
Abstract
With prestigious recognition of diabetes and appraisal it is very essential in healthcare domain for treatment effectiveness and control. 
Conventional techniques typically rely on arduous and error-prone manual scrutiny of medical records and symptoms. To overcome 
those challenges, this research proposes a Type II Fuzzy Differential Evolution based Semantic Ontology (T2FDESO) methodology to 
assist in the identification and diagnosis of diabetes. The T2FDESO techniques which combines the current state of art advantages like 
fuzzy logic, differential evolution concept for semantic ontology helps in improving the efficiency and accuracy research. The method 
uses Type 2 fuzzy logic to model the inaccuracies and imprecision’s in medical data, delivering a reliable decision support. Applying the 
differential evolution method increased further improve precision and sensitivity of diabetes diagnosis model. All medical knowledge 
is codified using a uniform semantic ontology and relations among different terms that occur in a statement are explicitly represented 
by the T2FDESO method. The algorithm is capable of deducing these other characteristics related to diabetes well because those are 
the primary symptoms for which we provided. The integration of domain-specific information is facilitated by its ability to improve the 
diagnostic process. Additionally, apart from the increased sensitivity and specificity of diagnosis for diabetes which was faster while 
using T2FDESO method has several other advantages. This system takes advantage of a semantic ontology, which permits sharing expert 
knowledge across different domains in an integrative manner that keeps the diagnostic process updated with new information and 
advances on diabetes research, while merging both biological and clinical aspects. Furthermore, the T2FDESO technique well combines 
various data types such as clinical records and laboratory test outcomes making a comprehensive investigation of patient information. 
The system can support the collection and organization of domain-specific information in a tree-like structure that assists with clinical 
decision-making, leading to better patient outcomes. The empirical results on a real-life dataset substantiate the efficacy of T2FDESO 
over existing approaches, having an immense significance in joint detection and diagnosis of diabetes for medical application. The 
ability to aid decision-making and timely therapy management could make a large difference in the capacity of healthcare providers 
offer personalized quality care for subjects with diabetes.
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Introduction
Without proper treatment of uncontrolled diabetes, a 
metabolic disorder characterized by abnormally high blood 
glucose levels can present serious health risks. Effective 
treatment and control of diabetes depend on early, accurate 
diagnosis. The existing way of diagnosing cancer is through 
a painstakingly manual study using medical data and 
symptoms. This process, however is time-consuming & 
can be subjective with room for errors. Moreover, it signals 
an emerging demand for sophisticated computational 
methods to bolster the accuracy and automation of 
diagnosis American Diabetes Association. (2020), Rawshani, 
A., Rawshani, A., Franzén, S., Eliasson, B., Svensson, A.-M., 
Miftaraj, M (2018).

AI has proved a huge success in medical diagnosis. 
The detection of disease has been revolutionized with 
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the introduction of a variety artificial intelligence (AI) 
technologies including fuzzy logic, algorithmic evolution 
and semantic ontologies. Fuzzy logic works with imprecision 
and uncertainty in medical data, whereas evolutionary 
algorithms tune the diagnostic model parameters. Semantic 
ontologies enable the systematic organization of medical 
information resulting in increased efficiency reasoning as 
well as inference. Most existing approaches, however, are 
highly Types 1 dependent and they do not incorporate 
semantic ontologies Ling, Y., Chen, Y., & Wang, H. (2017), Lim, 
G. Y., & Ng, Y. Y. (2014), Das, S., Abraham, A., &Konar, A. (2008), 
Otero, F. E., & Pinto, A. S. (2014), Li, D., &Pedrycz, W. (2018).

Diagnosing diabetes is not at all easy and detecting 
it so early to get correct treatment to be correct way. 
First, medical data contains a great deal of unknowns, 
imprecision’s and ambiguities which makes it very difficult to 
classify individuals as diabetes or non-diabetic consistently. 
Performance of the parameters for diagnostic model shall 
also be tuned to meet high accuracy. Yet the success of 
this job depends on an efficient optimization set of rules 
with the potential to address such a sophisticated search 
space. Third, the diagnostic process itself leans on medical 
expertise of a specific domain to ensure reliable results and 
accurate decision assistance Esteva, A., Kuprel, B., Novoa, R. 
A., Ko, J., Swetter, S. M., Blau, H. M., &Thrun, S. (2017), Gong, 
D., Wu, J., & Xu, L. (2017), Vadas, D., Currie, M., & Lin, C. (2016).

In the current study, a state-of-the-art computational 
tool in diabetes detection and diagnosis based on an 
integrated of Type II Fuzzy logic with Differential Evolution 
optimization techniques plus more semantic ontology 
support, has been utilized. We aim to offer a powerful 
diagnostic support tool making decision-making between 
physicians more valid. In order to overcome the limitations 
of previous methods, this paper proposes applying Type 2 
fuzzy logic ability in handling uncertainties and imprecision’s 
together with differential evolution an effective optimization 
procedure. This would allow the system to capture insights 
about diabetes using symptoms and patient data that is 
entered into it by way of an ontology built around concepts 
Kanagarajan, S., & Ramakrishnan, S. (2018), Majumdar, S., 
&Verma, A. K. (2015). 

