
Abstract
The aim of the proposed method is to solve the difficulties associated with anomaly detection and real-time data processing in 
complex network systems. The process begins by collecting data from internet of things (IoT) devices and smart grid sensors. Advanced 
interpolation techniques are used in pre-processing methods to deal with missing data, while the Isolation Forest algorithm is used 
to find outliers. Ensures data normalization through robust scaling, reducing the impact of outliers. Higher-order statistics such as 
skewness, kurtosis, and entropy measures, as well as various statistical metrics such as mean absolute deviation (MAD), interquartile 
range (IQR), and coefficient of variation (CV) are extracted in the feature extraction process. A unique method called hybrid horse-
based zebra optimization (HHZO) is used to select features. It combines the zebra optimization algorithm (ZOA) and the horse herd 
optimization algorithm (HHO). Weighted ensemble energy quality residual attention network (WEARN-PQ) architecture is proposed 
for deep learning-based detection, which integrates extended recurrent neural networks (Stack-RNN) and stack-gated recurrent units 
(GRU) with attention layers and convolutional neural networks (CNN) with residual connections and attention mechanisms. To ensure 
reliability, split-sampling K-Fold cross-validation is used during training and validation.
Keywords: Smart grid sensors, Hybrid Horse based Zebra optimization, Weighted ensemble based attention-residual network, Power 
quality, Stacked gated recurrent units, K-Fold cross-validation.
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Introduction
Solid-state device employment in a power system may lead 
to power delivery to end users that are not balanced and 
may exhibit harmonics, flashing, notches, spikes, and voltage 
swings. For generating, transmission, and distribution 
systems, the primary goal is to guarantee a steady, 
uninterrupted sinusoidal voltage with balanced sinusoidal 
currents. For sensitive and important loads, smooth, 
continuous sinusoidal voltage with regulated currents 
and consistent frequency and magnitude is required 
(Mohamed, 2022; Sekhar, 2022; Nandagopal et al., 2023). A 

protective system malfunction could result in major losses 
of data, time, product quality, and services if incompetent 
power providers are unable to supply such highly qualified 
electricity. Clear power quality standards have been created 
by the International Electrotechnical Commission (IEC) and 
the Institute of Electrical and Electronics Engineers (IEEE) in 
order to guarantee uniformity in power quality (Ratnakaran 
et al., 2023; Ravi and Kumar, 2023).

There is a sharp increase in the usage of distributed 
generation (DG) technologies, such as fuel cells, solar 
power plants, wind turbines, and others. Diverse economic, 
environmental, and technical advantages come with DG. 
On the other hand, DG integration with electric utilities 
systems is fraught with difficulties (Afzal et al., 2022; Akpolat 
et al., 2023; Rajagopalan et al., 2022). The main DG control 
parameter is reactive power compensation. The energy 
consumption patterns of large loads can frequently be 
changed, causing voltage sags and swells in the system 
that can change the true power demand. Reactive power 
that has not been adjusted can also have an impact on 
distributed generation (DG) systems’ efficiency, power 
factor (PF), and active power capacity (Ayalew et al., 2022; 
Khalkhali et al., 2022; Thentral et al., 2022). When connecting 
DG systems to the utility grid, power electronic converters 
(PECs) must be used in order to guarantee the equipment’s 
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safe operation and enable source switching. Though this 
can lead to a number of power quality (PQ) problems 
(Eristi and Eristi, 2022), reactive power loads, imbalances, 
flicker, interruptions, neutral current, impulse transients, 
voltage and current harmonics, and voltage sag/swell are 
all included in this spectrum (Krishna et al., 2022; Kumar et 
al., 2022).

Power electronics switching devices are widely used, 
which has led to a number of PQ issues with voltage and 
current in transmission systems (Sarita et al., 2023). PQ issues 
in networked power systems, such as low power factor, 
reactive power demand, load imbalances, and excessive 
current harmonics, can be categorized as issues pertaining 
to utilities or customers (Rao et al., 2023). Utility-related 
difficulties, on the other hand, include things like flicker, 
notches, voltage sag/s well, uneven loads, and voltage 
distortions (Ravi and Kumar, 2023). PQ issues can drastically 
decrease. These PQ issues may result in decreased power 
transmission efficiency as well as harm to distribution 
system-connected equipment. The main contributions of 
the paper are as follows:
• A unique optimization approach is proposed for 

selecting the most relevant features from the dataset. 
This approach combines two algorithms, the horse 
herd optimization algorithm (HHO) and the zebra 
optimization algorithm (ZOA), to enhance feature 
selection.

• A specialized architecture called WEARN-PQ is 
introduced for deep learning-based anomaly detection. 
This architecture integrates various deep learning 
techniques such as CNNs, GRUs, and Stack-RNNs.

• Training and validation of the models are performed 
using K-Fold cross-validation with stratified sampling. 
This technique helps ensure the robustness and 
reliability of the models by systematically validating 
them on different subsets of the data.

