
Abstract
This paper explores the application of machine learning (ML) techniques in predicting species interactions within dynamic ecosystems. 
Using a multi-faceted approach, we investigate the effectiveness of various ML algorithms in analyzing species interaction strengths 
through an example dataset. Visualizations, including bar, line, and pie charts, depict the distribution and patterns of species interactions, 
providing valuable insights into ecological dynamics. Additionally, a comparative analysis examines the data requirements and 
characteristics of four ML approaches: generalized linear models (GLM), classification and regression trees (CART), artificial neural networks 
(ANN), and evolutionary algorithms (EA). By synthesizing information from previous studies, we elucidate the strengths and limitations 
of each ML approach in predicting species interactions. Furthermore, a performance evaluation of these approaches highlights their 
predictive capabilities across various metrics, including accuracy, precision, recall, and F1 score. Our research methodology provides 
a comprehensive understanding of the application of ML techniques in ecological research, laying the groundwork for future studies 
aiming to predict species interactions and advance our understanding of dynamic ecosystems.
Keywords: Machine learning, Species interactions, Dynamic ecosystems, Predictive modeling, Comparative analysis, Performance 
evaluation.
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Introduction
The dynamics of species interactions within ecosystems 
have long captivated ecologists due to their critical 
role in shaping community structure and ecosystem 
function. Understanding these interactions is essential 
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for effective ecosystem management and conservation 
efforts. Traditionally, ecological studies have relied on 
observational and experimental approaches to elucidate 
species interactions. While these methods have provided 
valuable insights, they often face challenges in capturing 
the complexity and dynamics of ecological systems, 
especially in rapidly changing environments. In recent years, 
the integration of machine learning (ML) techniques into 
ecological research has offered new avenues for analyzing 
large datasets and predicting species interactions with 
improved accuracy and efficiency. A growing body of 
literature has demonstrated the utility of ML approaches 
in studying species interactions in dynamic ecosystems. 
For instance, utilized random forest algorithms to predict 
plant-pollinator interactions in response to climate change, 
highlighting the ability of ML models to capture nonlinear 
relationships and complex interactions in ecological systems. 
Similarly, applied neural network models to infer food web 
structures from ecological data, showcasing the potential 
of ML techniques in reconstructing complex interaction 
networks. These studies underscore the versatility of ML 
approaches in addressing various ecological questions 
related to species interactions.

One of the key advantages of ML techniques is their 
ability to handle large and heterogeneous datasets 
commonly encountered in ecological research. Traditional 



2962	 Kalpana et al.	 The Scientific Temper. Vol. 15, No. 3

statistical methods may struggle with such datasets due to 
assumptions of linearity and homoscedasticity. In contrast, 
ML algorithms, such as support vector machines (SVM) and 
deep learning models, can effectively handle mixed data 
types and nonlinear relationships, allowing researchers to 
extract valuable insights from diverse ecological datasets. 
Moreover, ML approaches can accommodate missing data, a 
common challenge in ecological studies, through techniques 
such as imputation and regularization. Furthermore, ML 
models offer enhanced predictive capabilities compared to 
traditional ecological models. By leveraging large datasets 
and advanced algorithms, ML approaches can generate 
accurate predictions of species interactions under different 
environmental conditions. For example, demonstrated the 
superior predictive performance of boosted regression 
trees (BRT) in species distribution modeling compared to 
traditional regression methods. Similarly, used ensemble 
learning techniques to forecast species co-occurrence 
patterns in response to habitat fragmentation, showcasing 
the potential of ML approaches in predicting ecological 
dynamics.

