries
Now, convert each character in the plaintext to its ASCII
binary representation.

W: 01010111 e: 01100101 l: 01101100 c :
01100011 o: 01101111

m: 01101101 e: 01100101 ,: 00101100 t :
01110100 h: 01101000

i: 01101001 s: 01110011 i: 01101001 s :
01110011 a: 01100001

s: 01110011 a: 01100001 m: 01101101 p :
01110000 l: 01101100

e: 01100101 t: 01110100 e: 01100101 x :
01111000 t: 01110100

m: 01101101 e: 01100101 s: 01110011 s :
01110011 a: 01100001 g: 01100111 e: 01100101

Step 3: Consider the 256-bit block of data for encryption
Now, the first 256 bits from the binary representation (32
characters * 8 bits each).

01010111011001010110110001100011011011110110110101
100101 001011000111010001101000011010010111001101101
00101110011 0110000101110011011000010110110101110000
0110110001100101 011101000110010101111000011101000110
11010110010101110011 01110011011000010110011101100101

Step 4: Generate a 256-bit binary key K1
Let’s assume K1 is:

11001010 10100101 10010101 11100010 11010010
01110111 10011001 10010110 10101010 01100001 11100101
10010101 10010101 11000011 10101010 11110110 11011001
11010100 10100101 10111001 10011010 11101001 10110101
10101001 11010101 11001001 10101001 10101101 11010101
10011001 11010100 10101001

Step 5: Split PT into 8-bit blocks and find the grey code for
each block
The plaintext 356-bit block is split into 8-bit segments and
convert each segment into its grey code equivalent.

For example:
• Binary: 01010111
• Grey Code: 01111100
Perform this conversion for all 8-bit blocks. The grey

codes are:
01111100 01011011 01010010 01010010 01010000

01011110 01011011 00111010 01011010 01011100 01011101
01001110 01011101 01001110 01010011 01001110 01010011
01011110 01001100 01011110 01011011 01011011 01011011
01001100 01011010 01011100 01011011 01001110 01001110
01010011 01011100 01011010

Step 6: Now find the 1’s complement
The grey code blocks of 256-bit are involved in calculating
the one’s complement.

The Scientific Temper. Vol. 15, No. 4 Rajasekaran and Priyadarsini 3118

• Grey coded block
01111100 01011011 01010010 01010010 01010000 01011110
01011011 00111010 01011010 01011100 01011101 01001110
01011101 01001110 01010011 01001110 01010011 01011110
01001100 01011110 01011011 01011011 01011011 01001100

01011010 01011100 01011011 01001110 01001110 01010011
01011100 01011010

• 1’s complement block
10000011 10100100 10101101 10101101 10101111 10100001
10100100 11000101 10100101 10100011 10100010 10110001
10100010 10110001 10101100 10110001 10101100 10100001
10110011 10100001 10100100 10100100 10100100 10110011

10100101 10100011 10100100 10110001 10110001
10101100 10100011 10100101

Step 7: Find XOR with the 256-bit key K1
Perform XOR between the complemented block and the
key K1.

• Complemented block
10000011 10100100 10101101 10101101 10101111 10100001
10100100 11000101 10100101 10100011 10100010 10110001
10100010 10110001 10101100 10110001 10101100 10100001
10110011 10100001 10100100 10100100 10100100 10110011

10100101 10100011 10100100 10110001 10110001
10101100 10100011 10100101

• Key K1
11001010 10100101 10010101 11100010 11010010 01110111
10011001 10010110 10101010 01100001 11100101 10010101
10010101 11000011 10101010 11110110 11011001 11010100
10100101 10111001 10011010 11101001 10110101 10101001

11010101 11001001 10101001 10101101 11010101
10011001 11010100 10101001

• XOR result
01001001 00000001 00111000 01001111 01111101 11010110
00111101 01010011 00001111 11000010 01000111 00100100
00110111 01110010 00000110 01000111 01110101 01110101
10010110 00011000 00111110 01001101 00010001 00011010

01110000 01101010 00011101 00011100 01100100
00110101 01100111 00001100

Step 8: Convert the XORed 256-bit block to decimal values
Convert each 8-bit block to its decimal equivalent.

• Decimal values
[73, 1, 56, 79, 125, 214, 61, 83, 15, 194, 71, 36, 55, 114, 6, 71, 117,
117, 150, 24, 62, 77, 17, 26, 112, 106, 29, 28, 100, 53, 103, 12]

Step 9: Form a 6x6 square matrix (SM)
Create a 6×6 matrix and fill it with the decimal values, left to
right, row by row. Fill remaining cells with ‘X’.