There is a great potential in using artificial intelligence 
(AI) for medical diagnosis. Several artificial intelligence (AI) 
technologies such as fuzzy logic, evolutionary algorithms 
and semantic ontologies have been introduced to enhance 
the performance of disease detection systems. Fuzzy logic 
handles the vagueness and ambiguities in medical data, 
meanwhile evolutionary algorithms tune up those model 
parameters of diagnosis. Semantic ontologies may be 
employed to systematically categorise medical information, 
contributing to improved efficiency of reasoning and 
inference. However, most current solutions are strongly 
based on Type 1 fuzzy logic with no integration of semantic 
ontologies.

The major result achieved in this research is the development 
of a Type II Fuzzy Differential Evolution based Semantic 
Ontology (T2FDESO) approach to detect & diagnose 
diabetes. For this system the novel feature is the combination 
of differential evolution theory, type 2 fuzzy logic by 
semantic ontology. All these elements combined improve 
the accuracy, efficiency, and dependability of the diagnostic 
system. The proposed approach addresses the gap in 
current literature by employing state-of-art statistical 
and computational methods to propagate uncertainties 
associated with clinical functions, improve diagnostic 
models taking explicit advantage of domain-specific 
medical knowledge variables Zhang, L., Zhang, Q., & Wang, 
G. G. (2009).

The T2FDESO method, integrating Type II fuzzy logic with 
differential evolution and semantic ontology technology 
improves decision support in diabetes detection and 
diagnosis. This approach may help healthcare professionals 
to take important decisions and timely treatment of diabetes 
patients [30]. Experiments with a real-world dataset show 
its improvement over traditional approaches. These results 
can help in a better understanding of artificial intelligence 
medical diagnosis systems and suggest directions for 
diabetes care enhancement.

Several innovative features of the T2FDESO technique 
presented for diabetes identification and diagnosis are:

The T2FDESO technique is able to successfully combine 
strengths of Type 2 Fuzzy Logic, Adaptive Optimization 
and Semantic Ontology. This integration can make the 
diabetes diagnosis system more reliable and accurate from 
complementary advantages of aspect assumptions.

T2FDESO is unique as its semantic ontology is customized 
for diabetes diagnosis. The creation of this structured 
framework brings specific knowledge and expertise 
together, which increases the reliability and adaptability of 
the diagnostic system with respect to recent research results 
or clinical experiences.

Examples of expert based knowledge in the semantic 
ontology will guarantee that the system maintains its 
diagnostic accuracy with current medical and academic 
best practices (T2FDESO). This integration leads to better 
diagnostic outputs and eventually more suitable decision 
making.

Integration of Heterogeneous Data Types: With the 
semantic ontology, diverse data sources such as medical 
records, lab reports and patient histories can be streamlined. 
This integration improves the accuracy of diagnostics and 
enhances diabetes identification React DOM.

Differential Evolution Optimization: T2FDESO approach 
optimizes the parameters of diabetes diagnosis model by 
applying differential evolutionary algorithm. This technique 
of optimization increases the precision in diagnosis also, 
and minimizes parameter values that reduce classification 
mistakes.
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The new methodology T2FDESO provided a comprehensive 
and innovative model that efficiently amalgamated recent 
concepts from different areas into diabetes prediction 
system, so in summary such approach is outstanding for 
improving better detection levels of type - 2 diabetes. 
Regarding the diabetes diagnosis issue, its reliance on 
semantic ontology, expert knowledge and asymmetric 
evolution in combination with Type II fuzzy logic makes it 
different from current available solving approaches.

Related Works
The authors proposed a Diabetes Decision Support System 
using Fuzzy Ontology. They developed a fuzzy logic and 
ontology based diagnostic knowledge base in the diagnosis 
of diabetes. The use of fuzzy rules was a way to solve the 
natural vagueness and imprecision that characterizes 
medical data; while ontology provides an ordered system 
for storing information about diabetes Chen, Y., Ling, Y., 
Wang, H. (2019).

Type-2 Fuzzy Ontology was developed to support the 
diagnosis of diabetes. The aim of the present study was to 
construct an ontology-based system in order to accurately 
represent ambiguity using Type-II fuzzy sets, with regard to 
diagnosis diabetes. This makes it a recommended approach 
to alleviate the intrinsic imprecision and indefinite nature of 
medical data due to which diabetes can be diagnosed Singh, 
A. K., & Gupta, V. (2020).

Type-2 Fuzzy Ontology-Based Systems for Diabetes 
Diagnosis. Utilize rigorous fuzzy ontology to describe and 
analyze diabetes concepts and relationships, in order to 
generate more detailed or precise deductions. The system 
utilized fuzzy logic for a precise interpretation of diseases by 
dealing with confusing and uncertain medical information 
Shaik, A. R., Patra, M. R., & Rao, G. P.(2020).

Between the various factors that can improve this 
process of diagnosing diabetes, is suggested a combined 
decision support system. The method employed by the 
authors allowed for diabetes diagnosis at a novel level, as 
it combined fuzzy ontology with support vector machines 
to reach these results. Support vector machines were 
employed for the classification task and a fuzzy ontology in 
gathering domain-specific information Şahin, C., &Küçük, D. 
(2021), Kanagarajan, S., & Nandhini. (2020).

The authors also developed a smart fuzzy ontology 
system for well-enhanced diabetes detection. A fuzzy 
ontology decision support system is built to handle the 
vagueness and imprecision in medical data. The process of 
diagnosis was improved by adding human expertise to the 
technology Arunmozhi and Thirunavukarasu (2020).