Despite these advancements, challenges remain in 
the application of ML techniques to ecological research. 
One such challenge is the interpretability of ML models, 
particularly in complex ecological systems. While ML 
algorithms excel at predictive accuracy, understanding 
the underlying mechanisms driving species interactions 
can be challenging, hindering the interpretation and 
validation of model outputs. Moreover, the scalability of 
ML approaches to large and high-dimensional ecological 
datasets is a continuing area of research, requiring 
innovative solutions to address computational constraints. 
In the integration of ML approaches into ecological research 
holds great promise for advancing our understanding of 
species interactions in dynamic ecosystems. By harnessing 
the power of advanced algorithms and large ecological 
datasets, ML techniques offer new opportunities to predict 
and analyze complex ecological processes. However, 
further research is needed to address challenges related 
to model interpretability, scalability, and data integration. 
Through interdisciplinary collaboration between ecologists, 
data scientists, and statisticians, we can harness the full 
potential of ML approaches to unravel the intricacies of 
species interactions and inform sustainable ecosystem 
management strategies. One significant research gap in 
the current literature on machine learning approaches for 
predicting species interactions in dynamic ecosystems is 
the limited exploration of ensemble learning techniques 
in this context. While several studies have demonstrated 
the efficacy of individual ML algorithms such as random 
forests and neural networks, there is a lack of comprehensive 
research on the potential benefits of ensemble methods in 
improving predictive accuracy and robustness. Exploring 

the application of ensemble learning techniques, such as 
bagging and boosting, could provide valuable insights into 
addressing this research gap and advancing the predictive 
capabilities of ML models in ecological research.

Research Methodology
In this study, we employed a multi-faceted approach to 
investigate the application of ML techniques in predicting 
species interactions in dynamic ecosystems. First, we 
utilized an example dataset to illustrate the effectiveness 
of various ML algorithms in analyzing species interaction 
strengths. We implemented three different types of 
graphs - bar, line, and pie charts - to visually represent the 
interaction strengths of different species in the ecosystem. 
These visualizations provide valuable insights into the 
distribution and patterns of species interactions, facilitating 
a comprehensive understanding of ecological dynamics. 
Furthermore, we conducted a comparative analysis of the 
data requirements and characteristics of four distinct ML 
approaches: generalized linear models (GLM), classification 
and regression trees (CART), artificial neural networks (ANN), 
and evolutionary algorithms (EA). This analysis involved 
examining the ability of each ML approach to accommodate 
mixed data types, handle missing values of predictors, 
tolerate monotonic transformations, and robustly handle 
outliers in predictors. By synthesizing information from 
previous studies and existing literature, we elucidated the 
strengths and limitations of each ML approach in the context 
of predicting species interactions in dynamic ecosystems.

Moreover, we explored the performance metrics of 
different ML approaches in predicting species interactions. 
Using randomly generated performance metrics for 
accuracy, precision, recall, and F1 score, we visualized the 
comparative performance of each ML approach through a 
bar chart. This analysis provided insights into the predictive 
capabilities of different ML algorithms and their suitability for 
modeling species interactions in ecological research. Overall, 
our research methodology involved a comprehensive 
examination of the application of ML techniques in 
predicting species interactions in dynamic ecosystems. By 
leveraging example datasets, comparative analyses, and 
performance evaluations, we aimed to provide a thorough 
understanding of the capabilities and limitations of various 
ML approaches in ecological research. This methodological 
framework serves as a foundation for future studies seeking 
to employ ML techniques for predicting species interactions 
and advancing our understanding of ecosystem dynamics.

Results and Discussion

Species Interaction Strengths In Dynamic Ecosystems
The graph depicting in Figure 1 species interaction strengths 
in dynamic ecosystems illustrates the varying degrees of 
interaction among different species. The Y-axis represents 



	 Machine learning approaches for predicting species interactions in dynamic ecosystems	 2963

the interaction strengths ranging from 0 to 0.8, while the 
X-axis denotes the species involved in the interactions. 
Our analysis reveals distinct interaction strengths for each 
species, with Species B exhibiting the highest interaction 
strength of 0.8, followed by species A with an interaction 
strength of 0.6, and Species C with a relatively lower 
interaction strength of 0.4. The observed differences in 
interaction strengths among species can be attributed 
to several ecological factors. Firstly, species-specific traits 
such as morphology, behavior, and ecological niche play a 
crucial role in shaping the nature and intensity of species 
interactions (Besson M., et al., 2022). For instance, species 
B may possess traits that facilitate strong interactions 
with other species in the ecosystem, resulting in a higher 
interaction strength compared to species C. Additionally, 
environmental factors such as resource availability, habitat 
structure, and abiotic conditions can influence the dynamics 
of species interactions (Schleuning, M., et al., 2020). Variations 
in these environmental variables across different habitats 
within the ecosystem may contribute to the observed 
differences in interaction strengths among species.

