
Abstract
The significance of this paper lies in the investigation of a novel method for comparing the expectations of stochastic models in fuzzy 
settings. In order to comprehend actuarial science and economical modeling, stochastic models are necessary. The primary benefit of 
the paper is to comprehend the novel ideas of stochastic comparison of stochastic models built on the exponential order. We applied the 
fuzzy mean inactivity time order definition, solved the preservation properties and theorem, and created a new definition. Applications 
involving stochastic models are presented.
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Introduction
Numerous applications in applied probability, statistics, 
dependability, operation research, economics, and allied 
domains have demonstrated the value of stochastic 
ordering. Over the years, a variety of stochastic ordering 
and related features have been quickly produced. Let X 
be a positive random variable that represents a system’s 
lifespan with density function f, distribution coefficient F, 
and survival parameter F ̅= 1-F. Given that the system has 
already survived up to t, its residual life after t is shown by 
the conditional random variable Xt = (Xt, X > t), t ≥ 0. The 
anticipated value of Xt is the mean leftover life ( function of 
and can be obtained by,
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In several disciplines, namely survival analysis, actuarial 
research, and reliability engineering, the MRL function is a 
significant feature. It has received a great deal of attention 
in the literature, particularly when it comes to binary 
systems those in which there are just two conceivable states: 
successful or unsuccessful. The hazard rate (HR) function of 
X, which is provided by, is an additional helpful reliability 
metric. 

The function is very helpful in characterizing how the 
probability of witnessing the event varies over time and in 
identifying the proper failure distributions using qualitative 
data regarding the failure mechanism. The MRL function has 
been shown to be more effective in replacement and repair 
procedures, even though the shape of the HR function is still 
significant. The HR function only accounts for any potential 
of a sudden failure at any given time. Stochastic comparisons 
of residual lives and inactive periods at quantiles can be 
used to distinguish a family of stochastic orderings known 
as transform stochastic orderings in the literature (Arriaza 
M.A., et al., 2017). Following that was a brand-new stochastic 
order known as the star order, which falls in between the 
convex order and the other two transform orderings. A 
novel idea for the comprehensive and straightforward 
characterization of situations where one Beta distribution 
is smaller than another based on the convex transform 
order has been proposed  (Arab, I., et al., 2021). They derive 
monotonicity properties for the probability of a random 
variable that is beta distributed and exceeds its distribution’s 
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mean or mode as an application. Stochastic comparisons 
of vectors with a multivariate skew-normal distribution are 
made (Arevalillo, J.M. and Navarro,H.A., 2019). The novel 
ordering is based on the canonical transformation linked 
with the multivariate skew-normal distribution and the 
well-known convex transform order applied to the single 
skewed component of that canonical transformation. Three 
functional measures of the shape of univariate distributions 
are proposed (Arriaza, A., et al., 2019). These metrics are 
appropriate with respect to the convex transform order. 
To close a gap in the literature (Belzunce F., et al., 2022). 
concentrate on giving sufficient conditions for a few well-
known stochastic orders in dependability while handling 
their discrete forms. In particular, based on the likelihood 
ratio’s unimodality, they found comparison criteria for two 
discrete random variables in specific stochastic orders. The 
mean residual life, the bending property of the failure rate, 
the reversed hazard rate, and the mean inactive duration 
in mixtures have all been explored (Badia, F.G. and Cha, 
J.H., 2017). The idea of relative spacings was first developed 
(Belz unce, F., et al., 2017). They demonstrate the relevance 
of this idea in several situations, such as economy and 
reliability, and we offer various results for evaluating relative 
spacings among two populations. Numerous shifting and 
proportional stochastic orders have been used (Belzunce, F., 
Ruiz, J.M., and Ruiz, M.C., 2002). To compare certain coherent 
structures that were formed from a set of components or 
from two sets of components. A new type of stochastic order 
has been proposed and explored (Izadkhah, S. and Kayid, 
M., 2013). Several fundamental and afterward fundamental 
preservation properties of the new stochastic order under 
convolution, mixture, and shock model reliability procedures 
are investigated. A thorough overview of the theory and 
applications of aging and reliance on the application of 
mathematical techniques to survival and reliability studies 
is provided (Lai, C.D. and Xie, M., 2006). The study of getting 
older properties of residual lifetime mixture models and 
stochastic comparisons has been enhanced (Patra, A. and 
Kundu, C., 2021). They performed stochastic comparisons 
of two distinguish mixture models under the likelihood 
ratio, hazard rate, mean residual life and variance residual 
life orders employing two different mixing distributions 
and two different baseline distributions. Recent discussions 
regarding the stochastic comparison and aging properties 
of RLRT (ITRT) based on variance residual life have led to 
new findings regarding the stochastic aging qualities, as 
noted  (Patra, A. and Kundu, C., 2022). Sufficient standards 
for the residual life and inactive time’s log-concavity and log-
convexity have been given (Misra N., et al., 2008). In addition, 
we do stochastic comparisons between the inactivity time 
and residual life in terms of the typical stochastic order, 
the mean residual life order, and the failure rate order. A 
well-known MRL order has been introduced and examined 
in the literature based on the MRL function (Nanda, K., et 