In 2016, the authors adopted differential evolution 
algorithms for the classification of diabetes diagnoses. 
They were able to boost the accuracy of diagnosing 
diabetes mellitus by refining a model’s parameters through 

differential evolution Abiodun, A., Olugbara, O. O., & Ng, W. 
K. (2016).

The authors used support vector machine with 
differential evolution algorithm for tuning 25D. Applying 
differential evolution for the optimization of SVM parameters 
led to a higher categorization accuracy in diabetes Vafaei, 
M. S., &Fakhrzadeh, H. (2017).

The researchers applied evolution-based variations and 
identified important features to optimize the parameters of 
a classification model that they designed, leading then to 
an enhanced diagnostic accuracy for diabetes Hossain, M. 
A., Akhtar, M. F., &Serpedin, E. (2020).

Novel Fuzzy C-Means-Based Differential Evolution 
Algorithm to Identify the Subpattern Patterns of Diabetic 
Patient and Accuracy Fell Analysis for Disease Predection 
(Baskaran, K.; Chandrashekar; Aguilar-Salvador Perez) To 
propose a systematic approach in combining fuzzy logic 
with differential evolution yin constructing models as 
an aid towards providing early detection and prediction 
mechanisms using diabetes datasets Forgery Platform. 
Their paper describes this technique. In order to address 
the uncertainty problem, fuzzy logic was employed and 
for optimizing our prediction model we used differential 
evolution. Predictive accuracy was better with the hybrid 
approach to estimate diabetes Chen, Y., Ling, Y., & Wang, 
H. (2018).

A diabetic diagnosis system with a hybrid type-2 fuzzy 
ontology was provided. In an initiative to overcome this 
ambiguity and inaccuracy of Medical Data, Type-II Fuzzy 
Logic And Ontology was combined by researchers. This 
hybrid technology improved accuracy and reliability of 
diabetic diagnosis to a greater extent Ahmad, A., Javaid, N., 
Shafique, F., & Butt, S. A. (2020) Algorithm 1.

The authors developed a fuzzy ontology-based decision 
support system for diabetes diagnostics-related tasks. 
They encoded diabetes related information and reasoning 
using fuzzy ontology. It provided consistent and accurate 
assistance for the determination of diabetes. Different 
researchers employed DE to optimize the classifier as 
diabetes diagnosis is realistic outcomes Guo, Y., Liu, Z., & Li, 
Y. (2021), Qu, G., & Zhang, Y. (2021).

Proposed Method
The T2FDESO is a Type II fuzzy logic and differential evolution 
as the optimization, where its ontology feature has been 
developed based on the diabetes detection process. The 
diagnostic systems have many features; however, one of 
the most important is addition of a semantic ontology that 
considerably improves accuracy, efficiency and reliability 
(Figure 1).

A semantic ontology can describe medical information 
in a systematic way, as well the interrelationship between 
different medical concepts. The ontology organizes domain-
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specific knowledge about diagnosing diabetes which 
includes symptoms, risks and diagnostic criteria using a 
systematic classification. The very structured system in 
medical the context you described makes it more powerful 
to determine information regarding diabetes based on 
actual patient data and symptoms entered. The diagnostic 
system can be more precise and then the suspected patient 
gets to know if he/she has Diabetes by applying that 
knowledge of semantic ontology.

Probing semantic ontology enables inclusion of 
expertise from myriad sources, including the various 
specializations within diagnosis regulation. Through the 
integration of these medical expertise as well as knowledge 
into ontology, this system gets continuously being updated 
with importance discovery outcomes and clinical practices. 
Diagnostic outcomes are improved by integrating expert 
information, relying on the collective knowledge of medical 
and academics.

The semantic ontology makes the integration possible 
for a variety of data sources Ontology alignment provides 
the means for the system to combine and analyze clinical 
information, laboratory test results, and patient histories. 
Integration of multiple patient data sources that span 
identification and assessment of diabetes may improve 
disease understanding.

Architecture of the T2FDESO System
The TIIFDESO system’s architecture generally comprises the 
following essential components:

Input data
This section collects input from the user regarding the 
patient’s symptoms, medical history, and other relevant 
factors. Structured data, unstructured language, and health 
records are all valid forms of information.

Preprocessing and Feature Extraction
In the initial processing and feature extraction procedure, 
the input data is processed and only the crucial features 
for diabetes diagnosis are extracted. Data preprocessing 
includes activities such as cleansing, normalizing, selecting 
features, and dimensionality reduction.

Semantic Ontology Construction
Within this part, we construct a specialized semantic 
ontology specifically designed for the purpose of detecting 
diabetes. The ontology encapsulates the domain knowledge 
pertaining to diabetes, including its ideas, connections, 
and hierarchical structure. Crucial for logical thinking and 
drawing conclusions, it offers a well-organized depiction of 
medical information.

Type 2 Fuzzy Logic Inference Engine
The inference engine utilizes Type II fuzzy sets and rules 
to effectively handle uncertainty and inaccuracies in the 

input data. Fuzzy logic thinking is used to make decisions 
and categorize patients as either diabetes or non-diabetic. 
The engine utilizes language variables and functions of 
membership that are described in the ontology.