The study is organised as follows: section 2 discusses 
current existing works. Section 3 explains the suggested 
method for identifying migraines, section 4 compares the 
findings of our proposed model to existing methodologies, 
and section 5 concludes the study with a conclusion.

Literature Review
The power quality in integrated solar energy systems was 
enhanced by using a modular multilevel converter (MMC) 
as the basis of a unified power quality conditioner (UPQC) 
to improve the electrical reliability of medium-voltage 
and high-voltage solar power systems connected to a PV 
grid. The proposed MMC-UPQC is highly standardized and 
features low DC link voltage, excellent harmonic isolation, 
and improved main system voltage regulation. Since the 
fuzzy controller deals with uncertainties and nonlinearities 
in the system, it is used as a DC voltage regulator. The system 
can be implemented in scenarios where complex system 

dynamics occur because it uses a set of fuzzy rules to help 
map input signals to output signals (Garikapati et al., 2023).

The frequency deviation identification and fault effect 
analysis in a smart solar-connected grid were evaluated 
using several new islanding detection techniques for 
grid-connected PV systems. As per the discourse, the 
anti-islanding research trend can be broadly classified 
into two categories: passive approaches, which rely on 
measuring system parameters like frequency and voltage. 
Unfortunately, not all load circumstances can be trusted 
using passive approaches, and setting thresholds might be 
challenging because of their size. At the time of islanding, the 
injected signal causes a terminal voltage variation (Tripathi 
and Pachori, 2023).

Artificial neural network (ANN) controller with an ideal 
design and performance study was created for a UPQC that 
was connected to both solar and batteries. A reduction in 
the mean square error (MSE) is the main objective of the 
FF-ANNC suggestion. In addition, this will reduce sag, swell, 
and other problems and increase power factor (PF). It will 
also keep the DC link capacitor voltage (DLCV) constant 
during load and radiation fluctuations. To assess how 
well the suggested FF-ANNC performed, five test studies 
with various load kinds and source voltage balancing/
unbalancing circumstances were employed (Ramadevi et 
al., 2023).

The power quality issues in solar PV integrated power 
systems are mitigated by ANFIS-controlled MMC-UPQC. To 
improve power quality, the endeavor seeks to limit changes 
in voltage and current, remove harmonics produced by 
the VSC, manage the DC link voltage, and compensate for 
reactive power requirements from the PV system and load. 
The adaptive neuro-fuzzy inference system is the controller 
utilized for MMC-UPQC control in DC voltage regulation 
(ANFIS). Numerous dynamic situations are considered, 
including changes in demand, irradiance fluctuations for 
the PV system, and voltage sag and swell at the point of 
common coupling (PCC) (Garikapati et al., 2023).

An innovative fuzzy logic controller with MLIUPQC 
improving the quality of PV-BESS photovoltaics was used 
in this study. A battery energy storage system (BESS) with a 
fuzzy logic controller (FLC) is provided for a solar-powered 
multilayer UPQC inverter. It was simpler to resolve power 
quality issues in the distribution system by utilizing the 
new topology. Shunt and series regulators linked to the 
distribution system’s common PCC enable UPQC regulation. 
More improvements have been made to system stability 
and power quality than with UPQC’s traditional two-level 
inverter and PI controller architecture (Tejakrishna and 
Ramu 2022).

UPQC and the updated multilevel modular converter 
work together to improve power quality. To address the 
power quality challenges related to voltage and current, 
this study discusses the implementation of a modified UPQC 
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based on a modular multilevel converter. Moreover, MMC 
improves system performance compared to traditional 
methods and also has a very simple modular design. The 
proposed design provides voltage-related compensation 
using a seven-level MMC and current compensation using 
a low-voltage source inverter with four switches (Thentral 
et al., 2022).

Power quality using solar PV fed UPQC was enhanced 
using an updated generalized integrator-based control 
approach. This study discusses a modified generalized 
integrator with DC offset elimination capabilities that control 
a UPQC with SPVA (UPQC-SPVA) system. The extracted 
basic element of the load current is processed by the shunt 
active filter of the UPQC-SPVA system to produce reference 
currents. This control method improves power quality (PQ) 
in a number of ways, including reactive power adjustment, 
harmonic elimination, grid voltage sag reduction, and 
voltage swell mitigation. By adding a solar PV array at the 
UPQC DC connection, this solution offers benefits for clean 
energy and increases PQ (Chandrakala Devi et al., 2020).

Problem statement
Although solar photovoltaic (PV) systems are being 
integrated into power grids at an increasing rate, power 
quality problems still exist and pose threats to the stability 
and dependability of the grid. These problems include 
fluctuations in voltage and current, harmonic distortions, 
spikes and drops in voltage, and demands for reactive 
power. Because these issues are dynamic in nature, 
traditional power quality mitigation strategies are frequently 
insufficient to handle them, particularly in solar-integrated 
systems where uncertainties and nonlinearities are common. 
There is still a need for dependable, effective, and flexible 
solutions that can successfully mitigate power quality issues 
in solar PV integrated power systems, despite the fact that 
numerous research efforts have proposed solutions like 
UPQCs and advanced control methods like fuzzy logic, 
ANNs, and fuzzy-based modular control.