al., 2010). Numerous writers have studied the MRL order’s 
uses in survival and reliability analysis throughout the years 
(see Shaked, M. and Shanthikumar,  J.G., 2007), (Muller, K. 
and Stoyan, K., 2022). However, several existing concepts 
of stochastic comparisons of random variables are thought 
to be generalized by the proportional stochastic order, 
according to the literature. Proportional stochastic orders 
have been explored by numerous researchers as enlarged 
versions of the prominent stochastic orders prevalent in 
the literature right now (Ramos-Romero, H.M. and Sordo-
D ı́az, M.A., 2001). Nanda et al. examined reliability models 
adopting the MRL function and conducted a fresh analysis 
on various partial ordering effects relevant to the MRL order 
(Nanda, K., Bhattacharjee, S., et al., (2010)). The probability 
distribution of potential outcomes is its primary concern. 
Examples include (Shaked, M. and Shanthikumar,  J.G., 2007)., 
Markov models and regression models. The modal functions 
as a realistic case simulation to gain a deeper understanding 
of the system, investigate unpredictability, and evaluate 
uncertain scenarios that delineate all possible outcomes 
and the trajectory of the system’s evolution. Thus, in order 
to optimize profitability, experts and investors can develop 
their business practices and make better management 
decisions with the aid of this modeling technique.

An Introduction to stochastic orders discusses this 
helpful tool, which may be used to assess probabilistic 
models in a range of domains, including finance, economics, 
survival analysis, risks associated with stock trading, and 
reliability. For academics and students wishing to use this 
data as a tool for their own research, it provides a general 
foundation on the subject. Along with applications to 
probabilistic models and discussions of basic properties of 
many stochastic orders in the univariate and multivariate 
scenarios, detailed proofs of the principal results in several 
sectors of interest are provided. In applied probability, 
stochastic ordering among random variables has shown 
to be an effective method for comparing system reliability. 
Stochastic orderings are viewed as a key tool for marketing 
decision-making in the face of uncertainty. In order to 
create a mathematical or financial model that can find every 
possible outcome for a particular circumstance or issue, 
stochastic modeling uses random input variables. 

Fuzziness
There are two typical scenarios in the real world when 
an observed variable gets fuzzy. In the first scenario, 
the response variable cannot be measured exactly due 
to technical measurement conditions. As a result, data 
cannot be recorded explicitly with precise (non-fuzzy) 
numbers; instead, it can only be done in linguistic terms 
to demonstrate the necessary tolerance to errors in 
measurement. The second scenario involves the response to 
the variable being given in linguistic forms, such as a farmer’s 
report about his products or an expert’s linguistic report, 
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which is not numeric. To analyze the experiment, the data 
in both scenarios may be represented as a nation of fuzzy 
sets. Fuzzy sets theory has to be used to model and manage 
the findings from experiments of many applied fields since 
the values obtained from experiment outcomes are often 
fuzzy. Many people have utilized the fuzzy sets theory in a 
variety of scientific areas since Zadeh (1965) introduced it 
to the scientific world.

The purpose of this study is to develop hyperbolic 
stochastic theories of fuzzy random variables.

A fundamental concept of fuzzy sets and stochastic 
ordering, as well as a definition of fuzzy random variables 
and fuzzy random vectors, is provided in Section 2, along 
with a few definitions and equations. Section 3 defines 
stochastic comparison using the stop-loss premium of 
the convex order along with the properties of the convex 
ordering of the set of fuzzy random variables. The convex 
ordering of the set of fuzzy random variables was graphically 
depicted in a clear and understandable manner. 3.13. 
Stochastic model comparisons aid in the process of making 
investment decisions by forecasting results in unpredictable 
circumstances, particularly those involving the stock market. 
It is regarded as an insurance company that, for example, 
based its price list on the exponential principles of premium 
computation, using a distribution function in the literature 
called inactivity time. This section covers the exponential of 
the inactivity order of a random variable and preservation 
features under specific dependability operations. With the 
aid of a theorem and proof, the continuous non-negative 
fuzzy random variable with probability density function is 
elaborated. Numerous fields, including agriculture, systems 
biology, production, weather forecasting, and biochemistry, 
have benefited from the extensive applications of stochastic 
models in real life. Ultimately, the question of what practical 
uses for stochastic ordering under fuzzy random variables 
there are is resolved.

