RESEARCH ARTICLE

Existence of a homeomorphism from the space of continuous functions to the space of compact Subsets of a topological space, X

Amalraj P.^{1*}, Vinodkumar P. B.²

Abstract

This paper presents proof that there exists a subspace of the space of continuous functions on a topological space X, which is homeomorphic to the space of compact subsets of X. Those let C(X) denote the space of continuous functions on a topological space X and K(X) be the space of compact subsets of X. We prove that there exists a subspace of C(K(X)) which is homeomorphic to C(X). The result remains valid for compact open topology and point-wise convergence topology on K(X).

Keywords: Hyperspace, Regular, Compact-open topology, Point-wise convergence topology.

Introduction

This paper establishes a topological equivalence between two seemingly disparate spaces: the space of continuous functions on a topological space *X* and the space of compact subsets of *X*. We demonstrate that a specific subspace of continuous functions can be directly correlated with the space of compact sets through a homeomorphism. This unexpected connection provides new insights into the structural properties of these spaces and opens avenues for further exploration in topology and analysis (Michael, 1951).

¹Department of Mathematics, Sanatana Dharma College, Alappuzha, Rajagiri School of Engineering and Technology, APJ Abdul Kalam Technological University, Kerala, India.

²Centre for Topology and Applications, Department of Mathematics, Rajagiri School of Engineering and Technology, Cochin, Kerala, India.

***Corresponding Author:** Amalraj P., Department of Mathematics, Sanatana Dharma College, Alappuzha, Rajagiri School of Engineering and Technology, APJ Abdul Kalam Technological University, Kerala, India., E-Mail: amalrp2929@gmail.com

How to cite this article: Amalraj, P.,Vinodkumar, P. B. (2024). Existence of a homeomorphism from the space of continuous functions to the space of compact Subsets of a topological space, X. The Scientific Temper, **15**(3):2470-2472.

Doi: 10.58414/SCIENTIFICTEMPER.2024.15.3.09

Source of support: Nil

Conflict of interest: None.

Suppose X is a Hausdorff space and K(X) be the hyperspace of compact subsets of X with Vietoris topology (Charatonik, 1998). A sub-base for Vietoris topology is given by

 $\langle Ui \rangle = K \in K(X) : K \subseteq Ui, K \cap Ui = \emptyset, \forall i \Sigma$

where *Ui* is a finite collection of open subsets of *X* (Michael, 1951). Let C(X) and C(K(X)) denote space of continuous functions on *X* and *K*(*X*), respectively. We consider two topologies on *C*(*X*) and *C*(*K*(*X*)).In Section 1, C(X) and C(K(X)) are endowed with compact open topology for which a sub-basic set for *C*(*X*) is of the form (Michael, 1951; Hosokawa, 1997).

 $\langle K : U \rangle = f \in C(X) : f(K) \subseteq U$ where $K \subseteq X$ is compact and $U \subseteq X$ is open. For C(K(X)) sub basic set is of the form

 $\langle K^{\sim} : U^{\sim} \rangle = {}_{\bullet} f^{\sim} \in C(K(X)) : f^{\sim}(K) \subseteq U \Sigma$ where $K^{\sim} \subseteq K(X)$ is compact and

U K(X) is open. In Section 2, we consider C(X) and C(K(X)) with point-wise convergence topology for which sub base for C(X) and C(K(X)) are

 $\langle p: U \rangle = f \in C(X) : f(p) \in U$ where $p \in X$ and $U \subseteq X$ is open in X and

 $\langle P: U^{\sim} \rangle = \mathcal{F}^{\sim} \in C(K(X)) : \mathcal{F}^{\sim}(P) \in U^{\sim} \Sigma$ where $P \in K(X)$ and $U^{\sim} \subseteq K(X)$ is open

in *K*(*X*) (Mizokami, 1998).

Let $f: X \rightarrow X$ be continuous, then f induces a continuous function on K(X),

 $f^{\sim}: K(X) \to K(X)$ defined as $f^{\sim}(K) = f(K), \forall K \in K(X)$. We prove the continuity of the function $\phi : C(X)$ C(K(X)) defined as $\phi(f) = f$ (Hosokawa, 1997). In (2), it is proved that if X is a compact (Nadler, 1978), connected metric space and if f is a homeomorphism, then $\phi(f)$ is a homeomorphism. In (5), it has shown that not all maps on K(X) are inducible.But the first result about ϕ is given in (4) (Michael, 1951), where it is proved that C(X) can be embedded in C(K(X)) with a compact open topology on C(X) and point-wise convergence topology on C(K(X)).In this paper, we discuss the continuity of ϕ with the same topology on C(X) and be found in (1),(3) (Michael, 1951; Nadler, 1978).

Compact Open Topology On C(X) and C(K(X))

Throughout this section, C(X) and C(K(X)) are endowed with compact-open topology.Let $\phi : C(X)$

- → C(K(X)) be defined as $\phi(f) = f^{\sim}$ where $f^{\sim}(K) = f(K)$ $\forall K \in K(X)$. We ask four simple questions about ϕ .
- Is ϕ continuous?
- Is ϕ on-one ?
- Is ϕ on to ?
- Is ϕ is a homeomorphism?