73 1 56 79 125 214

61 83 15 194 71 36

55 114 6 71 117 117

150 24 62 77 17 26

112 106 29 28 100 53

103 12 X X X X

Step 10: Generate a 56-bit key K2
The K2 is:

K2: 00001001 00100101 00110110 00111001 00100100
00010001 00000010

Subkey1: 00001001 00100101 00110110 00111001
00100100 00010001

Decimal equivalents are 9, 37, 54, 57, 36, 17
Subkey2: 00000010 à 2

Step 11: Permute matrix based on subkey1 using columnar
transposition
The subkey1 translates to column order [9, 37, 54, 57, 36, 17].

• Before permutation

73 1 56 79 125 214

61 83 15 194 71 36

55 114 6 71 117 117

150 24 62 77 17 26

112 106 29 28 100 53

103 12 X X X X

• After 1st permutation

73 61 55 150 112 103

214 36 117 26 53 x

125 71 117 17 100 x

1 83 114 24 106 12

56 15 6 62 29 x

76 194 71 77 28 x

Step 12: Repeat permutation based on subkey2
The generated subkey2 is 2, so repeat the permutation
2 times. One transposition is already completed in the
previous step. The second transposition is as follows.

• After 2nd permutation

73 214 125 1 56 76

103 x x 12 x x

112 53 100 106 29 28

61 36 71 83 15 194

55 117 117 114 6 71

150 26 17 24 62 77

3119 Enhanced cloud data security technique to protect data being stored in cloud infrastructure

Step 13: Read the values from the matrix row by row and
convert each decimal in the matrix to an ASCII character code
values from the matrix:

73 214 125 1 56 76 103 x x 12 x x 112 53 100 106 29 28 61
36 71 83 15 194 55 117 117 114 6 71 150 26 17 24 62 77

Convert to ASCII character code:
73:I 214:╓ 125: } 1: 56:8 76:L 103:g x x 12: x x 112:p 53:5

100:d 106:j 29: ↔ 28: ∟ 61:= 36:$ 71:G 83:S 15: ☼ 194: ┬ 55:7
117:u 117:u 114:r 6: ♠ 71:G 150: û 26: → 17: ◄ 24: ↑ 62:> 77:M

Step 14: Output the final ciphertext
Combine all ASCII characters to form the final ciphertext.

C i p h e r t e x t : “ I ╓ } 8 L g x x
xxp5dj↔∟=$GS☼┬7uur♠Gû→◄↑>M”

This sample demonstration shows the step-by-step
encryption process with the given plaintext, resulting in
a secure ciphertext through a series of systematic steps,
including binary conversion, grey code transformation, XOR
operations, and matrix permutations.

Results and Discussion
The encryption procedure described above exhibits
conceptual similarities with established encryption
algorithms like data encryption standard (DES) and Blowfish
but also presents unique differences in its approach and
complexity.

DES is a symmetric key algorithm designed for encrypting
electronic data. Developed in the 1970s, it encrypts data in
64-bit blocks using a 56-bit key. DES employs 16 rounds
of a Feistel network, where each round involves a series of
substitutions and permutations (using S-boxes and P-boxes)
to transform plaintext into ciphertext. Although DES is
known for its simplicity and efficiency, its relatively short key
length renders it susceptible to brute-force attacks, making
it unsuitable for many modern applications.

Blowfish, created by Bruce Schneier in 1993, is another
symmetric-key block cipher but offers greater flexibility and
security than DES. Like DES, Blowfish encrypts data in 64-bit
blocks, but it supports key lengths ranging from 32 bits to
448 bits, providing enhanced security. Blowfish utilizes a
Feistel network with 16 rounds, similar to DES, but with a
more complex key schedule and larger S-boxes. Blowfish
is recognized for its speed and effectiveness in software
implementations, as well as its robustness against various
cryptanalytic attacks.

The proposed ECDS encryption process described
here adopts a unique approach. It starts by converting
plaintext into ASCII binaries and processes data in 256-bit
blocks, significantly larger than the 64-bit blocks used
by DES and Blowfish. The process involves generating a
256-bit key (K1) for initial encryption, followed by grey
code conversion and the calculation of one’s complement,
introducing layers of complexity not present in standard
DES or blowfish. Additionally, the ECDS method incorporates

matrix manipulation. A 6x6 matrix is populated with decimal
values derived from XOR operations between the one’s
complement of the grey-coded plaintext and the key K1.