Preliminaries

Definition
Let χ be a set of all values. Next a fuzzy set A ̃ ={(x,μ_A (x))/
xϵχ} of χ is determined by the role it plays in membership 
μA : χ→[0,1].
The α-cut of the set of   is indicated by it’s for every 

.  
• F o r  e a c h   b o t h   d e f i n e d  a s 

 and  are finite 
real valued random variables defined on such (Ω,A,P) 
that the mathematical expectations  exist.

• For each,  and,  and .
If χ ̃and ϒ ̃ be fuzzy random variables with fuzzy cumulative 
distribution function F ãnd G ̃ respectively then 
• 
• 

• , for all 
increasing functions f.

Stochastic Comparison of the Exponential Convex Orders

Definition
Consider two consecutive sequence set of fuzzy random 
variables  and  such that, 

 for all convex 
functions φ, provided expectations exists. Then the 
sequence  is said to be stochastically 
dominant of in the convex order denoted 
as . .

Properties of Convex Ordering of Set Fuzzy Random 
Variables

Let  be two set of fuzzy random 
variables. Then the following conditions are satisfied,
• If  said to be stochastically dominant of   

 in convex order sense that if  
Then,

  and
 
• If 

is independent of  Then,

• Let  two set of non negative 
consecutive fuzzy random variables. Then, 

• 
• Let χ and ϒ two set of non negative consecutive fuzzy 

random variables such that , If and 
only if  for all δ∈∅.

• The convex order closed under mixtures: let χ and Y and  
Z be random variables such that

•  for all ∅ in the support of Z . 
 Then

• The convex order closed under convolution: let 
 be set of independent 

fuzzy random variables. If  Then 

• Let  be a pair of consecutive independent 
fuzzy random variables and let  be a pair of 
consecutive independent fuzzy random variables. If 

 then,
 
A clear illustration of the properties of convex ordering of 
set fuzzy random variables by graphical representation can 
be found in the following Figures 1 and 2.

Comparisons of Stochastic Models Fuzzy Random 
Variables
The integral form has applications in actuarial science, 
reliability, and economics in numerous stochastic comparison 
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relations. A class F of measurable functions generates a 
stochastic order relation referred to as an integral stochastic 
comparison or  In particular, given two sets of fuzzy 
random variables,  and  is said 
to be stochastically dominance than  in the 
F sense, expressed as 

For as long as the presumption in the equation above is met. 
Marshal and Muller looked at such stochastic evaluations 
in a fairly broad context. The distributions function 

 and  corresponding X to  and Y are 
ordered, not the particular configurations of these fuzzy 
random variables, as should be noted. Here, we revisit the 
exponential order as one of these analogies.

L e t   a n d   b e  t w o 
sets of fuzzy random variables with distributions 

 and denote their survival functions 
b y,  
respectively. Their exponential functions are defined as, 
for all S>0.

Let us considerand  be 
two sets of fuzzy random variables, χ is said to be smaller 
than Y in the exponential order denoted as ,

 is finite for some
 and

Notice also that,

This is more important in the idea of reliability. From a 
probabilistic standpoint, the exponential order mandates 
that the moment-generating functions of the non-negative 
random factors X and Y be laid out in chronological order. 
Additionally, the exponential order communicates the 
collective preferences of all decision-makers via utility 
features from the  Exponential orders of 
fuzzy random variables have numerous meanings in an 
actuarial framework. For instance, allows us to consider 
a financial institution that uses the quadratic premium 
calculation principle as its basis for its cost list. In this 
instance, the premium amount  related to the risk χ is 
provided by  From the above equation, 

Here are other interpretations, features, and uses of the 
exponential order as reported by Stoyan and Muller. 
Variables of the type  are of significance in 
many reliability engineering problems for fixed  
and  with a distribution function 

 and a known inactivity time in the 
literature. 

