
Abstract
As per the latest study, coronary artery disease and hemorrhagic stroke are the predominant factors contributing to over 80% of 
cardiovascular diseases (CVDs). To reduce the mortality rate due to CVDs, researchers are proposing techniques for early detection of 
these CVDs. For the preliminary investigation of cardiovascular disease, photoplethysmography (PPG) can be used. Using PPG signals, it 
is possible to infer the risk levels like CVD with low risk, CVD with medium risk and respiratory disorder. To classify the risk levels of CVD, 
a model incorporating a Gaussian mixture model (GMM) classifier with a min-max decision model has been implemented. The proposed 
model resulted in better performance than existing classifiers like logistic regression-GMM (LR-GMM), detrend fluctuation analysis (DFA) 
and Cuckoo search algorithm (CSA) using the min-max model. Based on the results, GMM reflects a peak 95.9% classification accuracy 
with minimal false alarms of 7.1 and 0.99% miss classification when compared to other post-classifiers.
Keywords: Gaussian mixture model, Min-max decision model, Cardiovascular disease, Photoplethysmography, Singular value 
decomposition.

An optimized cardiac risk levels classifier based on GMM with 
min- max model from photoplethysmography signals 
Divya R.1*, Vanathi P. T.2, Harikumar R.3

RESEARCH ARTICLE

© The Scientific Temper. 2024
Received:  07/07/2024				    Accepted:  08/08/2024			   Published : 30/09/2024

1Department of Electrical and Electronics Engineering, PSG College 
of Technology, Coimbatore, Tamil Nadu, India.
2Department of Electronics and Communication Engineering, PSG 
College of Technology, Coimbatore, Tamil Nadu, India.
3Department of Electronics and Communication Engineering, 
Bannari Amman Institute of Technology, Sathyamangalam, Tamil 
Nadu, India.
*Corresponding Author: Divya R., Department of Electrical and 
Electronics Engineering, PSG College of Technology, Coimbatore, 
Tamil Nadu, India., E-Mail: divyayuvaraj2012@gmail.com
How to cite this article: Divya, R., Vanathi, P. T., Harikumar, R. 
(2024). An optimized cardiac risk levels classifier based on GMM 
with min- max model from photoplethysmography signals. The 
Scientific Temper, 15(3):2968-2977.
Doi: 10.58414/SCIENTIFICTEMPER.2024.15.3.70 
Source of support: Nil

Conflict of interest: None.

Introduction
Cardiovascular disease (CVD) ranks among the foremost 
global causes of mortality. It is reported that approximately 
80% of deaths associated with CVD occur in developing 
countries like India (Gupta et al., 2013; Sowmiya et al.,2023). 
CVDs are chronic diseases that occur due to the lack of 
exercise, smoking, diabetes, unhealthy eating, age and 
family history. There is a demand for diagnosis and treatment 
of this chronic disease increases. Therefore, it is necessary 
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to make efforts for early diagnosis of cardiovascular 
disease using effective risk prediction methods (Lin et al., 
2013; Divya & Vanathi, 2019). In order to sense the CVD at 
the initial stage, a low-cost, simple diagnostic tool called 
photoplethysmography (PPG) may be used. This is a non-
obtrusive, optical measurement approach for detecting the 
fluctuations in blood volume that occur in the vasculature 
during each heartbeat (Elgendi, 2012). Blood vessels 
have flexibility and elasticity to handle the flow of blood. 
Measuring these properties enables us to identify the risk 
of CVDs. 