When it comes to dealing with dynamic system variables 
such as load changes and solar radiation changes, existing 
systems often face obstacles such as complex control design, 
difficulties in defining thresholds and island detection 
limits. Therefore, to ensure grid stability and reliability 
in the presence of renewable energy sources, there is an 
urgent need for innovative research and development 
to improve the power quality of integrated photovoltaic 
systems. Research and development efforts should focus on 
developing advanced control strategies, efficient hardware 
applications, and robust island detection techniques.

Proposed Methodology
The aim of the proposed methodology is to address 
the challenges of anomaly detection and real-time data 
processing in complex network systems. Smart networked 
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Figure 1: Block diagram of the proposed PQ assessment model

sensors and Internet of Things (IoT) devices are used to 
collect and track a continuous stream of data. Data integrity 
is ensured through advanced pre-processing techniques 
such as interpolation and outlier detection. Robust 
measurement strategies standardize data and reduce 
the impact of outliers. Time series analysis and higher-
order statistics are used in the feature extraction phase to 
extract important insights. Feature selection is performed 
using the unique hybrid HHZO algorithm. Deep learning-
based anomaly detection is enabled by the WEARN-PQ 
architecture, which combines CNN, SGRU and Stack-RNN 
networks. Figure 1 shows the workflow of writing the article.

Pre-processing
The pre-processing phase of this technique involves outlier 
selection using the isolation forest algorithm to find and 
remove unusual data points. To ensure the completeness 
of the dataset, interpolation techniques are used to fill in 
missing data. Robust scaling is used to standardize the data 
and reduce the impact of outliers.

Data cleaning

• Isolation tree
The procedure for building an isolation tree (iTree) in an 
isolated forest (iForest) is based on the idea of   making 
random partitioning decisions. There are two sections of the 
IF. The first step is to create an isolated forest using iTrees, 
and the second is to determine the degree of skewness for 
each study sample.

IF is used for the calculation and evaluation of abnormal 
scores for any study sample. This means that you should walk 
through every iTree in the forest one at a time, extract the 
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sample’s node depth from each iTree, and then figure out 
the sample’s average depth across the forest. Considering 
a subsampled set of  instances, the sample’s average path 
length is,

  (1)

Where  is the harmonic number, which is calculated 
using the Euler’s constant, . The 
average of  is , which use to normalize , where  
is the depth of instance  in the iTree node. The definition 
of the instance ’s anomaly score is,

  (2)

Where the average of  from a group of iTrees is 
denoted by . The probability that the sample  is 
an anomalous point increases with the distance between 

 and 1. It is more likely to be a normal sample the closer 
it is to 0.

• Spline interpolation
A smooth interpolation result is ensured by spline 
interpolation, which uses cubic interpolation to create 
piecewise polynomials with continuous second-order 
derivatives. The shape of a spline is modeled for  
pair of observations  by using 
polynomials given in Eq. (6) to interpolate between all the 
pairings of observations .

  (3)

Normalization using robust scaling 
A technique called robust scaling uses statistics that are 
resistant to outliers to scale features. By removing the 
median, this scaler quantiles the data (IQR: Interquartile 
Range is the default).

  (4)

Where IQR stands for interquartile range,  for 
X’s median,  for the scaled feature, and  for the 
original feature. Strong in the face of outliers, which makes it 
appropriate for features with skewed distributions or outliers.

Feature Extraction
The goal of the feature engineering stage is to extract 
useful details from the pre-processed data. This involves 
collecting higher-order statistics like kurtosis and skewness 
and performing time-series analysis to find dependencies 
and trends in the data across time.

Higher-order statistics
The features like skewness, kurtosis, and entropy measures 
are extracted from this stage.

• Kurtosis
The degree to which the data deviate from a normal 
distribution is indicated by a statistic known as kurtosis. 
Conversely, huge outliers or heavy tails are typically present 
in data sets with a high kurtosis. Light tails and a few outliers 
are common features of data sets with low kurtosis. The 
worst-case situation would be a uniform distribution.

  (5)

• Skewness
The degree to which the data deviate from a normal 
distribution is indicated by a metric known as kurtosis. 
Similarly, datasets with high kurtosis usually feature 
heavy tails or notable outliers. Data sets with low kurtosis 
frequently have light tails and no outliers. The worst-case 
scenario would be a uniform distribution.

  (6)

• Entropy measures
The flow elements’ entropy is calculated for every time slot. 
The randomness of a set of data is measured by entropy. 
There is an inverse relationship between entropy and data 
randomness. For a given random variable X, its entropy 
equals.

  (7)

Where the range of values of X is denoted by 
, and the probability of  has the value  is represented 
by . Among all probability distributions, the uniform 
distribution entropy is the biggest. The quantity of 
unique xi values in a time slot is denoted by N0.

Statistical measures
In statistical measures, features like MAD, IQR and CV are 
extracted.