Further security is introduced by permuting this matrix
multiple times based on a second 56-bit key (K2), which
is divided into subkeys for columnar transposition and
repeated permutations. This matrix-based approach is
distinct from the round-based Feistel networks in DES
and blowfish. The performance of the proposed method
is compared with existing methods based on the time
taken for encryption and decryption. Table 2 shows the
encryption time comparison between the proposed and
existing methods.

Table 3 shows the decryption time taken by the three
encryption techniques in milliseconds.

The DES encryption took the longest among the three
algorithms, which is expected due to its older design and
the relatively high number of rounds in its Feistel network.
The Blowfish encryption was faster than DES, which is due to
its more modern design and efficient implementation. The
ECDS encryption process is faster than DES and blowfish.
Hence, the proposed ECDS performs well based on the time
taken for encryption and decryption.

The DES and blowfish follow well-established
cryptographic principles; the ECDS encryption method
introduces novel steps like grey code conversion and
matrix permutations. These steps potentially enhance
security through added complexity. The ECDS encryption
process blends elements of traditional block ciphers with
innovative techniques to aim for enhanced security. The
efficiency of the ECDS is evaluated using a hacking tool
called ABC Hackman tool. This tool is used to evaluate the

Table 2: Encryption time comparison

Data size
DES Blowfish ECDS

Milliseconds

100 130 90 75

200 260 180 150

300 390 270 225

400 520 360 300

500 650 450 375

Table 3: Decryption time comparison

Data size
DES Blowfish ECDS

Milliseconds

100 125 85 70

200 255 175 145

300 385 265 220

400 515 355 295

500 645 445 370

The Scientific Temper. Vol. 15, No. 4 Rajasekaran and Priyadarsini 3120

security level of the encryption algorithms. The proposed
ECDS is incorporated into the hackman tool evaluation to
measure the security level. The following mathematical
formula determines the level of security for the encryption
techniques:

Let C represent the size of the ciphertext recorded in the
Cloud storage. H refers to the plaintext that was hacked and
obtained from the text that was encrypted using the ABC
Hackman system.

To calculate the amount of security provided by the
techniques of encryption,

S ß C – H …(1)
Here, S is the count of texts that are dissimilar to the

simple text. Next, the security level (SP) is determined as
percentage by using the following formula:,

SPßS/C*100 …(2)
Table 4 presents a comparison of the security levels

between the current and stated encryption method.
The security levels are assessed using the ABC Hackman

Tool, which evaluates the extent of data retrieval from
the encrypted text. The results show that DES achieved
a security level of 81%, reflecting its older design and
vulnerability to brute-force attacks due to its 56-bit key
length. Blowfish, with its variable key lengths ranging
from 32 to 448 bits, demonstrated an improved security
level of 85%, benefiting from a more modern and robust
cryptographic design. The ECDS technique surpassed both,
achieving a security level of 89%. This higher security level
is due to ECDS’s innovative approach, which includes grey
code transformation, matrix manipulations, and multiple
permutations, adding complexity and enhancing data
protection. The comparative analysis highlights ECDS’s
effectiveness in providing superior security for cloud data
encryption, making it a promising solution for protecting
sensitive information in cloud environments.

Conclusion
The enhanced cloud data security (ECDS) technique
presents significant advancements in cloud computing
security by incorporating novel approaches such as
grey code transformation, matrix manipulations, and
hybrid cryptographic algorithms. These innovations
address critical challenges in protecting sensitive data
within cloud environments. Comparative analysis with
established encryption methods like DES and blowfish
shows that ECDS not only enhances security levels but
also improves performance efficiency. ECDS achieves a

higher security rating of 89%, compared to 81% for DES
and 85% for blowfish, demonstrating its robustness against
data breaches and unauthorized access. The promising
results of ECDS, confirmed through extensive testing and
performance analysis, highlight its potential as a dependable
solution for protecting sensitive information in the cloud.
Future research should focus on refining the technique
further and exploring its applicability across different cloud
environments to ensure its adaptability and resilience
against emerging security threats.