In general, it is inferred that PPG signals afford important 
data regarding the above CVD (Allen, 2007). PPG technology 
featuring a light emitter diffused into the tissue, utilizes a 
photosensor for quantifying how much light is reflected 
back. The variations of the blood volume are equivalent 
to the reflected light. PPG signal is taken from the index 
finger because finger PPG is easy to record, and it is a 
commonly used technique in medical applications. By 
analyzing the recordings of the PPG signals, doctors will 
get a better understanding of a patient regarding their 
medical conditions before going for surgery. On the other 
hand, it is not possible to examine the recordings of all 
the generated signals (Sukor et al., 2011). Thus, it is critical 
to design and build an intelligent system so that these 
automated classifiers increase the speed of doctor’s pre-
surgical assessments and save medical expenses.
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Literature Review
The following are some of the significant contributions and 
advancements in the analysis and application of PPG signals 
for cardiovascular health assessment and disease detection: 
The study assessed the characterization of cardiovascular 
dynamics non-invasively from the pulsation of blood volume 
using PPG device. A model was employed to identify and 
extract the periodic non-sinusoidal component present 
within the data series (Bhattacharya et al., 2001). PPG 
measurements for medical applications and computerized 
pulsatile analysis approaches for the diagnosis of vascular 
disease from various features of the pulse are described 
(Allen et al., 2006). There was an approach to detect 
ventricular premature beats in Photoplethysmography 
signals involving using a sliding window technique to 
extract features, with a particular emphasis on peak-to-peak 
internals (PP) and PPG pulse power.    These feature vectors 
were tested using an artificial neural network (ANN) with 
both non-linear and linear outputs. Better classification 
results were obtained for PVC detection using a non-
invasive approach compared to ECG based detection system 
(Sološenko et al., 2015).

In literature, the heart rate variability (HRV) was 
estimated by analyzing the duration between peaks in 
photoplethysmography waveforms (Selvaraj et al., 2008). 
The results showed that PP variability was more accurate 
than the ECG-derived RR intervals for the identification 
and classification of arrhythmia. Heart abnormalities were 
identified by analyzing PPI results from PPG signals of 
healthy and abnormal patients. The results indicated that 
abnormal heartbeats have higher PPI values compared to 
normal heartbeats (Umadi et al., 2016). PPG signals were 
analyzed to diagnose the cardiac risk of the patient without 

any support of an added instrument. Arterial stiffness is a 
key factor for cardiac disorder and the augmentation index 
is used to measure Arterial stiffness, which is derived from 
the pulse wave (Manimegalai et al., 2012). 

A methodology was put forth to categorize the patients 
between different CAD conditions by deriving a range of 
temporal features inherent in PPG signals, employing the 
K-Nearest Neighbor classifier for classification (Hosseini et al., 
2015). A system for predicting cardiac risk was also developed 
to categorize different levels of cardiovascular diseases 
using PPG signals. This model involved extracting wavelets, 
SVDs and statistical features and then employing GMM and 
softmax classifier (SDC). SVD, along with statistical features 
and SDC, shows better performance, achieving a high 
accuracy rate (Divya et al. 2020). Recently, a novel CVD risk 
detection model, CRDHHO-EL, was introduced, incorporating 
the Harris Hawks algorithm alongside Ensemble Learning for 
analyzing PPG signals (Divya et al., 2023).

Proposed Methodology
The main goal of the investigation involves assessing 
various risk phases of cardiac vascular disease using 
photoplethysmography signals. The PPG signal for this study 
has been obtained from the capnobase pulse oximetry 
benchmark dataset which contains 41 cases (29 children and 
13 adults) of 8 minutes duration comprising 720 segments. 
The recordings of regular ventilation, inadequate ventilation, 
spontaneous breathing, rebreathing, hyper and hypo 
ventilation, cardiac oscillations and apnea were observed in 
these cases. Also, the dataset contains instantaneous heart 
rates derived from PPG pulse peaks and ECG. The segments 
of the PPG signals have equal intervals and have 200 samples 
per segment (Karlen, 2010).

In this study, the feature vector, namely singular value 
decomposition (SVD) was derived from the PPG signals 
and this represents the sole feature extracted from the 
signal. Then with the help of the expert’s knowledge, three 
linguistic risk phases, namely CVD low risk (P), CVD medium 
risk (Q) and respiratory problem (R), has been determined.