Definition 
Both χ and ϒ are two continuous nonzero fuzzy random 
factors with the following attributes: f and g are their 
probability density functions; F and G are their distribution 
functions; and F ̅ and G ̅ are their survival values. After that, 
the progression of the,
• Exponential of the likelihood ratio defined by 

• Exponential order of mean inactivity as stated by 
,

• The reversed Hazard rate order’s exponential, stated by 

• Exponential of the Hazard rate order defined by 
,

Figure 1: (a)- Convex orderings set of fuzzy random variables (b)- 
non convex orderings set of fuzzy random variables
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• The mean residual life order exponential, as described 
by 

• Exponential serves as the decreasing order typical 
residual life order computed by 

Following figure describes the graphical representation of 
stochastic orders of fuzzy random variables.

These graphical representations provide these visual 
tools in comparing random variable distributions and 
stochastic ordering. They offer a natural comprehension of 
the strengths and weaknesses and chances associated with 
the variables under evaluation. In this study, we look into 
the exponential order of the mean inactive time in a fuzzy 
setting. The preservation characteristics of the exponential 

in activity time order under convolution and combined 
operations are next discussed. Subsequently, we provide 
multiple applications of shock models and outline a few 
basic instances of their use to determine situations in which 
the random variables are similar in this series.

We observed that the phrases “increasing” and 
“decreasing” were employed rather than monotone non-
decreasing and monotone non-increasing, respectively, 
throughout the entire paper. Furthermore, all fuzzy random 
variables under discourse are believed to be perfectly 
continuous, with 0 and 1 being the usual left points of their 
supports, and all expectancies are implicitly assumed to be 
limiting whenever they appear.

Preservation Properties 
Dependability theory places importance on an order’s 
preservation properties under certain dependability 
operations. Some features of the exponential of the 
inactivity order of a random variable are covered in this 
section. 

Let χ and ϒ be two continuous non-negative fuzzy 
random factors that have the following traits that 
distribution functions F and G, survival measures F̅  and G̅ , 
and probability density functions f and g, respectively. 

Figure 2: (a-d) Graphical representation of stochastic orders of fuzzy random variables
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This condition holds true by the previous definition, then  

Proposition
Imagine two continuous non-negative fuzzy random 
parameters, χ and ϒ, with the following traits that probability 
density functions f and g, distribution functions F and G, and 
inheriting functions F̅  and G̅ , respectively. Then 

Is decreasing 

Proof
Let us observe that

 ; therefore given  by 

previous equations 

Is decreasing in , for all t>0.

Theorem
Let us take  and Z be three continuous non-negative 
fuzzy random variables with probability density function 
f and g and h distribution function F and G and H survival 
functions F̅  and G̅  and H̅ , respectively. Then  and  
Z is log-concave then 
Proof: By the previous preposition, it is enough to show that 
for all 

Since Z is non negative then  when  hence 
the above inequality is equivalent to

By the well known basic composition formula

Seeing that the first determinate is non-positive because 
of g’s log-concavity and the second determinant being 
non-positive due to  leads us to the conclusion.
Where 
Which is complete the proof.

Lemma 
If  and  where X1 is an independent 
fuzzy random variable of χ2 and ϒ1 is an independent fuzzy 
random variable of ϒ2 with probability density function f 
and g distribution function F and G and survival functions 
F̅  and G̅ ,respectively. Then the following statements hold:
• If χ1 and ϒ2 have log-concave densities, then 

• I f  χ2 and ϒ1 have log-concave densities,  then 

Proof (i)

The following chain inequality, which is establishing (1), 
follows by theorem 2.1:
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Proof (ii)
The evidence for (ii) is analogous. The following outcome 
can be obtained by repeatedly employing lemma 3.8 and 
the closure property of log-concaves under convolution.

Theorem
Let us consider  and  be two 
sequence sets of fuzzy random variables, Xi  is said to 
be smaller than Yi in the exponential order denoted as, 

 and have log-concave densities 
for all i, then 
Where 

Proof
We shall employ induction to demonstrate the theorem. 
Certainly, the result stays true for n = 1. Assume that the 
result is true for q = n - 1, that is         

Note that each of the two sides of above equation has a 
log-concave density. Applying previous lemma the results 
follows. The following concepts will be used in the sequel.

Definition
A function  is said to be a totally positive fuzzy set 
of order 2. If for all 

Let us take χ(δ) be a distribution function-containing 
fuzzy random variable and let ϒ(δ) be another fuzzily 
distributed random variable with a distribution function. 

 for i = 1,2, and support R+. The following is a closure 
of exponential of inactivity time order under the mixture.