• Mean absolute deviation (MAD)
The data’s dispersion can be inferred from this dependable 
measure of data point variability around the median 
value. The standard deviation and variation are two other 
measurements of variability or dispersion, but the MAD is 
more reliable since it doesn’t change when the extreme 
values change. Determined by computing the absolute 
deviation from the given data’s median using the MAD values.

  (8)

  (9)

Where  denotes an individual observation in the 
provided data, and  denotes the data’s median.

• Interquartile range (IQR)
It calculates the range that contains the middle 50% of 
the data. Variability is the characteristic that divides a 
dataset into quartiles or regions that contain the majority 
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of the value. The quartiles of the dataset are the first, 
second, third, and fourth. The symbols SQ1, SQ2, and SQ3, 
respectively, indicate the three quartile boundaries that 
separate the dataset’s equal halves. The first half of the 
dataset’s SQ1 represents the middle value; the second half’s 
SQ2 represents the median value; and the third half’s SQ3 
represents the middle value. Following is the definition of 
the interquartile range.

  (10)

• Coefficient of variation (CV)
The CV provides a methodical approach to evaluating 
the dispersion of a probability or frequency distribution 
in statistics. Lower values of the coefficient of variation 
indicate higher stability and less fluctuation in the data. The 
coefficient of variation formula is provided below.

  (11)

Where  is the coefficien t of variation,  denotes the 
variance and  represents the mean value.

Time-series analysis

• Autocorrelation coefficients
The correlation similarity between data as a function of the 
time lag between them is represented by the autocorrelation 
function (ACF). It is a time domain metric for the stochastic 
process memory, not revealing anything about the 
frequency content of the process. For an error data , the 
ACF is defined generally as follows,

  (12)

The preceding ACF formulation reduces to for a stable 
stochastic process with variance .

  (13)

In this instance, time is irrelevant. A white noise 
mechanism’s autocorrelation function is zero for all lags 
except lag zero, for which a value of unity denotes total 
uncorrelatedness. 

Feature Selection Using HHZO Algorithm
The input for the feature selection step is the features that 
have been retrieved using the various procedures. The HHZO 
algorithm, which combines the HHO and ZOA algorithms, is 
used to choose the best characteristics from among these 
features. The defense strategy of the HHO is incorporated 
within the defense property of the ZOA optimization to 
improve the performance of the zebra.

Initialization 
Since zebras are a part of its population, HHZO is an 
optimizer based on populations. The plain where the zebras 
are located is the problem’s search space, and each zebra 
stands for a potential mathematical solution.

The placements of each zebra (search agent) inside the 
search zone define the values for the selection parameters. 
As a result, each zebra may be represented as a member 
of the HHZO by means of a vector, the values of which 
correspond to the variables under consideration. A matrix 
may be used to analytically model the zebra population. 
The zebras’ starting places are chosen at random inside the 
search area. The HHZO population matrix is given by Eq. (14).

  (14)

Where represents the zebra population,  is the  
zebra,  is the number of option variables,  is the number 
of population members (zebras), and is the value for the 

 problem variable that the  zebra provided. Each zebra 
represents a possible fix for the optimization problem. As a 
result, using each search agent’s suggested values for the 
issue variables, the objective function may be evaluated. 
Equation (15) is utilized to provide the values acquired for 
the goal function as a vector.

  (15)

Where is the fitness function value attained for the  
search agent and F represents the vector of values for the 
objective function. The candidate solution that best suits 
the given problem is identified by comparing the values of 
the objective function. This process successfully evaluates 
the quality of the candidate solutions that are linked with 
the given problem. Members of the HHZO population are, 
therefore, updated in two distinct periods during each 
repetition.

• Phase 1: Foraging behavior 
Population members are updated in the first phase 
using zebra behavior models during foraging searches. 
Within HHZO, the most exceptional individual within the 
population is recognized as the pioneer zebra, guiding the 
neighbor members of the population in the direction of its 
predetermined destination inside the search area. Therefore, 
it is possible to statistically model how zebras’ locations 
vary throughout the foraging phase using Eqs. (16) and (17).

  (16)

  (17)

Where is the top member and the pioneering zebra; 
 is its  dimension;  is a random number in the interval 
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[0, 1]; , where rand is a random value 
in the interval [0, 1]; and is its  dimension value. 
Based on the first phase, this represents the new status of 
the  zebra. As a result,  and if parameter 
, then the population movement varies significantly more.

• Phase 2: Techniques for defending against predators 
The position of HHZO individuals in the search region is 
updated in the second phase through the simulation of 
zebra defense systems against predator assaults. Zebras 
have several defense strategies depending on the kind of 
predator they face. Zebras defend themselves against lion 
attacks by running in a zigzag manner and occasionally 
turning sideways.