Then, the above risks are encoded as strings of alphabets 
that relate each and every signal parameter. The encoded 
strings are optimized using a soft decision tree (SDT) to 
minimize the computational complexity and to approximate 
the global decision region. Subsequently the output of the 
SDT is used as input for the Gaussian mixture model (GMM) 
for categorizing health status stratification using PPG. In 
comparative analysis and performance evaluation of the 
GMM, several other methods were employed to classify 
PPG signals, including Logistic regression-GMM (LR-GMM), 
Detrend fluctuation analysis (DFA) and Cuckoo search 
algorithm (CSA). The flow chart for CVD risk prediction 
system is presented in Figure 1. Each element within the 
flow chart is thoroughly elucidated in the subsequent 
subsections.Figure 1: Workflow of heart health risk prediction system
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Singular Value Decomposition
Singular Value Decomposition (SVD), initially formulated in 
1970, has been used in extensive applications like feature 
extraction, image compression and texture processing 
(Karlen et al., 2013). In this paper, SVD feature derived through 
PPG signals helps in determining cardiac and respiratory 
risk groups. Let ] represents a 
matrix with dimensions . The SVD decomposes Y 
into , where U denotes an r x r orthogonal matrix, 
VT also represents an m x m matrix and ∑ represents 
r  x  m diagonal  matr ix ,  ) .  
∑ is a singular value matrix, U and V are unitary matrices of Y. 
If the condition is  also if the matrix 
Y possesses a rank h < p, the p-k singular values at the end 
of the sequence becomes zero. The SVD can be written as 

 (Rajaguru & Prabhakar, 2016) and (Sadasivan 
& Dutt, 1996). By means of SVD, vectors taken in one space 
can be transformed into another space. 

The merit of using SVD is that it can combine two dissimilar 
uncertainty representations as a whole uncertainty. These 
combined uncertainty measures encompassing aspects like 
probability possibility manifest as a group of vectors with 
varying units within a principal space. It is essential to take this 
feature because the uncertainty measures contain different 
units (cardiac risk levels) (Lee & Hayes, 2004). Only SVD feature 
has been extracted from each segment (fragment) of the 
photoplethysmography signal from the capnobase dataset.

With 720 partitions present within the captured PPG 
signal, the data underwent compression from 1,44,001 
samples to 720, reducing its size significantly. Labeling of the 
segment can be done easily using the annotation of the SVD. 
Normal and abnormal segments can be easily identified using 
the SVD values. If the threshold value of the SVD is £ 40, then 

the particular segment is considered as normal; otherwise, it 
is labeled as abnormal. Segments with SVD thresholds falling 
between 41 to 50 are categorized as CVD with risk level 1, 
while those in the range of 51 to 60 are identified as CVD of risk 
level 2. Segments with a threshold exceeding 60 are attributed 
to respiratory disorders among abnormal segments. 

Table 1 displays the extracted SVD feature from the PPG 
signals along with the corresponding segment labels. The 
total number of subjects considered for experimentation 
is 20 from the entire IEEE benchmark capnobase dataset. 
Figure 2 represents the subject characterized by normal 
segments within the PPG signal, along with a histogram 
representation showcasing the derived SVD feature from 
this normal signal.

Similarly, Figure 3 shows the inconsistency in the PPG signal 
indicating heart irregularities and the histogram representation 
of the SVD feature extracted from this abnormal signal.  
Figure 2 (b) and 3(b) depict the first 2000 samples of the 
normal and abnormal segments. Then, the obtained SVD 
feature vector is normalized using the min-max method. 
Min-max normalization is determined using to Equation 1.

	 (1)

Thus, all the data will be mapped in the range of 0 and 1  
(Klema & Laub, 1980).

Code converter
Identifying the optimal risk threshold for individuals with 
CVD is crucial. This knowledge is vital for the advancement 
of automated systems capable of precisely categorizing the 
observed patient’s CVD risk levels. In order to categorize the 
risk levels of patient, a code-converting process is carried 

Table 1: Representation of sample SVD feature from photoplethysmogram  data set and its labeling