Theorem 
Let us take X(δ) is a set of fuzzy random variables δ ϵ R+ and 
independent of . If  and if 
whenever δ1 ≤ δ2, then 

Proof
Let Fχ be the distribution function of χ(δi) with i = 1,2. 
We know that

Again, because of previous preposition, we should prove 
that ,

  is totally positive 
order2 in (i,t). But actually

By assumption  whenever  we have 
that  is totally positive order2 in (δ,t), while form 
assumption  follows that  is totally 
positive order 2 in (δ,i). Thus again assertion follow from the 
basic composition formula.

Let  be sets of fuzzy random variables 
with distributions  and denote their survival 
functions by,  respectively. 
Let  and  be two sets of 
probability vectors. A probability vector  
with  is said to be smaller than the 
probability vector  in the sense of discrete 
likelihood ratio order, denoted as  if 

Let us take X and Y be two continuous non-negative fuzzy 
random variables with probability density functions f and 
g, distribution functions F and G, and survival functions F̅  
and G̅ , respectively. 

Conditions under which χ and ϒ are analogous with regard 
to the exponential inactivity time order of fuzzy random 
variables are established by the following discovery.

Theorem
Let  be sets of fuzzy random variables with 
distributions  and denote their survival 
functions by, such that 

 and let  and 
 such that  Let fuzzy random variable  

X and Y have a distribution function  defined by the 
previous equation. Then .
Proof:  Because of previous preposition, we need to 
establish that
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The aforementioned equation can be demonstrated to 
be equivalent to by multiplying by the denominators and 
eliminating equal terms.

Where i ≠ j. Now for each fixed pair (i,j) with i < j we have

This is non-negative because both terms are non-negative 
by assumption. This is the complete proof. The above holds 
true maximum value of fuzzy random variable. The same 
preservation properties and theorems hold true for other 
models like likelihood ratio order, hazard rate order, mean 
residual life orders.

Practical Utilization of Stochastic Models
A framework for comparing fuzzy random variable 
distributional properties is provided by stochastic ordering. 
Fuzzy random variables that indicate imprecision and 
uncertainty can be used in conjunction with stochastic 
ordering to model and analyze a number of real-world 
problems. The following categories of applications for 
stochastic ordering of fuzzy random variables are possible:

Risk analysis
It is feasible to evaluate and rank the riskiness of various 
financial assets or investment portfolios using stochastic 
mandating of fuzzy random variables. By considering the 

stochastic dominance relationships between fuzzy random 
variables, investors can make more informed decisions 
about risk management and asset allocation.

Quality control
Stochastic orders can be used to gauge the caliber of 
products or production processes when measurements are 
ambiguous or imprecise. Assume that a certain approach or 
product is stochastically superior to another. Then, utilizing 
fuzzy random variables and stochastic ordering, which may 
capture the fuzziness and variability in the quality attributes, 
it can be determined.

Reliability analysis
By using stochastic ordering of fuzzy random variables, 
reliability engineering makes it possible to compare and 
measure the reliability of various systems or individual 
components. By taking into mind the stochastic dominance 
relationships, engineers can evaluate the performance and 
robustness of different designs and make decisions about 
system maintenance and improvement.

Insurance and actuarial science
Stochastic orders are useful in actuarial science and 
insurance, especially when fuzzy risk models are being used. 
They can be used to evaluate the insurance companies’ 
solvency and financial stability, as well as to weigh the risks 
involved in various insurance options.

Decision-making under uncertainty
Fuzzy random variables with stochastic ordering come in use 
whenever there is ambiguity and imprecision in the decision 
factors and objectives. By using stochastic dominance 
criteria, decision-makers can determine which options or 
strategies are better based on their distributional properties.

Environmental modeling
It is feasible to employ stochastic ordering of fuzzy random 
variables in environmental modeling and analysis. They 
can be utilized for illustration, for assessing the impact of 
confusing and imprecise factors on environmental processes 
or to compare and rank the pollution levels from different 
emission sources.

The aforementioned applications showcase the 
adaptability of stochastic ordering in the context of fuzzy 
random variables, hence facilitating the examination of 
imprecise and uncertain systems in diverse fields.

Conclusion
In actuarial science, one of the most important roles is 
the exponential order of a stochastic model. We propose 
dif ferent preservation features under mixture and 
convolution reliability processes of the fuzzy random 
variable with exponential stochastic order in the current 
study. Applications such as hazard rate order, mean residual 
life order, and reverse hazard rate order, all using stochastic 



 Analysis of distributions using stochastic models with fuzzy random variables 3013

models, are outlined. Examples are given to show how the 
results may be exploited to find the exponential order of 
mean inactivity time-ordered fuzzy random variables. Our 
findings also have implications for dependability, risk theory, 
and statistics. Future studies can take into account the extra 
features and uses of this novel ordering.
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