Motivated by Theorem 2(4) (Hosokawa, 1997), we first give an example to show that ϕ is not on to.

Example 1.1: Let f^{\sim} : $K(\mathbb{R}) \rightarrow K(\mathbb{R})$ be defined as $f^{\sim}(K) = \{Inf(K)\}, \forall K \in K(\mathbb{R}) \text{ For example}, f^{\sim}([3, 6]) = \{3\} \text{ and } f^{\sim}([4, 5]) = \{4\}$

note that, $[4, 5] \subseteq [3, 6]$ but $f^{\sim}[4, 5] \not\subset f^{\sim}([3, 6])$

If f^{\sim} is an induced map, then $A \subset B$ implies $f^{\sim}(A) \subset f^{\sim}(B)$ in (4). Therefore, f is not an induced map.

that is, $f^{\sim} / \phi(C(\mathbb{R}))$

Hence answer to question number (3) is No.

The following result is trivial, but we give the proof for the sake of completeness.

Proposition 1: ϕ is one-one

Proof. $\phi(f_1) = \phi(f_2)$ implies $f_1(K) = f_2(K)$, $\forall K \in K(X)$ $f_1(\{x\}) = f_2(\{x\})$, $\forall \{x\} \in K(X)$

f1(x) = f2(x), x X

$$f1 = f2.$$

Question number(2) is answered positively. Next we prove the continuity of ϕ .

Definition 1.2: A topological space X is a regular space iff whenever A is closed in X and $x \in A$, then there are disjoint open sets U and V with $x \in U$ and $A \subset V$ (Hurewicz, n.d.; Kluge, n.d.)

Proposition 2: If *X* is regular, then ϕ is continuous.

To prove this proposition, we need a result proved in (1) (Michael, 1951), which we quote as a lemma given below.

Lemma 1.3: (1) (Michael, 1951)Let X be regular. If $K^{\sim} \subseteq K(X)$, then

 $K \in K^{\sim}$ $K \in K(X)$

Proof of Proposition 2

Let V be a sub-basis neighbourhood of $\phi(f)$. Then

there exist sub basic neighbour- hood *Ui* of *f* such that $\phi(Ui)V$.⁴ *i*

Let K^{\sim} be a compact subset of K, then by lemma 1.2, K is compact. Hence

$$K \in K$$

sub basis open sets of $C(K(X))$ are given by $\sum_{\tilde{K}_{i}^{+}} \langle U_{i} \rangle = \psi \in C(K(X)) : \psi(\tilde{K}) \subset \langle U_{i} \rangle$
where $\langle U_{i} \rangle = K \in K(X) : K \subseteq \overset{S}{\bigcup_{i}} U_{i}, K \cap U_{i} = \emptyset, \forall i$.

$$\sum_{i \in \mathbb{Z}} \underbrace{\tilde{K}_{i}^{+}}_{i} \langle U_{i} \rangle = \underbrace{\psi \in C(K(X))}_{i} : \psi(K) \subset \overset{S}{\bigcup_{i}} U_{i}, \psi(K) \cap U_{i} = \emptyset, \forall K \in \tilde{K}, \forall i$$

Let $\widetilde{K}_{i}^{+} \langle U_{i} \rangle$ the a sub basis neighbourhood of $\phi(f)$
 $\phi^{-1} = \underbrace{\tilde{K}_{i}^{+}}_{i} \langle U_{i} \rangle = \sum_{\tilde{K}_{i}^{+}} \underbrace{\tilde{K}_{i}^{-}}_{i} \langle U_{i} \rangle = \sum_{\tilde{K}_{i}^{+}} \underbrace{\tilde{K}_{i}^{+}}_{i} \langle U$

Claim

For each f - 1(Ui) there is an open sub set Vi of X such that Vi = f - 1(Ui) and for each (Weiss & Kifer, n.d.; Lyubich, n.d.).

(1.1) $K \in K^{\sim}, K \cap Vi \neq \emptyset$

if not , for each Vi, there exist $KVi \in K^{\sim}$ such that $KVi \cap Vi = \emptyset$

Let $O(U) = \{U' : U' \subset U\}$. Then $(O(U), \subseteq)$ is a poset. Hence, $N : Vi \rightarrow KV$ is a

net.*N* has a convergent cofinal sub net since K^{\sim} this sub net (Saito, 2000).Then,

is compact.Let K0 be the limit of

 $K0 \cap Vi = \emptyset, \forall Vi \subset Vi \subset f-1(Ui)$ Since X is regular, Vi = U.

therefore KO f - 1(Ui) = . This is a contradiction to the fact that f(KO) Ui = . Hence the claim holds:

Choose Vi \subset f –1(Ui) with the property (1.1). Let xi \in Vi \cap K for each Vi and K.