Signal Fragment 1 Fragment 2 Fragment 3 Fragment 4 Fragment 5 Fragment 6

Norm 1 32.686 35.651 34.474 26.253 31.946 32.105

Abnor 1 83.669 79.437 74.228 84.466 79.697 80.556 

Norm 2 63.566 60.171 59.307 51.773 57.501 50.830 

Norm 3 27.468 27.528 26.114 19.288 26.538 26.507 

Abnor 2 100.896 85.514 73.426 89.087 95.664 75.989 

Norm 4 26.371 27.124 27.776 28.456 26.283 24.293 

Norm 5 12.054 11.717 13.695 14.217 13.850 14.097 

Abnor 3 60.608 51.260 60.774 65.406 62.694 51.650 

Abnor 4 77.892 61.010 58.705 64.422 79.831 68.853 

Norm 6 25.944 28.130 29.813 26.358 23.963 28.712 

Abnor 5 50.660 54.750 64.491 49.340 47.243 48.087 

Abnor 6 74.088 83.531 79.460 73.487 83.804 82.497 

Abnor 7 20.657 29.700 29.157 30.489 28.321 20.349 

Abnor 8 69.463 67.307 67.634 76.927 54.699 54.795 

Abnor 9 53.433 55.274 57.865 54.425 55.522 49.908 
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Figure 2: a) Normal segments of the PPG signal and its corresponding; 
b) histogram for SVD feature vector extracted from healthy subject

(a)

(b)

out to convert the PPG signals into encoded strings or 
patterns (Rahmad et al., 2018). Table 2 depicts the risk level 
classification using alphabetical representation.

The four risk levels are tabulated in descending order. 
The highest risk level is R and the lowest risk level is P. The 
patient’s outputs are labeled as S, P, Q and R and eight 
labeled outputs form a pattern. Then, each pattern is given 
to the soft decision tree for optimization.

Soft decision tree model (min-max) for optimization
The PPG signals are intrinsically complex because of 
their instability and often non-linear nature. The main 
aim is to unify the PPG risk level depiction, with symbolic 
decision tree (SDT) models. This method is simple to 
apply. Decision trees are appealing because it has ability 
to decompose an intricate procedure into a set of more 
manageable steps, resulting in an outcome that is more 
easily interpretable. Unnecessary computations can be 
reduced in an SDT by testing a sample against only definite 
subsets of classes. In contrast, single-stage classifiers 
require testing every observation across all categories, thus 
potentially diminishing the efficacy of the classifier. 

There are also some shortcomings related to SDT, which 
are as follows; i) an increase in the number of classes causes 
an increase in the number of terminals, which leads to 
memory constraint and more search time. ii) There may 
be  accumulation of errors from stage to stage in a large 
tree. Thus, simultaneous optimization of both efficiency 
and accuracy is difficult. iii) Formulating the most efficient 
decision tree may pose challenges. The effectiveness of SDT 
is significantly influenced by the quality of the tree’s design 
(Harikumar & Vijayakumar, 2015).

SDT Optimization Algorithm
The main goal of SDT is, to classify appropriately any number 
of normal and abnormal training samples with high accuracy. 

Table 2: Depiction of risk assessment levels

Risk assessment grade Symbol

Healthy S

CVD level 1 P

CVD level 2 Q

Respiratory Disorder R

Figure 3: a) Abnormal segments of PPG signal along with its 
corresponding; b) histogram for SVD feature extracted from the 

abnormal subject

(a)

(b)
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There are several heuristic approaches for designing 
SDT, such as growing – pruning, top-down approaches, 
bottom-up approaches and hybrid approaches (Harikumar et 
al., 2012). In the bottom-up approach, employing a distance 
measure such as Mahalanobis distance involves calculating 
pairwise distances among classes that have been predefined. 
The two classes with lesser distances are combined in each 
step to create a cluster. Within each cluster, the mean vector 
and covariance matrix are computed based on the training 
samples from the classes within that cluster. The procedure 
is reiterated until a single cluster remains at the root. 

In the top-down methodology, the procedure initiates 
from the root node, and by applying a splitting rule, classes 
are partitioned until a termination threshold is attained. The 
primary challenges in this methodology include finding 
conditions for node splitting ii) endpoint rules iii) assigning 
labels to the final nodes. The hybrid approach utilizes the 
bottom-up strategy to steer the top-down method. An 
iterative Growing-Pruning approach divides the dataset 
into two nearly equivalent-sized subsets. It systematically 
constructs the tree using one subset and prunes with the 
other subset in an iterative manner. Then, successfully 
exchange the roles of the two subsets. Starting at the end 
nodes, this methodology progresses upward through 
the tree, trimming without eliminating terminal nodes 
(Salembier & Garrido, 2000).