References
Abroshan, H. (2021). A hybrid encryption solution to improve

cloud computing security using symmetric and asymmetric
cryptography algorithms. International Journal of Advanced
Computer Science and Applications, 12(6), 31-37. https://
dx.doi.org/10.14569/IJACSA.2021.0120604

Esmaeili S. F., M. Yadollahzadeh-Tabari and A. A. Pouyan. (2024).
Improving security in cloud computing using colonial
competition algorithm. IEEE International Symposium on
Artificial Intelligence and Signal Processing, Iran: 1-8. https://
doi.org/10.1109/AISP61396.2024.10475223

Faluyi Bamidele Ibitayo, Oguntuase RianatAbimbola and Makinde
Bukola Oyeladun. (2022). Securing Cloud Computing Contents
with Cryptography and Steganography. International Journal
of Science and Engineering Applications, 11(6): 76 – 88. https://
ijsea.com/archive/volume11/issue6/IJSEA11061002.pdf

Huthaifa A. Al Issa, Mustafa Hamzeh Al-Jarah, Ammar Almomani.
(2022). Encryption and Decryption Cloud Computing Data
Based on XOR and Genetic Algorithm. International Journal
of Cloud Applications and Computing, 12(1): 1-10. https://doi.
org/10.4018/IJCAC.297101

Jayachandran, R., & Malathi, D. (2024). Enhanced cloud security
model with hybrid encryption approach for advanced
data security in cloud computing. International Journal
of Intelligent Systems and Applications in Engineering,
12(4s), 432-439. https://ijisae.org/index.php/IJISAE/article/
view/3804

Jebaseli, N., & Banu, A. F. (2022). A new approach for maintaining
data security using cryptography in a hybrid cloud
environment. Journal of Algebraic Statistics, 13(2): 214-224.
https://www.publishoa.com/index.php/journal/article/
view/159/147

Krishnamoorthy, N., & Umarani, S. (2023). Implementation of cloud
computing data security based on hybrid elliptical curve
cryptography. International Journal of Intelligent Systems
and Applications in Engineering, 11(10s), 483-488. https://
ijisae.org/index.php/IJISAE/article/view/3303

Murad, S., & Rahouma, K. H. (2022). Hybrid cryptography for
cloud security: Methodologies and designs. Springer
Digital Transformation Technology: 129-140. https://doi.
org/10.1007/978-981-16-2275-5_7

Nalagandla, R., & Pattanaik, O. (2023). Cloud data security:
Advanced cryptography algorithms. EasyChair Preprints,
(10784). https://easychair.org/publications/preprint/mD3B

Prabhu K and P. Sudhakar. (2024). A Comprehensive Survey:
Exploring Current Trends and Challenges in Intrusion
Detection and Prevention Systems in the Cloud Computing
Paradigm. IEEE International Conference on Intelligent Data

Table 4: Comparison of security levels

S. No Techniques Security level (%)

1 DES 81

2 Blowfish 85

3 ECDS 89

3121 Enhanced cloud data security technique to protect data being stored in cloud infrastructure

Communication Technologies and Internet of Things, India:
351-358. https://doi.org/10.1109/IDCIoT59759.2024.10467700

Pronika and S. S. Tyagi. (2021). Secure Data Storage in Cloud
using Encryption Algorithm. IEEE International Conference
on Intelligent Communication Technologies and Virtual
Mobile Networks, India: 136-141. https://doi.org/10.1109/
ICICV50876.2021.9388388

Ravinder, M. S. Khan and J. Singh. (2024). Security Challenges in
Mobile Cloud Computing. IEEE Karachi Section Humanitarian
Technology Conference (KHI-HTC), Pakistan: 1-9. https://doi.
org/10.1109/KHI-HTC60760.2024.10482107

Sabitha, R., Sydulu, S. J., Karthik, S., & Kavitha, M. S. (2023).
Secure data storage on cloud using hybrid cryptography
methods. EasyChair Preprints, (10126). https://easychair.org/
publications/preprint/DRFZ

Selvaraj, R., & Sundaram, M. S. (2023). ECM: Enhanced confidentiality
method to ensure the secure migration of data in VM to cloud
environment. The Scientific Temper, 14(03), 902–908. https://
doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.53

Selvaraj, R., & Sundari, M. S. (2023a). EAM: Enhanced authentication
method to ensure the authenticity and integrity of the
data in VM migration to the cloud environment. The
Scientific Temper, 14(01), 227–232. https://doi.org/10.58414/
SCIENTIFICTEMPER.2023.14.1.29

Sudha I, C. Donald, S. Navya, G. Nithya, M. Balamurugan and S.
Saravanan. (2024). A Secure Data Encryption Mechanism in
Cloud Using Elliptic Curve Cryptography. IEEE International
Conference on Intelligent and Innovative Technologies in
Computing, Electrical and Electronics, India: 1-5. https://doi.
org/10.1109/IITCEE59897.2024.10467407