Differential Evolution Optimization Module
This module utilizes the differential evolution method to 
improve the parameters of the diabetes diagnosis model. It 
fine-tunes the model parameters to enhance the accuracy 
of diagnosing patients. The objective of the optimization 
procedure is to determine the parameters that have the 
potential to minimize the classification error.

Decision Output
This component generates the final diagnostic result by using 
the optimized settings and the information obtained from 
the fuzzy logic inference engine. The output may include 
the conclusion on the diagnosis, the level of certainty in that 
determination, and any further recommendations or insights.

The architecture of the T2FDESO system highlights 
many interrelated aspects, including input data flow, 
preprocessing, interface with semantic ontologies, fuzzy 
logic inference, and optimization based on differential 
evolution. The objective is to enhance the identification 
and assessment of diabetes by optimizing the advantages 
of each individual component.

Data Preprocessing and Feature Extraction
Essential steps to prepare the data for input in T2FDESO 
include Data preparation Feature extraction It consists of 
data filtering, normalization and feature selection that help 
in diagnosis function for a diabetic person.

Figure 1: Proposed model
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Data Preprocessing
Preprocessing is used to prepare the raw input data for 
additional analysis. Common preprocessing steps are 
removal of missing data, handling outliers and category 
variables. In case of diabetes diagnosis, preprocessing 
can be the inform data normalization or encoding text to 
numeric format.

Feature Extraction
In diabetes diagnosing, the feature extraction is useful 
to treat and separate significant features from refined as 
well formatted data. These attributes can differentiate the 
positive trends or characteristics to categorize between 
individuals who have proper diabetes and those who do not. 
The data characteristics and system requirement decide the 
type of feature extraction technique to be used.

Reduce the Data Dimension
The most commonly used method for this purpose is 
Principal Component Analysis (PCA) and it helps to extract 
the relevant feature from a dataset. PCA tries to find a few 
orthogonal vectors (PRINCIPAL COMPONENTS or PCs) that 
describes most of the variance on data. The covariance 
matrix of the input data is then formed and followed by an 
eigen decomposition (Principal Component Analysis).

Statistics performer feature extractor
Many times in our case, we are computing approximately 
mean, median, skewness and kurtosis. These metrics help 
detect diabetes detection by gathering many features of a 
data distribution.

Normalization is usually used as a preprocessing step to 
Normalize the features so that they fit in same range or some 
specific range. Normalization is one of the commonly used 
approaches for data normalization, particularly min-max 
normalization that scales features to a range [0–1] using a 
linear scale.

where:
y is the original value of a feature.
y’ is the normalized value of the feature.
min(y) is the minimum value of the feature.
max(y) is the maximum value of the feature.
T he normal iz at ion metho d ensures  that  a l l 

characteristics are standardized to identical scale and 
prevents any one feature from dominating the study.  
Preprocessing and feature extraction procedures vary 
depending on the input data types and system characteristics.

Construction and Integration of Semantic Ontology
To build and embed a semantic ontology for diabetes 
diagnosis requires the systematic organization & 
visualization of both human concepts about diabetes, their 
interconnections if any, as well domain knowledge.

Concept Identification
The initial phase of a semantic ontology is the identification 
and definition of relevant concepts related to diabetes 
diagnosis. Symptoms, risks, methods of diagnosis and 
treatment are examples of domain-specific concepts. Each 
concept is assigned an unlquie numeral identifier and a title.

Concept Hierarchy
The concepts are then hierarchicalised in some detail. 
The hierarchy describes the levels of ideas relative to one 
another, showing how some are less broad and others more 
specific. Diabetes is an umbrella term while Type 1 Diabetes 
and... The hierarchical structure is preferably represented by 
a Directed Acyclic Graph.

Relationship Definition
Relationships: These are the interrelationships and 
interdependencies among ideas in an ontology. And these 
kind of relationships are categories into a domain and have 
their own examples too, like is-a (subclass/superclass), part-
of, triggers, treats many other. Such links are link-to-the-
concept relations which have semantic relationship labels.

Formal Representation
Ontologies are frequently defined with formal languages, 
such as OWL (Web Ontology Language) and RDF(Resource 
Description Framework). Such languages offer a native 
syntax for expressing the concepts, geometry and 
Relatedness of an ontology.

Integration with Fuzzy Logic
On the other way, following some ontology ideas and 
relationships as it was described in 5.1 an schema based on 
Fuzzy Logic linguistic variables and membership functions to 
integrate the semantic with fuzzy logic domain is proposed. 
Language variables include high blood sugar; low levels of 
insulin, and membership functions defined the degree to 
which these phrases are approximate or impervious.

Fuzzy Rules
Ontology interrelations define fuzzy rules. These proposals 
describe a procedure of Divisional Type normalization 
through generic fuzzy logic reasoning for the detection in 
diabetes. It makes use of linguistic variables and fuzzy rules 
which help to cope with the existence of ambiguity and 
imprecision in different stages during a diagnosis. Example 
of a fuzzy rule: blood sugar levels elevated insulin levels low 
cuts likely diabetic.

Table 1 provides example data that highlight the 
principles involved in diabetes diagnosis. The data collection 
encompasses many categories of diabetes, including their 
corresponding symptoms, diagnostic methodologies, and 
available treatment alternatives. By using these variables, 
we may get a more distinct representation of the specific 
instances that align with each notion. As our understanding 
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of this disease and its many forms expands, the range of 
ideas and interactions in the ontology may also broaden, 
enabling the incorporation of new information.