For a soft decision tree, it is crucial to make judicious 
choices regarding the tree topology, feature subsets and 
determining the decision rule for every inner node. The 
decision tree was constructed using a bottom-up approach. 
There are two decision techniques used at the node level 
of SDT, namely Min-Max and Max-Min. In this work, the 
realization of 8 × 1 matrix into one optimum cardiac risk level 
utilizing soft decision tree optimization with three tiers using 
the Min-max decision method has been carried out. By means 
of the Min-Max procedure, distances among priori-defined 
classes undergo computation in a pairwise manner. During 

each stage, the pair of classes linked to a nodal point are 
amalgamated, forming a consolidated group. This iterative 
merging procedure persists as long as more than a group 
remains at the root, signifying the ultimate formation of 
optimized cardiac health patterns. 8-4-2-1 model of SDT has 
been chosen for optimizing input patterns. Min-max decision 
approach was applied at each node in the 8-4-2-1 SDT model.

In this model, the terminal leaf nodes in the group (8x1) 
are referred as elements. The subsequent tier of a tree is 
designated K, featuring four decision nodes, succeeded by 
L tier has two decision nodes of two. The final tier denoted 
as E has a sole node and act as the tree’s root. Subsequent 
decisions are performed for every tree node using row-wise 
optimization called min-max method.

Consider two consecutive leaves, denoted as ri and ri+1, 
to be determined at the next level, labeled Ki. The decision 
criteria are as follows:
For Ki, compute the minimum value between ri and ri+1. 
Simultaneously, determine Ki+1 by finding the maximum value  
between ri+2 and ri+3. Proceed to the next level labeled Li.
•	 At Li, calculate the maximum value between Ki and 

Ki+1, and determine Li+1 by finding the minimum value 
between Ki+2 and Ki+3. Progress to the subsequent 
level labeled Mi.

•	 For Mi, compute the minimum value between Li and Li+1. 
Concurrently, determine Mi+1 by finding the maximum 
value between Li+2 and Li+3. Move on to the next level, 
labeled N.

The above process is illustrated with an example in 
Figure 4.

Table 3 depicts the few patterns of patient 1 and its 
optimization by means of the min-max procedure.

The optimized results obtained from the soft decision 
tree are supportive in identifying the cardiac risk levels from 
the PPG signals and these results are given to the different 
post-classifiers.

Classifiers
Various classifiers employed in categorizing the risk levels of 
cardiovascular diseases are explained as follows.

Logical Regression Gaussian Mixture Model Classifier
Cardiovascular disease risk classification was done using 
logistic regression Gaussian mixture model (LR-GMM) 

Figure 4: Optimization of cardiac risk category using min-max 
decision approach

Table 3: Representation of different patterns of patient 1 and 
optimization using min-max

Patterns K level L level M level 

QPQRRPPP PRPP RP P

RRRPQRRP RRQR RQ Q

PQRRRQPR QRQR RQ Q

RQPQRQRQ QQQR RQ Q

PRRQPPRR PRPR RP P
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from PPG signals. If random variable y is Gaussian, then the 
probability density function (PDF) modeled in the classical 
GMM is represented as

 	 (2)

where ϕg represents the number of mixture components 
and  are the component of Gaussian 
densities of the covariance matrix ∑ (variance ‘σ’, for 
univariate Gaussian distribution’) and mean ‘b’. 

The general form for the density of each component is

       (3)

Mathematically definition for mixture weights from 
a G- tuples (w1, wG) with a particular logistic approach as 
(Montuelle & Le Pennec, 2014)

	 (4)

A model is examined where both the mixture weights and 
means are based specifically upon a covariate. The dataset 
comprises ‘k’ pair of random variables, denoted as ((Vj, Uj)) 

1≤ j≤ n, where the covariates VjS are independent and UjS are 
independent given the VjS. The conditional density  is 
assessed regarding Lebesgue measure of U relative to V. The 
conditional density can be represented through a Gaussian 
regression ensemble with changing logistic weights and is 
denoted in the form of 

	 (5)

w h e r e  a n d   
represents F tuples of the selected parameters across the 
entire dataset. Subsequently, the parameters bg and wg 
are assessed, accompanied the covariance matrix ∑g with 
the overall class count denoted by g. Thus, minimum error 
is attained by comparing true and estimated conditional 
density. 