It is expected in the HHZO design that one of the 
following two scenarios is occur with an equal chance: 
• The zebra decides on an escape route after the lion 

assaults it. 
• When another predator attacks the zebra, it is decided 

how to go on the offensive.
The first tactic involves the zebras attacking the lions 

and running away from the attack in the area around their 
current location. This strategy can be formally represented 
by the mode  in Eq. (18). As a predator attacks a zebra, 
the herd’s closer members go in that direction as part of the 
second technique, which aims to confuse and frighten the 
attacker by forming a protective structure. In mathematics, 
the mode  in Eq. (18) represents the zebras’ approach. If 
the objective function has a higher value at the new site 
after the zebras are relocated, then they accept the change. 
Using Eq. (19), this update condition is modeled.

 (18)

  (19)

The other behavior used in HOA is called the horses’ 
protection mechanism. It is characterized by the horses 
running from horses who show inadequate reactions. The 
defense system is described by Eq. (20) and Eq. (21). 

Where
  (20)

  (21)

The escape vector of the  horse from the average of 
some horses with worst placements, which are illustrated by 
the X vector, is indicated by  in the equations above. 

 is the number of horses with the worst placements. It 
is advised to fix the value of  to 20% of the total number 
of horses. The reduction factor for dieter is represented by 

. AZ denotes the attacking zebra’s status, whereas  
represents its  dimension value. The objective function 
value is  and its  dimension value is .

WEARN-PQ -Based Detection
The WEARN-PQ model represents an ensembled approach 
to anomaly detection in power quality data within grid 
systems. Leveraging a weighted ensemble approach, it 
combines predictions from multiple sub-models, each with 
diverse architectures or configurations, to enhance overall 
detection performance. Different elements of the incoming 
data are constantly highlighted and weighted using 
attention techniques, enabling the model to concentrate on 
the time steps or attributes that are most essential. Residual 
connections within the neural network architecture facilitate 
effective information flow and alleviate the vanishing 
gradient problem, enabling the model to learn complex 
representations of the data. The integration of CNNs for 
spatial feature extraction, stacked GRUs with attention layers 
for modeling sequential dependencies, and Stack-RNNs 
for capturing hierarchical patterns ensures comprehensive 
analysis of both spatial and temporal aspects of the power 
quality measurements. This combined architecture enables 
the WEARN-PQ model to accurately detect anomalies 
in power quality data, contributing to the proactive 
management and maintenance of grid infrastructure. Figure 2  
shows the comparison of accuracy for different k -folds.

A CNN equipped with an attention function and residual 
connection
To shorten the training period and lower the training 
parameters, it employs residual connections. Additionally, 
by taking into account only the most crucial data, present 
a hybrid attention technique that enhances the network 
focusing on those more crucial regions on the feature 
maps. To be more precise,  utilize inRA-Conv (outRA-
Conv) to denote the location of a hybrid attention module 
within (between) the residual convolution. As a result, the 
classifiers are called classifier-inRAC and classifier-outRAC, 
respectively. Through the use of channel and spatial 
attention mechanisms, the cascaded hybrid attention 
module is able to compute complementary attention by 
concentrating on channel and attention, respectively. Let 
F in particular, represent the input 2D feature map of the 
channel attention sub-module. According to Eq. (22) the 
1D output F is further processed by the spatial attention 
sub-module to create a more refined 2D feature map M.

  (22)

Where  and  stand for the channel and spatial 
functions, respectively and are provided by Eq. (23) and Eq. 
(24). The element-wise multiplication is given in Eq. (23) and 
Eq. (24).

 (23)

  (24)

Where  is a convolutional function having a kernel size 
of , MLP is the multi-layer perceptron, AvgPool (MaxPool) 
is the average (max) pooling, and σ is the sigmoid function.
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SoftMax layer 
The SoftMax function is utilized by the network output 
nodes to determine the total number of unordered classes. 
Eq. (25) defines a SoftMax function.

  (25)

Where n is the number of output nodes,  is the input 
of the network for the output node, and  is the 
score of the  output node. Actually, the total of all the 
output values  is 1, as each one represents a probability 
between 0 and 1.

SGRU modeling 
A number of GRU units make up the SGRU. The input 
sequence  for time sequence t initially enters 
hidden layers  to gather all of the data from 
previous time steps. Subsequently, the outputs from the 
bottom hidden layers at an identical time step are used as 
input by the top hidden layers to extract further features. In 
particular, {  } are the higher layers of the hidden 
layers. As can be observed in Eq. (29), the update gate, reset 
gate, and candidate value for each layer’s hidden state  are 
found using Eq. (26), Eq. (27), and Eq. (28). The embedding 
vector  is placed in the first layer. Utilize the hidden state 
from the most recent time step in place of et in Eq. (26), Eq. 
(27), and Eq. (28), starting from the second layer upward in 
the past layer .