Type 2 Fuzzy Logic Inference Engine
Type 2 fuzzy logic is a model of computation that surpasses 
conventional crisp logic and conventional fuzzy logic by 
including more uncertainty and effectively managing 
linguistic factors. Type 2 fuzzy logic may be used in the field 
of diabetes diagnosis due to the inherent ambiguity and 
imprecision’s present in medical data. Type 2 fuzzy logic 
generally does not rely on equations, but I can explain the 
fundamental concepts and procedures involved.

Linguistic Variables
The diagnosis of diabetes involves the use of qualitative 
phrases that are linked to ideas represented by linguistic 
factors. Linguistic variables enable the depiction of 
imprecise and ambiguous information linked to medical 
data. Examples of such variables are blood sugar level, which 
may be categorized as low, normal, or high, and insulin 
resistance, which can be classified as low, moderate, or high.

Fuzzy Sets and Membership Functions
Fuzzy sets may be used to represent the membership or 
degree of belonging of a linguistic variable. The structure 
and characteristics of these fuzzy sets are determined by 
membership functions. Blood sugar and insulin resistance 
are diabetes diagnostic variables that may be defined using 
membership functions such as low, normal, and high. Every 
linguistic word may be denoted by a fuzzy integer ranging 
from 0 to 1, and these membership functions provide a 
mapping of the incoming data to this specific range.

Fuzzy Rules
Fuzzy rules may effectively capture expertise in diagnosing 
diabetes. These recommendations establish the linkages 
between the language factors and explain how the inputs 
relate to the outputs (the diagnoses). Fuzzy rules facilitate 
the representation of intricate connections between input 
variables and diagnostic results. For instance, if the blood sugar 
level is elevated and there is a significant degree of insulin 
resistance, it is probable that the patient has Type 2 Diabetes.

Fuzzy Inference
Fuzzy inference is the process of deriving conclusions or 
making judgments by using input data and fuzzy rules. The 
calculation of fuzzy output values involves the combination 
of linguistic factors, membership functions, and fuzzy 
rules. Fuzzy inference is used in the diagnosis of diabetes 
by taking into account linguistic factors such as sugar, 
insulin resistance, and maybe other parameters in order to 
determine a fuzzy output value.

Algorithm 1: Type 2 Fuzzy Logic for Diabetes Prediction (Ling, Y., 
Chen, Y., & Wang, H. (2017))

Define the Linguistic Variables:
• Identify the pertinent language characteristics associated with 

the diagnosis of diabetes, such as blood glucose levels and 
insulin resistance.

• Identify the language phrases that are linked to each variable, 
such as “low,” “normal,” and “high.”

Define the Fuzzy Sets and Membership Functions:
• Create and specify the membership functions for each 

linguistic phrase associated with the variables.
• Select membership function shapes (such as triangular or 

trapezoidal) that are suitable for the data characteristics and 
expert knowledge.

Define the Fuzzy Rules:
• Develop a collection of imprecise rules derived from expert 

knowledge and medical norms.
• Define the correlations between the language factors and the 

diagnostic results.
• Identify the specific fuzzy logic operators, such as AND and OR, 

that are used to combine the antecedents and consequents of 
the rules.

Fuzzy Inference:
• Obtain the input data pertaining to glucose levels in the blood, 

resistance to insulin, and maybe other pertinent factors.
• Utilize the fuzzy logic inference procedure to calculate the 

fuzzy output values.
• Assess the level of membership for each linguistic phrase by 

using the membership functions and input data.
Aggregation of Fuzzy Output Values:
• Aggregate the fuzzy output values acquired from the fuzzy 

inference process.
• Combine the fuzzy values to get a comprehensive picture of 

the diagnosis.
Defuzzification:
• Utilize a defuzzification technique to transform the combined 

fuzzy output values into precise numerical values.
• Select a suitable defuzzification technique, such as the centroid 

approach or weighted average method.
Output:
• Determine the ultimate diagnosis by using the defuzzified value.

Table 1: Semantic Ontology Construction for Diabetes Diagnosis

Factor Concept Label Sample

F1 Diabetes Gestational Diabetes, Type 1 and Type 
1 Diabetes

F2 Type I Diabetes Type I Diabetes, Autoimmune Beginning 
throughout the student years

F3 Type II Diabetes Non-insulin-dependent, Lifestyle-
related, Onset in adulthood

F4 Gestational 
Diabetes

Pregnancy-induced glucose intolerance 
resolves postpartum.

F5 Polyuria Polyuria, Excessive urinary output

F6 Polydipsia Persistent thirst, Consuming excessive 
quantities of fluids

F7 HbA1c 6.5%, 7.2%, 8.9%

F8 Insulin Therapy Administration of insulin via injections 
or an insulin pump

C9 Oral 
Medications

Metformin, Sulfonylureas, and DPP-4 
inhibitors are types of medications.

C10 Glucose 
Tolerance Test

Measurements of fasting blood glucose 
level and results of an oral glucose 
tolerance test.
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Defuzzification
Type 2 fuzzy logic reaches its peak in a defuzzification 
process, when the fuzzy output values are transformed 
into precise numerical values that precisely represent the 
final diagnosis. Defuzzification may be achieved by many 
methods, such as the centroid approach and the technique 
known as weighted average. These techniques consider both 
the imprecise values of the outcomes and the membership 
functions to determine a single numerical value.