Gaussian Mixture Model Classifier
The Gaussian mixture model (GMM) classifier serves the 
purpose of classifying large collection of N-dimensional 
signals. It is a parametric model comprising a vast array of 
Gaussian mixture densities. GMM as a whole is characterized 
by incorporating mean vectors, covariance matrices and 
weight coefficient for each Gaussian component. During 
the training process, the expectation maximization (EM) 
algorithm iteratively optimizes these parameters.

At times, GMM parameters are also determined through 
Maximum APosteriori (MAP) using a fine-grained model. 
Often model setup is chosen based on the total dataset 
present for GMM parameters estimation. In order to represent 
the comprehensive feature density, Gaussian components 
collaborate with each other and it’s worth noting that 
even when the features exhibit statistical dependence, full 
covariance matrices are not needed. Maximum likelihood 
(ML) estimation is one of the techniques which are used to 

assess the parameters of GMM. The ML estimation is used 
for ascertaining the model parameters that maximize the 
likelihood of GMM with the given training dataset.

Given the K training vectors Y= {y1, y2…….,yK}, assuming 
each vector to be independent, GMM likelihood is expressed 
as

 	 (6)

The aforementioned expression signifies a function 
of parameter’ c’ that is non-linear, rendering direct 
maximization impractical.

Here c is utilized to denote the parameters as a whole, 
in the subsequent manner.

	 (7)

Where signifies the mean vector and the covariance 
matrix denotes . A condition  must be satisfied 
for mixture weights. By means of the iteration process using 
EM algorithm, the best ML parameters can be easily obtained. 
This EM algorithm starts with some initial model ‘c’ and 
then continues to update ‘c’ iteratively until a convergence 
value is identified. Thus, to assess a new model , such that 

 (Permuter et al., 2016). GMM are capable of 
signifying distributions of huge classes of samples and they 
have the characteristics of forming smooth approximations 
to random shaped densities. However this algorithm is of a 
first-order nature, resulting in a gradual convergence to a 
fixed-point solution. Also, it is prone to misclassifying local 
maxima and demonstrates sensitivity to outset conditions. 

Detrend Fluctuation Analysis
Detrend fluctuation analysis (DFA) is used in biomedical 
applications to deal with complex and non-stationary 
signals. DFA serves as an essential tool in identifying both 
long-range and short-range patterns within a distorted 
signal. The fractal dimension derived through the DFA 
technique shows valuable measures within different 
domains, including cardiovascular and hemodynamic 
variations, earthquake data, traffic fluctuation etc. This 
statistical technique is used to distinguish between normal 
and unhealthy subjects (Telesca et al., 2008). Random 
walk DFA involves a two-step algorithm. Step 1: Examine 
the time sequence Z (i) with i ranges from 1 to N. Here N 
represents the length of the time series. The time sequence 
Z (k) is shifted by the average value of the series Zavg and 
cumulatively summed. 

 	 (8)

Step 2: Within every segment, a least-squares line applies 
to the data, indicating an underlying pattern of the specific 
segment. Fitting polynomial is represented as . 

The computation of mean square variation for this 
detrended and integrated times series involves according 
to equation 8.
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 	 (9)

By averaging all the segments, F(Δb)2 can be observed 
as the overall detrended function.

If F(Δb) exhibit power-law function in relation to Δb, 
then . The scaling exponent signifies the slope 
derived from a fitting log , can be used to 
describe the oscillations under these circumstances. In this 
study, the autocorrelation of the input is represented by the 
scaling exponent.

Cuckoo Search Algorithm
Cuckoo search algorithm (CSA), the swarm-intelligence-
inspired algorithm, is crafted by mimicking cuckoo’s 
breeding habits. CSA incorporates three rules that mimic 
the behavior exhibited by cuckoos, adapting them for 
computational algorithms (Fister et al., 2013)
1) Every cuckoo deposit a single egg into a randomly 
selected nest at any given moment.

2) Nests containing high-quality eggs are carried forward 
to subsequent offspring.