  (26)

  (27)

  (28)

   (29)

SRNN network
An input layer, an output layer, and a hidden layer with 
a recurrent time-delayed link constitute an RNN. The 
transmission of information over time is made possible by 
the recurrent link. When given a series of tokens, an RNN 
predicts the probability of the next symbol by using 
the one-hot encoding ( ) of the current token as input. 
Additional details about the tokens viewed in the sequence 
prior to this one is stored in a hidden layer consisting of m 
units. More specifically, using the encoding of the current 
token and its previous state , the hidden layer ht is 
updated at each time t, as stated in the Eq. (30):

  (30)

W h e r e  i s  t h e  m a t r i x  o f  r e c u r r e n t 
weights,  is the  token embedding matrix, and 

 is the sigmoid activation 
function applied coordinate wise. The network then outputs 
the probability vector  of the subsequent token based on 
the state of these hidden units, as shown by the Eq. (31):

  (31)

Where  is the  output matrix,  is the number of 
distinct tokens, and  is the softmax function. This design 
can pick up on quite complicated patterns that resemble 
those that N-grams are able to record. The RNNs are now 
fascinating for language modeling, but it’s possible that 
they can’t understand how algorithmic patterns are created. 
The ability to add an external memory to RNNs, which can 
theoretically learn basic algorithmic patterns.

• Pushdown network
The pushdown automata, or automaton that uses a stack, 
served as the model for the basic structured memory. The 
top element of a stack is the only way to access this kind 
of persistent memory. A stack is capable of three basic 
operations: NO-OP does nothing, PUSH adds a new element 
to the top of the stack, and POP removes the top element. 
Initially, examine a basic design in which the model is limited 
to selecting either a POP or a PUSH at every time step. It 
considers that a 2-dimensional variable at which the value 
of the hidden variable  determines this decision:

  (32)

Where  is a SoftMax function and  is a  matrix, 
where  is the hidden layer’s size. It indicates the likelihood 
of the PUSH action by , and the likelihood of the 
POP action by . Assume that the stack is kept in a 
vector st of size  at time . Keep in mind that  is not set and 
can be changed as needed, allowing the model’s capacity 
to expand. Position 0 stores the top element, which has the 
value :

  (33)

Where the matrix  is . The value below takes 
the place of the top element if  (all values are 
shifted by one position up in the stack structure). All values 
in the stack are moved down and a value is added to the top 
if  equals 1. Likewise, the following update rule for 
an element in the stack that is stored at a depth of :

  (34)

The information is transferred to the concealed layer at the 
subsequent time step using the stack. A stack that is empty 
has  set to −1. The concealed layer has been updated as:

  (35)

Where  are the  top-most elements of the stack 
at time , and  is a  recurrent matrix ( ). 

• Stack with a no-operation
By making a small modification to the stack update rule, the 
NO-OP action enables the stack to maintain the same value 
at the top. In lieu of Eq. (36):

(36)
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Ensemble model 
Ensemble modeling is the process of integrating and 
weighing individual outcomes to make a final decision. 
Through the training of several independent classifiers and 
their combination to increase the model’s overall predictive 
capacity, the deep learning models’ accuracy has increased 
because to these tactics. They use a number of classifiers 
like CNN, SGRU and SRNN and combine them by averaging 
the weights of the different classifiers. When the model is 
subjected to this process, its overall accuracy is higher than 
when it is subjected to a single classifier. 

Result and Discussion
In this section, the results obtained for the proposed power 
quality management is discussed with the existing methods. 
The historical data is used in this work for predicting the 
power quality. The total data is divided into training (70%) 
and testing (30%). The implementation is performed using 
the Python platform. The performance metrics like accuracy, 
precision, recall, F1-score, recall, MCC, MAE, MSE and RMSE 
are evaluated for the comparison.

Overall Comparison of the Proposed Model by 
Varying the K-fold 
The original sample is divided into k subsamples at random 
in k-fold cross-validation. For the classifier’s test, one 
subsample is kept as validation data, while the rest k − 1 are 

utilized as training data. The cross-validation procedure is 
then carried out k times, using one instance of the test data 
for each of the k subsamples. After that, an average of the k 
fold findings is obtained to generate a single performance 
estimate. 

The Table 1 compares the performance of different 
machine learning techniques – RNN, LSTM, Fuzzy Logic, 
ANN and the proposed method – on several k values. The 
proposed method outperforms other methods in terms of 
highest precision (0.9857), precision (0.9856), recall (0.9856), 
F1 score (0.9856), R2 (0.9623) and MCC (0.9809), indicating 
overall correctness, validity and balance, efficiency. It also 
achieves the lowest errors, with MAE (0.0243), MSE (0.0483), 
and RMSE (0.2198) showing the lowest mean and squared 
prediction errors. This means that the proposed technique 
is the most effective and reliable for the given data and task.