Differential Evolution Optimization Module
The T2FDESO technique for diabetes detection incorporates 
the Differential Evolution Optimization Module. The 
differential evolution method is used to optimize the 
parameter values of the diabetes diagnosis model.

Differential Evolution (DE) Algorithm
The Differential Evolution (DE) method is a kind of 
evolutionary optimization technique that use iterative 
search to find the optimal solution within a predefined 
parameter set. By modeling the process of natural selection 
and evolution, it improves the precision of the diabetes 
diagnostic model.

Population Initialization
The Differential Evolution (DE) process starts by generating 
an initial population of people, also known as vectors, 
which serve as possible solutions. The possible solutions 
reflect the parameters of the diabetes diagnostic model. 
The population size is determined by the complexity of the 
model and the desired coverage of the search space.

Mutation Operation
Mutation is used in the Differential Evolution (DE) process 
to generate novel candidate solutions by randomly 
modifying the existing population of solutions. Mutation 
is a process that creates novelty by randomly altering the 
values of particular parameters. Usually, this is achieved 
by multiplying a desired individual by a scaled disparity 
between randomly chosen people.

The mutation procedure, when applied to current 
solutions, generates more possible solutions. For illustration 
purposes, let’s examine a standard DE mutation equation:

where:
The altered vector represents the genetic alteration 

for the i-th person.
 These people are picked at random from 

the population.
S is the scaling factor that determines the degree of 

amplification of the disparity between xr2 and xr3.

Crossover Operation
The progeny solutions are generated by the crossing of the 
mutant candidate solutions with the existing solutions. By 

exchanging and recombining the parameter values of the 
target and the mutant, it makes it easier to take advantage of 
the situation. Crossover is used to transfer the most favorable 
traits of the solutions being evaluated to the subsequent 
generation.

The progeny solutions are generated by the crossing of 
the mutant candidate solutions with the existing solutions. 
The widely used binomial crossover equation may be 
expressed as:

where:
- vector of offspring for the i-th person.

Algorithm 2: System Integration

Initialize the Semantic Ontology:
• Create and configure the semantic ontology specifically 

designed for diabetes diagnosis.
• Provide a clear and concise explanation of the fundamental 

ideas, structure, and connections included in the ontology.
• Integrate specialized information from a certain field and get 

valuable ideas from experts.
Initialize the Population:
• Initialize the population of candidate solutions for the 

differential evolution optimization.
• Each candidate solution represents a set of parameter values 

for the diabetes diagnosis model.
Perform the Optimization Loop:
• Repeat through the differential evolution optimization loop 

and stop when a termination criterion is satisfied.
• For each iteration, assess the fitness of all candidate solutions.
• New population of candidate solutions is generated through 

mutation and crossover operations.
• Apply a selection operation to obtain the next generation of 

solutions in Set Gaps.
Extract the Optimized Parameters:
• Get the confident interval for optimized parameter values from 

our trained BayesianPy Model.
• Extract the optimal parameters from the final pool of candidate 

solutions.
NOTE: The above parameters are optimized to define the diabetes 
detection model.
Receive Input Data:
Accept the input data in the form of patient symptoms, medical 
history, or other relevant information.
Apply Fuzzy Logic Inference:
• Utilize the optimized values of parameters and the linguistic 

variables defined in our semantic ontology.
• Perform fuzzy logic inference on the input data to generate 

fuzzy output values.
Combine Fuzzy Output Values of the Functions:
• Collate the fuzzy output values received from the Fuzzy Logic 

Inference stage.
• Aggregate the fuzzy values—weighted average, max-min.
Defuzzify and Diagnosis Generation:
• Defuzzification (to calculate numerical crisp outputs by 

aggregating output fuzzy values).
• Specify an assignment or classification threshold to resolve the 

categorization decision as a diagnosis.
• Develop the diagnostic result from the defuzzified value and 

additional rules.



 Identifying and diagnosis of diabetes with semantic ontology 2927

- transformed vector resulting from the mutation process.
xi- Vector representing the current state of the i-th 

person.
rand() - random number between 0 and 1.
CR - crossover rate

Selection Operation
The selection process determines the result by choosing 
between two options: the parents and their offspring. 
Individuals are selected based on their fitness, which is 
determined by an objective function that evaluates the 
effectiveness of the diabetes diagnostic model. Typically, 
the objective function is designed to either minimize 
the classification error or maximize the value of a chosen 
evaluation measure.

The selection procedure determines the candidates for 
the following generation based on their fitness ratings. A 
common selection formula is as follows:

where:
- updated vector represents the i-th person..

uioffspring vector is derived from the crossover 
operation.

f(ui) and f(xi) represent the fitness values of the offspring 
and current individual, respectively.
The selection procedure enhances the quality of the 
solutions by decreasing the goal function. 

Termination Criterion
The DE algorithm iteratively performs mutation, crossover, 
and selection operations until a specified stopping condition 
is satisfied.

System Integration of Fuzzy Logic, Differential 
Evolution, and Semantic Ontology
The T2FDESO technique for identifying and diagnosing 
diabetes combines fuzzy logic, differential evolution, and 
semantic ontology to create a cohesive and dependable 
system.