3) The quantity of candidate nests is predetermined, with 
likelihood of encountering a cuckoo-laid egg governed by a 
value denoted as pa, falling within the interval (0, 1). Under 
these circumstances, the host bird can opt to abandon the 
nest, construct another or discard the egg altogether.

Every egg within a nest signifies a potential candidate 
solution. While nests may contain multiple eggs, indicating 
a range of solutions, a cuckoo typically contributes only 
a single egg to a nest in general. The function of cuckoo 
search is geared towards producing new and prospectively 
enhanced solutions so that worse solutions will be replaced 
with better solutions within the existing population of nests. 
Assessment of the approach is made through the objective 
function pertinent to addressing the issue.

Performance Measures
In this work, GMM with the min-max method has been 
used to identify normal as well as anomalous segments 
of PPG signal. Within the abnormal segment, the model 
also identifies CVD with low risk, CVD with medium risk 
and respiratory illness from PPG signal. In this section, the 
relative performances of the classifiers are examined with 
a discussion of the corresponding metrics provided below. 

True Positive (TP)
Cases labeled healthy and correctly identified as healthy 
subject.

False Positive (FP)
Cases categorized normally but misclassified individuals 
with CVD.

Table 4: Average performance analysis of DFA, LR-GMM, GMM and Cuckoo classifiers

Classifier PC (%) MC (%) FA (%) PI (%) Sensitivity (%) Specificity (%) Accuracy (%)

GMM 91.81 0.99 7.19 90.66 92.81 99 95.91

DFA 81.29 0 18.71 76.01 81.30 100 90.65

LR-GMM 80.05 0.97 18.98 73.02 81.03 99.03 90.03

Cuckoo 85.47 1.88 12.65 82.54 87.35 98.13 92.74

Figure 5: Average accuracy and performance index of DFA, LR-GMM, 
Cuckoo and GMM

Table 5: Assessment of cardiac risk level classification in terms of PC, 
MC, FA and PI for all post-classifiers

Classifier Category PC (%) MC (%) FA (%) PI (%)

DFA

S 78.961 0 21.040 72.959

P 82.502 0 17.498 76.828

Q 76.651 0 23.350 69.282

R 87.057 0 12.943 84.984

LR-GMM

S 80.261 0 19.739 73.052

P 79.688 3.541 16.772 72.959

Q 90.280 0.347 9.372 88.620

R 69.979 0 30.024 57.431

GMM

S 84.380 0 15.620 81.470

P 94.584 2.499 2.914 94.214

Q 91.843 0 8.157 90.776

R 96.430 1.487 2.080 96.184

Cuckoo

S 86.459 7.5 6.041 84.253

P 75.314 0 24.687 68.604

Q 85.768 0 14.232 83.327

R 94.346 0 5.654 93.979
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True Negative (TN)
Instances pertaining to CVD patients correctly classified 
as such.

False Negative (FN)
Instances from CVD subjects incorrectly classified as 
belonging to normal subjects.

Based on the values of these parameters, the following 
mathematical formulas are employed to calculate perfect 
classification (PC), missed classification (MC), accuracy, false 
alarm (FA), sensitivity, specificity and performance index (PI) 
(Ramachandran et al., 2020).

 	 (10)

 	 (11)

 	 (12)

 	 (13)

 	 (14)

 	 (15)

 	 (16)

Results and Discussions
The performance evaluation for GMM, CSA, DFA, LR-GMM 
classifiers are computed and tabulated. Table 4 shows a 
comprehensive analysis of the effectiveness of different 
types of classifiers. 
From Table 4, it is inferred that the accuracy of GMM is 
highest at 95.9% when compared with the other types of 
post-classifiers. The accuracy of cuckoo algorithm comes 
next to the GMM and it is found to be 92.73%. If the false 
alarm rate parameter is considered, GMM provides less false 
alarm of 7.2%. This is followed by Cuckoo search algorithm 
having an average FA of about 12.6%. Thus, it is concluded 
that the GMM stands as the optimal choice for discerning 
cardiac risk levels based on PPG signals. Figure 5 depicts 
the average classification accuracy and performance index 
of all post-classifiers.