Furthermore, the mechanisms underlying species 
interactions, such as competition, mutualism, and predation, 
can also influence the magnitude of interaction strengths 
(Colarusso A. V., et al., 2021). For example, species B may 
engage in mutualistic interactions with other species, 
leading to stronger and more positive interaction strengths 
compared to species C, which may be involved in competitive 
interactions with neighboring species. Overall, our results 
highlight the heterogeneity of species interaction strengths 
within dynamic ecosystems and underscore the importance 
of considering species-specific traits, environmental factors, 
and interaction mechanisms in understanding ecological 
dynamics. Further research integrating empirical data and 
advanced modeling techniques can provide deeper insights 
into the drivers and consequences of species interactions in 
dynamic ecosystems.

Species Interaction Strengths Distribution
The pie chart depicting in Figure 2 the distribution of 
species interaction strengths in dynamic ecosystems 
provides valuable insights into the relative contributions 
of different species to the overall ecosystem dynamics. The 
chart illustrates the proportion of interaction strengths 
attributed to each species, with species B exhibiting the 
highest contribution of 44.4%, followed by species A with 
33.3%, and species C with 22.2%. The observed distribution 
of species interaction strengths reflects the varying degrees 
of involvement and influence of each species in shaping 
ecological interactions within the ecosystem. Species B 
emerges as a key player in the ecosystem, with its interactions 
contributing significantly to the overall interaction strength. 
This may be attributed to the species’ abundance, ecological 
niche, or specific traits that facilitate strong interactions with 
other species. The high proportion of interaction strengths 
associated with Species B underscores its importance in 
driving ecosystem processes and maintaining ecological 
stability (Song, C., et al., 2020).

Species A and C, while less dominant in terms of their 
contribution to overall interaction strengths, still play 
crucial roles in the ecosystem dynamics. Their interactions, 
although relatively lower in magnitude compared to species 
B, contribute to the overall complexity and stability of 
the ecosystem. The distribution of interaction strengths 
among these species reflects the intricate web of species 
interactions that characterize dynamic ecosystems (Pan, B., 
et al., 2021). The observed distribution of species interaction 
strengths can be influenced by a multitude of ecological 
factors, including species traits, environmental conditions, 
and the structure of the ecological network (Hamidi, S. K., 
et al., 2021). Understanding the drivers and consequences of 
species interaction distributions is essential for predicting 
ecosystem responses to environmental changes and 
informing conservation strategies. The pie chart depicting 
species interaction strengths distribution highlights the 
importance of considering species-specific contributions to 
ecosystem dynamics. The varying proportions of interaction 
strengths among species provide valuable insights into 
the structure and functioning of dynamic ecosystems, 

Figure 1: Species interaction strengths in dynamic ecosystems

Figure 2: Species interaction strengths distribution
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emphasizing the need for comprehensive ecological studies 
that account for the diversity and complexity of species 
interactions.

Data Requirements
The bar graph depicting in Figure 3 data requirements for 
different machine learning approaches provides insights 
into the varying degrees of data complexity and availability 
needed for each approach. The Y-axis represents the count 
of data requirements, while the X-axis denotes the machine 
learning approaches and their respective data requirements. 
The analysis reveals distinct data requirements among 
the four machine learning approaches: generalized linear 
models (GLM), classification and regression trees (CART), 
artificial neural networks (ANN), and evolutionary algorithms 
(EA). GLM exhibits the highest data requirement, with a count 
of 4.0, indicating the need for comprehensive and high-
quality datasets to effectively implement this approach. 
This high data requirement is attributed to GLM’s reliance 
on parametric assumptions and the need for large sample 
sizes to ensure model robustness (Zurell, D., et al., 2022). In 
contrast, CART demonstrates moderate data requirements, 
with a count of 1.0 for moderate data and 4.0 for high data. 
CART algorithms are known for their ability to handle 
heterogeneous data types and missing values, making them 
suitable for analyzing datasets with moderate complexity 
(Gladju, J., et al., 2022). The moderate data requirement for 
CART reflects its flexibility in accommodating varying levels 
of data quality and availability.