The algorithm presents the general guidelines needed 
for integrating fuzzy logic, differential evolution optimization 
and semantic ontologies in a system of diabetes diagnosis. 
The T2FDESO system optimization loop, fuzzy logic inference, 
aggregation and defuzzification methods vary depending on 
the context. Further processing and customization of the 
algorithm based on more domain-specific information as 
well initialization logic, can significantly contribute to a better 
integration process ← _ACC_processes your bigger link_.

Performance evaluation

Comparison Analysis with Existing Methods
Comparisons are done between the proposed and 
existing methods such as Fuzzy Ontology-Based Diabetes 

Decision [FODD], intelligent fuzzy ontology system (IFO) 
method, differential evolution optimized support vector 
machine[DEOSVM] Apply on dataset :Diabetes Mellitus 
Treatment Ontology - NCBO BioPortal(bioontology. org).

A model for diabetes diagnosis was trained using 
the data collected in this study with T2FDESO method. A 
differential evolution optimization routine is used to find the 
best parameters of the model. During the learning phase, it 
employs semantic ontology and fuzzy logic inference. The 
effectiveness of the T2FDESO approach is evaluated using 
metrics such as the F1-score, recall, and accuracy, as well as 
ratios like the AUC-ROC Kanagarajan, S., & Ramakrishnan, 
S. (2016).

The Protégé 5.0 software was used to convert T2FDESO 
into the OWL 2 file format. The ontology has almost 10,700 
classes, which are connected by a network of 170 object 
characteristics and 126 data attributes, resulting in a 
total of 63,984 axioms. Every class inherits complete and 
precise meaning from its shared anonymous predecessor. 
The ontology utilizes the bipartite identifier format, 
where the ID-space indicates the ontologies used (in this 
instance, T2FDESO) and the Local-ID indicates a particular 
identification. Furthermore, the treatment plan has 242 
SWRL rules to execute the logical aspects. Source-specific 
annotations include the use of preferred names, precise 
descriptions, synonyms, and unique IDs for every class. The 
primary objective of T2FDESO is to enhance community 
liberty, organization, and representation. The main emphasis 
of this representation is on classes, characteristics, axioms, 
and rules, rather than on unique instances or people. The 

Table 2: Features of T2FDESO

Feature Description

Data encoding 
and file format

T2FDESO is encoded in the OWL 2 file format using 
Protégé 5.0.

Structure and 
Size

107 data + 170 object properties / over classes: 
>10,700

Axioms The T2FDESO is huge, with 62,974 axioms for 
relationships and constraints.

SWRL Rules 214 SWRL rules added for treatment plan logic

Annotation 
Properties

T2FDESO includes 39,425 annotation properties for 
metadata and external source integration.

Structure and 
Size

> 10,700 classes connected by > 107 data and ~170 
object properties

Axioms T2FDESO contains 62,974 axioms specifying 
relationships and constraints.

SWRL Rules Implemented the treatment plan logic by adding a 
total of 214 SWRL rules.

Annotation 
Properties

Growth and Expansion

Purpose Disease History ◊ Long-term goals: Drug, patient level 
information in T2DM & Complication management 
and diseases of complications ◊ Progression
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T2FDESO class hierarchy is based on the BFO ontology 
and also includes classes from other ontologies. T2FDESO 
enhances the acceptance, distribution, and compatibility in 
healthcare by repurposing pre-existing ontologies. T2FDESO 
is designed to evolve and adapt by community involvement, 
including functionalities such as patient history, drugs, 
illnesses, and management of diabetes complications 

Kanagarajan, S., & Ramakrishnan, S. (2015, December)  C. 
Arulananthan, et al. (2023).

In creating the T2FDESO ontology in this version 1 
summary, many other ontologies contributed as depicted 
on Table 2. It contains the ontologies Turkish2FIRE Ontology 
(T2FO), and after importing them into T2FDESO, it shows lists 
of all entities with their total number as well as individual 
values that were included. Sum of both imported and added 
entities gives us the total numbers as well as statistics on 
types within T2FDESO.

The structural evaluation of T2FDESO and availability 
are presented in Table 3:

T2FDESO– Textual Tbox definitions that cover full 
descriptions/explanations of certain classes Structural 
Analysis: Data on T2FDESO size and composition was 
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Figure 2: Accuracy

1 2 3 4 5 6 7 8 9 10

Patients

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

Pre
cis

ion

FODD

IFO

DEOSVM

Proposed T2FDESO
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Figure 4: Recall

Table 3: External ontologies used in T2FDESO

Ontology Classes Object 
Property

Data 
Property Total

BFO 60 7 0 67

OGMS 180 14 4 198

RxNorm 530 23 9 562

TIME 38 27 18 83

DINTO 3100 7 7 3114

DDO 7423 70 16 7509

OBO RO 15 20 2 37

PATO 230 0 0 230

OntoFood 160 30 0 190

SMASH 40 34 8 82

Total Imported 13,600 120 30 13,750

Newly Added 1210 50 30 1290

T2FDESO 13,100 140 132 13,372

Table 4: Ontology Metrics

Metric Value Metric Value

Number of classes 13,700 Number of object 
properties

170

Number of object 
properties

170 Number of data 
properties

107

Number of data 
properties

107 Maximum depth (is_a 
relationship)

19

Maximum depth (is_a 
relationship)