The Table 2 compares the performance of different 
machine learning techniques – RNN, LSTM, fuzzy logic, 
ANN and the proposed method – on several k=2 metrics. 
With the best precision (0.9923), precision (0.9924), recall 
(0.9923), and F1-score (0.9923), the proposed strategy 
consistently outperforms others. Additionally, it has the 
largest MCC (0.9898) and R2 (0.9815), which means it can 
generate accurate binary rankings. Moreover, the proposed 
approach is characterized by the smallest mean and squared 
prediction errors, as evidenced by the MAE (0.0123), MSE 

Table 1: Comparison of the proposed and existing techniques for k=1

Performance metrics RNN LSTM Fuzzy logic (Garikapati et al., 2023) ANN (Ramadevi et al., 2023) Proposed

Accuracy 0.9690 0.9597 0.9503 0.9753 0.9857

Precision 0.9690 0.9595 0.9503 0.9753 0.9856

Recall 0.9689 0.9599 0.9501 0.9754 0.9856

F1 0.9690 0.9596 0.9502 0.9754 0.9856

R2 0.9180 0.8796 0.8628 0.9401 0.9623

MCC 0.9587 0.9462 0.9338 0.9671 0.9809

MAE 0.0527 0.0707 0.0837 0.0397 0.0243

MSE 0.1053 0.1467 0.1703 0.0743 0.0483

RMSE 0.3246 0.3830 0.4127 0.2726 0.2198

Table 2: Comparison of the proposed and existing techniques for k=2

Performance metrics RNN LSTM Fuzzy logic (Garikapati et al., 2023) ANN (Ramadevi et al., 2023) Proposed

Accuracy 0.9757 0.9687 0.9353 0.9820 0.9923

Precision 0.9756 0.9688 0.9353 0.9819 0.9924

Recall 0.9757 0.9686 0.9353 0.9820 0.9923

F1 0.9756 0.9687 0.9353 0.9820 0.9923

R2 0.9370 0.8960 0.8205 0.9440 0.9815

MCC 0.9675 0.9582 0.9138 0.9760 0.9898

MAE 0.0390 0.0590 0.1107 0.0320 0.0123

MSE 0.0763 0.1297 0.2247 0.0687 0.0237

RMSE 0.2763 0.3601 0.4740 0.2620 0.1538
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(0.0237) and RMSE (0.1538) values. This means that after 
considering k=2, the proposed method outperforms RNN, 
LSTM, fuzzy logic and ANN in terms of efficiency and 
reliability.

Table 3 uses different performance metrics to compare 
the proposed method with existing methods (RNN, LSTM, 
fuzzy logic and ANN) for k=3. With the highest values   of 
precision, precision, recall, F1-score (0.9900), R-squared 
(0.9682), and Matthews correlation coefficient (0.9867), the 
proposed method outperforms all other methods in terms 
of performance. It also has the fewest errors, with an RMSE 
of 0.1992, an MSE of 0.0397, and an MAE of 0.0183.

Accuracy
The proposed method outperforms RNN (0.9690), LSTM 
(0.9597), fuzzy logic (0.9503) and ANN (0.9753) with a 
maximum accuracy of 0.9857 for k=1. Similarly, for k=2, 
the proposed approach achieves a maximum accuracy of 
0.9923, out performing ANN (0.9820), RNN (0.9757), LSTM 
(0.9687), and fuzzy logic (0.9353). Moreover, with a maximum 
accuracy of 0.9900 for k=3, the proposed method remains 
superior to RNN (0.9637), LSTM (0.9643), fuzzy logic (0.9420), 
and ANN (0.9773) (Figure 1).

Table 3: Comparison of the proposed and existing techniques for k=3

Performance metrics RNN LSTM Fuzzy logic (Garikapati 
et al., 2023)

ANN (Ramadevi et al., 
2023) Proposed

Accuracy 0.9637 0.9643 0.9420 0.9773 0.9900

Precision 0.9637 0.9643 0.9420 0.9774 0.9900

Recall 0.9635 0.9644 0.9419 0.9774 0.9900

F1 0.9636 0.9643 0.9419 0.9774 0.9900

R2 0.9115 0.9026 0.8424 0.9357 0.9682

MCC 0.9516 0.9524 0.9226 0.9698 0.9867

MAE 0.0580 0.0603 0.0973 0.0397 0.0183

MSE 0.1107 0.1223 0.1960 0.0823 0.0397

RMSE 0.3327 0.3498 0.4427 0.2869 0.1992

Figure 2: Comparison of the accuracy for different K- folds Figure 3: Comparison of the precision for different K- folds

Precision
The proposed method outperforms RNN (0.9690), LSTM 
(0.9595), fuzzy logic (0.9503) and ANN (0.9753) at k=1. The 
maximum accuracy is 0.9856. The proposed approach 
outperforms RNN (0.9756), LSTM (0.9688), fuzzy logic (0.9353) 
and ANN (0.9819) with the highest accuracy of 0.9924 for k = 2.  
In the same vein, the proposed method further sequence 
outperforms RNN (0.9637), LSTM (0.9643), fuzzy logic (0.9420) 
and ANN (0.9774) at k = 3. Figure 3 shows the comparison of 
precision for different k-folds.