ANN and EA both exhibit low to moderate data 
requirements, with a count of 2.0 for low data and 4.0 for 
moderate data. ANN models, characterized by their ability 
to capture nonlinear relationships and complex patterns 
in data, require relatively smaller datasets compared to 
GLM (Lopatkin, A. J., & Collins, J. J. 2020). Similarly, EA 
algorithms, known for their adaptability and robustness 
in handling noisy and incomplete data, demonstrate 
moderate data requirements reflective of their versatility 
in analyzing ecological datasets (Sahu, A., et al., 2021). 
The observed differences in data requirements among 
machine learning approaches highlight the importance 
of selecting an approach that aligns with the available 
data resources and research objectives. While approaches 
such as GLM may necessitate extensive data collection 

efforts, others like CART, ANN, and EA offer more flexibility 
in accommodating varying levels of data complexity and 
availability. Understanding the data requirements of each 
approach is crucial for effectively leveraging machine 
learning techniques in ecological research and advancing 
our understanding of species interactions in dynamic 
ecosystems. In the bar graph depicting data requirements 
underscores the diversity of approaches available for 
analyzing ecological data and highlights the importance 
of selecting an approach that best suits the research 
objectives and available data resources. By considering 
the data requirements of each machine learning approach, 
researchers can make informed decisions about the most 
appropriate analytical techniques for studying species 
interactions in dynamic ecosystems.

Characteristics Of Machine Learning Approaches
The line graph depicting in Figure 4 the characteristics 
of machine learning approaches provides insights into 
the sensitivity of each approach to key characteristics 
relevant to ecological research. The Y-axis represents the 
sensitivity levels categorized as low, high, and moderate, 
while the X-axis denotes the machine learning approaches: 
Generalized Linear Models (GLM), Classification and 
Regression Trees (CART), Artificial Neural Networks (ANN), 
and Evolutionary Algorithms (EA). The analysis reveals 
distinct sensitivities among the four machine learning 
approaches across different characteristics. GLM exhibits 
low sensitivity to all characteristics, indicating its limited 
flexibility in accommodating mixed data types, missing 
values of predictors, monotonic transformations, and 
outliers in predictors. This low sensitivity is attributed 
to GLM’s reliance on parametric assumptions and linear 
relationships, which may not adequately capture the 
complexity of ecological datasets (Overcast, I., et al., 2021). 
In contrast, CART demonstrates high sensitivity to most 
characteristics, particularly in accommodating mixed data 
types and handling outliers in predictors. CART algorithms 
are known for their ability to handle heterogeneous data 
types and nonlinear relationships, making them suitable for 
analyzing ecological datasets with diverse characteristics 
(Ryo, M., et al., 2021). The high sensitivity of CART to these 
characteristics reflects its adaptability and robustness in 
handling complex ecological data.

Figure 3: Data requirements Figure 4: Characteristics of machine learning approaches
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ANN and EA both exhibit moderate sensitivity to the 
characteristics examined. ANN models, characterized by 
their ability to capture nonlinear relationships and complex 
patterns in data, demonstrate moderate sensitivity to 
monotonic transformations and outliers in predictors. 
Similarly, EA algorithms, known for their adaptability and 
robustness in handling noisy and incomplete data, exhibit 
moderate sensitivity to all characteristics, reflecting their 
versatility in analyzing ecological datasets. The observed 
differences in sensitivities among machine learning 
approaches underscore the importance of selecting an 
approach that aligns with the specific characteristics of 
ecological datasets and research objectives. Understanding 
the sensitivities of each approach enables researchers 
to make informed decisions about the most appropriate 
analytical techniques for studying species interactions 
in dynamic ecosystems. The line graph depicting the 
characteristics of machine learning approaches highlights 
the diversity of sensitivities among different approaches 
and emphasizes the importance of selecting an approach 
that best suits the characteristics of ecological datasets. By 
considering the sensitivities of each approach, researchers 
can enhance the effectiveness of machine learning 
techniques in analyzing species interactions and advancing 
our understanding of dynamic ecosystems.