Tables 5 and 6 showcase the evaluation of LR-GMM, 
DFA, Cuckoo and GMM classifiers in detecting various risk 
categories related to CVD. Figure 6 provides a summary of the 
performance measures based on accuracy and performance 
index of various types of classifiers at different risk levels.

Table 6: Assessment of cardiac risk level classification in terms of 
sensitivity, specificity and accuracy for all post-classifiers

Classifier Category Sensitivity 
(%)

Specificity 
(%)

Accuracy 
(%)

DFA

S 78.964 100 89.482

P 82.502 100 91.251

Q 76.656 100 88.328

R 87.057 100 93.529

LR-GMM

S 80.264 100 90.132

P 83.233 96.458 89.845

Q 90.627 99.653 95.140

R 69.984 100 84.992

GMM

S 84.380 100 92.190

P 97.084 97.5 97.292

Q 91.843 100 95.922

R 97.917 98.513 98.215

Cuckoo

S 93.959 92.5 93.230

P 75.323 100 87.661

Q 85.768 100 92.884

R 94.346 100 97.173

(a)

(b)

Figure 6: a) Accuracy and b) performance index for classifying 
various CVD risk types using all post-classifiers

Table 7: Estimation of MSE obtained by all post classifiers

Classifier S P Q R Average

DFA 1.66E-05 1.45E-05 2.14E-05 5.45E-06 1.4474E-05

LR-GMM 2.00E-05 1.79E-05 4.16E-06 3.42E-05 1.9068E-05

GMM 7.45E-06 6.20E-07 2.82E-06 4.07E-07 2.8241E-06

Cuckoo 5.36E-06 2.09E-05 5.83E-06 3.21E-07 8.1E-06
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As from Tables 5 and 6, it is obvious that GMM attains better 
classification accuracy of 97.29, 95.92 and 98.22% in the 
classification of P, Q and R, respectively, when compared to 
other classifiers. However, the accuracy of GMM falls by 1% 
in the classification of normal (S) than Cuckoo algorithm. 
Even though accuracy for GMM decreases for risk category 
S, the overall classification performance is better for GMM 
than the other classifiers. 

Analysis using error rate
Mean square error (MSE) is a measure that provides insight 
into the overall accuracy of a model by evaluating its ability 
to predict target values (Ti) based on observed values (Oi).

 	 (16)

Table 7 gives average MSE as well as MSE at each risk 
phases obtained by LR-GMM, DFA, Cuckoo and GMM 
classifier. As by rule of thumb, MSE estimation of 0.001 will 
be accepted level for a specific classification of the classes.

From Table 7, it is observed that MSE value is found to 
less for GMM classifier of 6.2E-07 and 2.82E-06 for the signals 
with risk stages of P and Q, respectively. In contrast, MSE 
value is found to be very low for the cuckoo search algorithm 
for normal and signals with respiratory disorders. But it is 
observed that the average MSE for GMM classifier reached 
the appreciable MSE value of 2.82E-06 among other classifiers. 
Hence the classification accuracy is better for GMM classifier.

Conclusion
It’s crucial to formulate efficient methods for predicting 
the risk of CVD in individuals before noticeable symptoms 
manifest. The paper aims to categorize the risk level of 
CVD patients based on PPG signals striving for a high 
classification accuracy, minimal false alarms and less 
misclassification rate. The SVD feature was extracted from 
the PPG signal and optimized using a min-max decision 
model. The output from the min-max decision model is 
applied to LR-GMM, DFA, CSA and GMM classifiers. From 
the results, it is found that GMM classifier was resulted in 
an improvement of accuracy by 3.17%, a reduction in miss 
classification rate by 0.88% and a reduction in false alarm rate 
by 5.5% compared to cuckoo search algorithm. In terms of 
high-risk category namely respiratory disorder and cardiac 
risk level 2, the GMM classifier outperformed the classifier 
utilizing CSA in accuracy and perfect classification rate. 
With respect to missed classification rate, the DFA-based 
classifier surpasses all other classifiers and it is considered 
the best. The performance of the classifier using LR-GMM 
resulted in a very high value of false alarm, whereas GMM 
was found to have a low false alarm. As an extension of 
this work, diabetes could be detected using the PPG signal 
and by applying deep learning algorithms like convolution 
neural networks (CNN).
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