Define $Ki = \{xi\}$. Ki is compact as it is a closed subset of S K which is compact.

 $\therefore f(Ki) \subset V_{\bullet}i \subset Ui. So f \in \langle Ki : Ui \rangle$

 $K \in K^{\sim} \Sigma$

 $\phi \langle Ki, Ui \rangle \subset$

∴Σ.S

 $f \in C(X) : f(K) \cap Ui = \emptyset, \forall K \in K^{\sim}$

 $: S Ui\Sigma\Sigma T \Sigma T \dots K^{\sim}i : \langle Ui \rangle \Sigma \Sigma \subset \phi - 1 \dots K^{\sim} : \langle Ui \rangle \Sigma \Sigma$

 ϕ -1 K^{\sim} : $\langle Ui \rangle$ is an open set in C(X) So ϕ is continuous (Hosokawa, 1997; Charatonik, 1998; Mizokami, 1998).

Proposition 3: ϕ -1 *is continuous*.

Proof. Since X is regular, C(K(X)) is regular. So $\phi(C(X))$ C(K(X)) is regular.

By proposition.1, ϕ is one-one.Hence by similar argument as in proposition.2, ϕ -1 is continuous. \Box

Corollary 1.3.1

If X is regular, then C(X) is embedded in C(K(X)).

Proof. ϕ is a homeomorphism from *C*(*X*) to ϕ (*C*(*X*)) by proposition.2 and 3. ie, *C*(*X*) ~= ϕ (*C*(*X*)) *C*(*K*(*X*)).

This answers question number(4) (Wang, n.d.). \Box Point-wise Convergence Topology On *C*(*X*) and *C*(*K*(*X*))

In this section, we consider point-wise convergence topology on C(X) and C(K(X)) to answer questions (1) to(4) (Saito, 2003).

Obviously, answers to questions (2) and (3) are same as given in proposition(1) and example(1.1), respectively.

Proposition 4: ϕ *is continuous.*

Proof. Let $\phi(f) \in \langle K : \langle Ui \rangle \rangle$ where $K \in K(X)$ and Ui is an open set in K(X)

 $f(K) \cap Ui \neq \emptyset$ implies $f(xi) \in Ui \cap f(K)$ for some $xi \in K$

Then $\langle xi : Ui \rangle$ is a sub-basic neighbourhood of f, which means ϕ is continuous. \Box

Proposition 5. ϕ is open from C(X) to ϕ (C(X)) (Zhao, n.d.).

Tn Proof. Let Tn i=1 $\langle xi : Ui \rangle$ be any basis open set in C(X)Let $f \in$ Then, $\phi(f) \in i=1$

```
\langle xi:Ui \rangle
```

Tn T $\langle \{x_i\} : \langle U_i \rangle \rangle \phi(C(X))$ which is open in $\phi(C(X))$

Proposition 6. C(X) is embedded in C(K(X)).

Proof. ϕ is a homeomorphism from *C*(*X*) to ϕ (*C*(*X*)) *C*(*K*(*X*)) by proposition.4 and 5. \Box

Acknowledgement

Authors thank the management of Rajagiri School of Engineering and Technol- ogy for providing research facilities.

References

Charatonik, W. J. «Inducible Mappings Between Hyperspaces.» Bulletin of the Polish Academy of Sciences, 46, 1, 1998, 5-9.

Earnest, Michael. «Topologies on Spaces of Subsets.» *Topology and Its Applications*, Trans. American Mathematical Society, 71, 1951, 151-182.

Hiroshi, Hosokawa. «Induced Mappings on Hyperspaces.» *Tsukuba J. Math.*, 21(1), 1997, 239-250.

Hurewicz, W. J., and A. S. Kluge. «Existence of a Topological Markov Chain Representation.» *Transactions of the American Mathematical Society*, 207, 369-384.

Lyubich, William J. P. «Topological Dynamics.» Annals of Mathematics Studies, 102. Princeton University Press.

Mizokami, Takami. «The Embedding of a Mapping Space in Compact Open Topology.» *Topology and Its Applications*, 82, 1998, 355-358. Nadler, Sam B. *Hyperspaces of Sets*. Marcel Dekker Inc, 1978.

Saito, Yoshikazu. «Topological Properties of Dynamical Systems.» Proceedings of the Japan Academy, Series A, Mathematical Sciences, 66(2), 34-38.

Saito, Yoshikazu. «Topological Entropy and Its Applications to Dynamical Systems.» *Japanese Journal of Mathematics*, 19(1), 1-12.

Wang, Yuan. «On the Topological Entropy of Non-Expanding Maps.» Topology and Its Applications, 113(1), 65-76.

Weiss, B. and Y. Kifer. *Ergodic Theory and Topological Dynamics of Dynamical Systems*. Mathematical Surveys and Monographs, Vol. 5. American Mathematical Society.

Zhao, Yun. «A Study on Topological Dynamics of Discrete Dynamical Systems.» Dynamical Systems and Applications, 12(2), 147-157.