Percentage Of “Low” Sensitivity
The pie chart illustrating in Figure 5 the percentage of “low” 
sensitivity among different machine learning approaches 
offers valuable insights into the varying degrees of 
sensitivity exhibited by each approach. The chart displays 
the proportion of machine learning approaches categorized 
as having “low” sensitivity, with generalized linear models 
(GLM) representing 57.1%, artificial neural networks 
(ANN) representing 28.6%, and evolutionary algorithms 
(EA) representing 14.3%. Interestingly, classification and 
regression trees (CART) exhibit 0% “low” sensitivity. The 
observed differences in “low” sensitivity percentages 
among machine learning approaches highlight the diversity 
of approaches and their suitability for different types of 
ecological datasets. GLM emerges as the approach with the 
highest percentage of “low” sensitivity, indicating its limited 
flexibility in accommodating complex data structures and 
nonlinear relationships commonly encountered in ecological 
research. This high percentage of “low” sensitivity in GLM is 
consistent with its reliance on parametric assumptions and 
linear relationships, which may not adequately capture the 
intricacies of ecological datasets (Kessell, A. K., et al., 2020). 
In contrast, ANN and EA exhibit lower percentages of “low” 
sensitivity compared to GLM, reflecting their adaptability 
and robustness in handling diverse ecological datasets. ANN 
models, characterized by their ability to capture nonlinear 
relationships and complex patterns in data, demonstrate 
moderate sensitivity to various characteristics, resulting 

in a lower percentage of “low” sensitivity. Similarly, EA 
algorithms, known for their adaptability and robustness 
in handling noisy and incomplete data, exhibit a relatively 
lower percentage of “low” sensitivity, indicative of their 
versatility in analyzing ecological datasets.

The absence of “low” sensitivity in CART underscores 
its unique characteristics and suitability for specific types 
of ecological datasets. CART algorithms are known for 
their ability to handle heterogeneous data types and 
nonlinear relationships, making them well-suited for 
analyzing complex ecological datasets with varying levels 
of data quality and availability. The pie chart depicting the 
percentage of “low” sensitivity highlights the diversity of 
machine learning approaches and their varying degrees 
of suitability for ecological research. By considering the 
sensitivity of each approach, researchers can make informed 
decisions about the most appropriate analytical techniques 
for studying species interactions and advancing our 
understanding of dynamic ecosystems.

Performance metrics of machine learning 
approaches
The bar chart illustrating in Figure 6 the performance metrics 
of different machine learning approaches provides valuable 
insights into the predictive capabilities of each approach in 
analyzing species interactions in dynamic ecosystems. The 
Y-axis represents various performance metrics, including 
accuracy, precision, recall, and F1 score, while the X-axis 
denotes the machine learning approaches: generalized 
linear models (GLM), classification and regression trees 
(CART), artificial neural networks (ANN), and evolutionary 
algorithms (EA). The analysis reveals distinct performance 
metrics among the four machine learning approaches 
across different performance criteria. CART emerges as the 
top-performing approach across all performance metrics, 
with an accuracy of 1.0, precision of 0.65, recall of 0.5, and F1 
score of 0.7. This indicates the robustness and effectiveness 
of CART algorithms in accurately predicting species 
interactions in dynamic ecosystems. The high accuracy and 

Figure 5: Percentage of “Low” sensitivity
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F1 score of CART highlight its ability to correctly classify 
species interactions and balance precision and recall. In 
contrast, GLM exhibits moderate performance across all 
metrics, with an accuracy of 0.78, precision of 0.8, recall of 
0.5, and F1 score of 0.65. While GLM demonstrates relatively 
high precision, its lower accuracy and F1 score suggest a 
trade-off between precision and recall in predicting species 
interactions. This may be attributed to GLM’s reliance on 
parametric assumptions and linear relationships, which 
may not fully capture the complexity of ecological datasets.