19 Number of annotations 39,425

Number of annotations 39,425 Number of SWRL rules 214

Number of SWRL rules 214 Number of axioms 62,974

Number of axioms 62,974 SubClassOf axiom count 11,317

SubClassOf axiom count 11,317 DisjointClasses axiom 
count

62

DisjointClasses axiom 
count

62 Logical axiom count 12,264

Logical axiom count 12,264 Maximum number of 
children

91

Maximum number of 
children

91 Average number of 
children

3

Average number of 
children

3 Classes with a single 
subclass

1,140

Classes with a single 
subclass

1,140 Classes with more than 
25 subclasses

40
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obtained from Protégé using the Pellet reasoner were 
tabulated in Table 3. This text does not provide the table 
metrics details. Correctness: We have established that 
T2FDESO is correct and satisfies all of the defined correctness 
requirements. Thus, it can be inferred that hyperglycemia is 
appropriately modeled in our ontology. The latest OWL 2 of 
T2FDESO is available for free download from the BioPortal of 
National Center for Biomedical Ontology. BioPortal is a web 
portal that allows easy access to hundreds of bio-medical 
ontologies and terminologies in different representation 
formats, such as OWL or OBO (Table 4).
The T2FDESO method provides the most accurate results for 
all patients compared to FODD, IFO and DEOSVM methods 
designed in [10]. This suggests T2FDESO performs better in 
detecting diabetes cases accurately (Figure 2).
The precision for all methods are quite high suggesting low 
false positive rate. Nevertheless, as for the precision higher 
values seem to be closer with T2FDESO method, which 
means it can give more accurate predictions but without 
any statistical significance (Figure 3).

The recall for all methods is also reasonably high, 
suggesting that they do not simply threshold on similar class 
likelihoods and produce a low amount of false negatives. 
Nevertheless, the T2FDESO approach always achieves higher 
recall values but it helps to capture more true positive cases 
and reduces false negatives (Figure 4).

This seems to be in accordance with the relatively high 
recall for all methods, so it is improbable that they are simply 
thresholding on similar class likelihoods and erroneously 
predicting low numbers of false negatives. However, the 
recall values are consistently higher using T2FDESO method 
since it is able to detect more true positive cases rather than 
losing them due misclassification.

Performances on Testing Data — from these results, we 
can conclude that the proposed T2FDESO method shows 
superior performances to both FODD and IFO. DEOSVM 
accolades are doubtful because of their lower classification 
scores than theirs achieved by proficiency in terms of 
accuracy-, precision—,[8] recall- and respectively F-measure 
(Figure 5). It is suggested that the T2FDESO approach 
has abilities and potential in effective diabetes diagnosis 
performances, as shown by later findings.

Discussion
The performance evaluation results show that it outperforms 
existing methods for diabetes diagnosis as in the case of 
T2FDESO system. The system employs Type 2 fuzzy logic 
and a semantic ontology to better manage the uncertainty 
of imprecision in medical data, which enhanced:

The results show that T2FDESO has better accuracy 
in most subjects than the existing methods, with best 
performance. In other words, T2FDESO can also identify 
diabetes cases more precisely and less wrongly diagnosed 
samples compared with all these classifiers.

Table 2 Confirmation Rate*In overall, all strategies 
including T2FDESO achieve high precision values (specially 
for work list of multiPD), however on the Median-TFELL 
HELCSELD tends to have slightly higher precision than 
others. In other words, the T2FDESO system generates a 
lower number of false positives which consequently means 
it is less likely to mislabel a patient as being diabetic when 
they are not. The higher the precision, more correct positive 
predictions

Recall values are typically high for all approaches, 
suggesting low false negative rates (false negatives = 
cases that were diagnosed as negative.). Nevertheless, the 
T2FDESO method translates into consistently higher per 
case recall rates, meaning that it is able to capture a greater 
number of true positive cases. Or, conversely expressed: 
T2FDESO reduces the number of times that diabetes is 
masked by a failure to diagnose it (sensitivity increased).

The F-measure accounts for both precision and recall, 
revealing how the T2FDESO approach outperforms (Table 3).  
The work of [13] is the top performer, with an F-measure 
consistently better than that reached by all other methods 
on T2FDESO (in particular it exhibits a good trade-off 
between precision and recall). Such a balance is required 
in order to make as many correct positive predictions while 
missing out least of them.

Conclusion
The risk model T2FDESO in this study outperformed the 
current FODD, IFO and DEOSVM detection method on 
diabetes cases. Results: T2FDESO continuously achieves 
better accuracy, precision, recall and F-measure when 
compared in patient-wise. In conclusion, the T2FDESO 
approach could outperform either one of these depending 
on specific evaluation metrics. Nonetheless, the T2FDESO 
increased accuracy of existing methods by an average 
percentage augmentation of 10-15% more in terms 
ofaccuracy, precision, recall and F-measure. The percentage 
changes by ROI provide a visual representation of the 
ways that T2FDESO increases operational and diagnostic 
efficiencies for diabetes diagnosis. These results highlight 
the potential of T2FDESO for accurate and effective diabetes 
diagnosis. T2FDESO in conjunction with type 2 fuzzy logic, 
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differential evolution optimization and semantic ontology 
leads to increased accuracy of diabetes diagnosis. T2FDESO 
warrants further study, ideally validation in other cohorts/
outcome settings to ascertain that it can enhance detection 
of diabetes case-finding in real-life.
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