F1-score
When k = 1, the proposed technique achieves the highest 
F1 score of 0.9856, outperforming RNN (0.9690), LSTM 
(0.9596), fuzzy logic (0.9502), and ANN (0.9754). For k=2, 
the proposed method again achieves the highest F1 score 
of 0.9923, outperforming RNN (0.9756), LSTM (0.9687), 
fuzzy logic (0.9353), and ANN (0.9820). Similarly, with k = 
3, the proposed technique maintains an excellent F1 score 
of 0.9900, outperforming RNN (0.9636), LSTM (0.9643), 
fuzzy logic (0.9419), and ANN (0.9774). Figure 4 shows the 
comparison of F-measure for different k- folds.
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R2 error
Comparing the R2 error measure in Tables 1, 2, and 3, 
for k=1, the proposed technique achieves the highest 
R2 value of 0.9623, outperforming RNN (0.9180), LSTM 
(0.8796), fuzzy logic (0.8628) and ANN (0.9401). For k=2, 
the proposed method again leads with the highest R2 
value of 0.9815, surpassing RNN (0.9370), LSTM (0.8960), 
fuzzy logic (0.8205), and ANN (0.9440). Similarly, with k=3, 
the proposed technique maintains its superior R2 value at 
0.9682, exceeding RNN (0.9115), LSTM (0.9026), fuzzy logic 
(0.8424), and ANN (0.9357). Figure 5 shows the MAE for 
different K- folds.

MCC
For k=1, the proposed technique achieves the highest 
MCC of 0.9809, outperforming RNN (0.9587), LSTM 
(0.9462), fuzzy logic (0.9338), and ANN (0.9671). For k=2, 
the proposed method again leads with the highest MCC of 
0.9898, surpassing RNN (0.9675), LSTM (0.9582), fuzzy logic 
(0.9138), and ANN (0.9760). Similarly, with k=3, the proposed 
technique maintains its superior MCC at 0.9867, exceeding 
RNN (0.9516), LSTM (0.9524), fuzzy logic (0.9226), and ANN 
(0.9698). Figure 6 shows the MCC for different K-folds.

MAE
When k=1, the proposed technique achieves the lowest 
MAE of 0.0243, outperforming RNN (0.0527), LSTM 
(0.0707), fuzzy logic (0.0837), and ANN (0.0397). For k=2, 
the proposed method again leads with the lowest MAE of 
0.0123, surpassing RNN (0.0390), LSTM (0.0590), fuzzy logic 
(0.1107), and ANN (0.0320). Similarly, with k=3, the proposed 
technique maintains its superior MAE at 0.0183, exceeding 
RNN (0.0580), LSTM (0.0603), fuzzy logic (0.0973), and ANN 
(0.0397). Figure 7 shows the comparison of R2 for different 
k-folds.

MSE
When k=1, the proposed technique achieves the lowest 
MSE of 0.0483, outperforming RNN (0.1053), LSTM 
(0.1467), fuzzy logic (0.1703), and ANN (0.0743). For k=2, 
the proposed method again leads with the lowest MSE 
of 0.0237, surpassing RNN (0.0763), LSTM (0.1297), Fuzzy 
Logic (0.2247), and ANN (0.0687). Similarly, with k=3, the 
proposed technique maintains its superior MSE at 0.0397, 
exceeding RNN (0.1107), LSTM (0.1223), fuzzy logic (0.1960), 
and ANN (0.0823). Figure 8 shows the comparison of recall 
for different K-folds.

Figure 5: Comparison of the MAE for different K- folds

Figure 4: Comparison of the F-measure for different K- folds

Figure 7: Comparison of the R2 for different K- folds

Figure 6: Comparison of the MCC for different K- folds
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RMSE
When k=1, the proposed technique achieves the lowest 
RMSE of 0.2198, outperforming RNN (0.3246), LSTM 
(0.3830), fuzzy logic (0.4127), and ANN (0.2726). For k=2, 
the proposed method again leads with the lowest RMSE of 

0.1538, surpassing RNN (0.2763), LSTM (0.3601), fuzzy logic 
(0.4740), and ANN (0.2620). Similarly, with k=3, the proposed 
technique maintains its superior RMSE at 0.1992, exceeding 
RNN (0.3327), LSTM (0.3498), fuzzy logic (0.4427), and ANN 
(0.2869). The comparison of RMSE values is displayed in 
Figure 9.

The AUC curve of the proposed model is shown in 
Figure 10.

Conclusion
In conclusion, the proposed methodology presents a 
holistic approach to address the intricate challenges of 
real-time data analysis and anomaly detection within 
complex grid systems. By integrating smart grid sensors 
and IoT devices and employing advanced pre-processing 
techniques, the methodology ensures the integrity and 
completeness of the data. Feature extraction and a novel 
hybrid optimization approach facilitate the extraction of 
meaningful insights and the selection of relevant features. 
The WEARN-PQ architecture, with its integration of various 
deep learning techniques, offers a powerful framework 
for anomaly detection. Through rigorous training and 
validation using K-Fold cross-validation with stratified 
sampling, the methodology ensures the robustness and 
reliability of the models. Overall, this methodology provides 
a comprehensive solution to enhance the efficiency and 
reliability of grid systems through proactive anomaly 
detection and timely intervention.
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