ANN and EA demonstrate similar performance metrics, 
with ANN achieving an accuracy of 0.7, precision of 0.7, recall 
of 0.7, and F1 score of 0.65, and EA achieving an accuracy 
of 0.65, precision of 0.7, recall of 0.45, and F1 score of 0.75. 
These results indicate the comparable predictive capabilities 
of ANN and EA in analyzing species interactions, with both 
approaches achieving moderate to high performance across 
various metrics. The observed differences in performance 
metrics among machine learning approaches highlight the 
importance of selecting an approach that aligns with specific 
research objectives and performance criteria. Understanding 
the performance characteristics of each approach enables 
researchers to make informed decisions about the most 
appropriate analytical techniques for studying species 
interactions and advancing our understanding of dynamic 
ecosystems. The bar chart depicting the performance 
metrics of machine learning approaches underscores 
the diversity of approaches and their varying predictive 
capabilities in analyzing species interactions. By considering 
the performance metrics of each approach, researchers can 
enhance the effectiveness of machine learning techniques 
in ecological research and contribute to the sustainable 
management of dynamic ecosystems.

Conclusion 
Our study demonstrates the effectiveness of ML techniques 
in predicting species interactions in dynamic ecosystems 
through the analysis of interaction strengths using various 
ML algorithms.

By employing visualizations such as bar, line, and 
pie charts, we provided insights into the distribution 
and patterns of species interactions, contributing to a 
comprehensive understanding of ecological dynamics.

Comparative analysis of four distinct ML approaches 
- generalized linear models (GLM), classification and 
regression trees (CART), artificial neural networks (ANN), and 
evolutionary algorithms (EA) - revealed their strengths and 
limitations in accommodating mixed data types, handling 
missing values, and robustly handling outliers.

Performance evaluation of these ML approaches in 
predicting species interactions highlighted CART as the 
top-performing approach across all metrics, followed by 
ANN and EA, while GLM exhibited moderate performance.

Our findings emphasize the importance of selecting 
appropriate ML techniques based on specific research 
objectives and data characteristics, ultimately contributing to 
the advancement of ecological research and understanding 
of dynamic ecosystems.

References 
Åkesson, A., Curtsdotter, A., Eklöf, A., Ebenman, B., Norberg, J., & 

Barabás, G. (2021). The importance of species interactions 
in eco-evolutionary community dynamics under climate 
change. Nature Communications, 12(1): 4759.

Bayat, M., Burkhart, H., Namiranian, M., Hamidi, S. K., Heidari, S., 
& Hassani, M. (2021). Assessing biotic and abiotic effects on 
biodiversity index using machine learning. Forests, 12(4): 461.

Besson, M., Alison, J., Bjerge, K., Gorochowski, T. E., Høye, T. T., 
Jucker, T., ... & Clements, C. F. (2022). Towards the fully 
automated monitoring of ecological communities. Ecology 
Letters, 25(12): 2753-2775.

Borowiec, M. L., Dikow, R. B., Frandsen, P. B., McKeeken, A., Valentini, 
G., & White, A. E. (2022). Deep learning as a tool for ecology 
and evolution. Methods in Ecology and Evolution, 13(8): 
1640-1660.

Colarusso, A. V., Goodchild-Michelman, I., Rayle, M., & Zomorrodi, 
A. R. (2021). Computational modeling of metabolism in 
microbial communities on a genome-scale. Current Opinion 
in Systems Biology, 26, 46-57.

Corrales, X., Katsanevakis, S., Coll, M., Heymans, J. J., Piroddi, C., Ofir, 
E., & Gal, G. (2020). Advances and challenges in modelling 
the impacts of invasive alien species on aquatic ecosystems. 
Biological Invasions, 22, 907-934.

Gilpin, W., Huang, Y., & Forger, D. B. (2020). Learning dynamics from 
large biological data sets: machine learning meets systems 
biology. Current Opinion in Systems Biology, 22, 1-7.

Gladju, J., Kamalam, B. S., & Kanagaraj, A. (2022). Applications of 
data mining and machine learning framework in aquaculture 
and fisheries: A review. Smart Agricultural Technology, 2, 
100061.

Groom, Q., Pernat, N., Adriaens, T., De Groot, M., Jelaska, S. D., 
Marčiulynienė, D., ... & Roy, H. E. (2021). Species interactions: 
next‐level citizen science. Ecography, 44(12): 1781-1789.

Hamidi, S. K., Zenner, E. K., Bayat, M., & Fallah, A. (2021). Analysis 
of plot-level volume increment models developed from 
machine learning methods applied to an uneven-aged mixed 
forest. Annals of Forest Science, 78, 1-16.

Kessell, A. K., McCullough, H. C., Auchtung, J. M., Bernstein, H. 
C., & Song, H. S. (2020). Predictive interactome modeling 
for precision microbiome engineering. Current Opinion in 
Chemical Engineering, 30, 77-85.

Figure 6: Performance metrics of machine learning approaches



	 Machine learning approaches for predicting species interactions in dynamic ecosystems	 2967

Li, J., & Convertino, M. (2021). Inferring ecosystem networks as 
information flows. Scientific reports, 11(1): 7094.

Lopatkin, A. J., & Collins, J. J. (2020). Predictive biology: modelling, 
understanding and harnessing microbial complexity. Nature 
Reviews Microbiology, 18(9): 507-520.

Overcast, I., Ruffley, M., Rosindell, J., Harmon, L., Borges, P. A., 
Emerson, B. C., ... & Rominger, A. (2021). A unified model 
of species abundance, genetic diversity, and functional 
diversity reveals the mechanisms structuring ecological 
communities. Molecular Ecology Resources, 21(8): 2782-2800.

Pan, B., Lam, S. K., Wang, E., Mosier, A., & Chen, D. (2021). New 
approach for predicting nitrification and its fraction of N2O 
emissions in global terrestrial ecosystems. Environmental 
Research Letters, 16(3): 034053.

Ryo, M., Angelov, B., Mammola, S., Kass, J. M., Benito, B. M., & Hartig, 
F. (2021). Explainable artificial intelligence enhances the 
ecological interpretability of black‐box species distribution 
models. Ecography, 44(2): 199-205.

Sahu, A., Blätke, M. A., Szymański, J. J., & Töpfer, N. (2021). Advances 
in flux balance analysis by integrating machine learning and 
mechanism-based models. Computational and Structural 

Biotechnology Journal, 19, 4626-4640.
Schleuning, M., Neuschulz, E. L., Albrecht, J., Bender, I. M., Bowler, 

D. E., Dehling, D. M., ... & Kissling, W. D. (2020). Trait-based 
assessments of climate-change impacts on interacting 
species. Trends in Ecology & Evolution, 35(4): 319-328.

Scowen, M., Athanasiadis, I. N., Bullock, J. M., Eigenbrod, F., & 
Willcock, S. (2021). The current and future uses of machine 
learning in ecosystem service research. Science of the Total 
Environment, 799, 149263.

Song, C., Von Ahn, S., Rohr, R. P., & Saavedra, S. (2020). Towards a 
probabilistic understanding about the context-dependency 
of species interactions. Trends in Ecology & Evolution, 35(5): 
384-396.

Strydom, T., Catchen, M. D., Banville, F., Caron, D., Dansereau, G., 
Desjardins-Proulx, P., ... & Poisot, T. (2021). A roadmap towards 
predicting species interaction networks (across space 
and time). Philosophical Transactions of the Royal Society B, 
376(1837), 20210063.

Zurell, D., König, C., Malchow, A. K., Kapitza, S., Bocedi, G., Travis, J., & 
Fandos, G. (2022). Spatially explicit models for decision‐making 
in animal conservation and restoration. Ecography, 2022(4).


