
Abstract
In the realm of IoT-driven precision agriculture, addressing missing data is crucial for reliable crop recommendation systems. This paper 
proposes the domain rules and MissForest (DRMF) algorithm to handle the above mentioned challenge. The proposed DRMF algorithm 
was thoroughly tested on an IoT agriculture dataset with the introduction of a missingness mechanism in the form of MAR with 10% of 
missing values. A comparison analysis with the usual imputation techniques such as mean ımputation, kNN imputation, linear regression, 
EM algorithm, multiple ımputation, and the standard MissForest was performed and the proposed method was found to perform better. 
The DRMF algorithm attained an unmatched root mean squared error (RMSE) value of 0.025 and a mean absolute error (MAE) value of 
0.012, displaying a significant superiority over its competitors. It is important to note that the algorithm also achieved a mean absolute 
percentage error (MAPE) of 5.0% and an R-squared value of 0.970, with the overall accuracy rate being 99.0%. The quantitative findings 
serve to emphasize the effectiveness of the DRMF algorithm in improving the prediction accuracy of crop recommendation models. 
The novelty of this research is in the combined approach that merges the computational power of the MissForest algorithm, and the 
insight offered by domain-specific agricultural rules.
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Introduction

Background
The use of internet of things (IoT) technology in agriculture, 
known as “smart farming,” has changed how farmers make 
decisions (Shukla, et al., 2023). Smart farming uses many IoT 
sensors to gather large volumes of data about soil, weather, 
and crop health (Ali et al., 2023). This data-focused approach 
can change how crops are managed, making better use of 
resources and increasing yields while reducing harm to the 

environment. However, the utility of these vast datasets is 
often compromised by the prevalence of missing values, 
which can significantly impair the performance of machine-
learning models (Shadgahr et al., 2023).

Recent studies focus on the critical role of IoT in 
agriculture. In a study, the authors have highlighted how IoT 
technologies facilitate real-time monitoring of agricultural 
environments, enabling the collection of high-resolution 
data that is crucial for precision agriculture practices 
(Molin et al., 2020). Similarly, Akhter and Sofi discussed the 
integration of IoT with advanced analytics and machine 
learning techniques to predict crop diseases and pests, 
thereby reducing crop losses and enhancing food security 
(Akhter & Sofi 2022).

Despite promising advancements, the practical 
application of IoT in agriculture faces significant challenges 
(Ali et al., 2023). One of the most pressing concerns is 
the accuracy and completeness of the data gathered 
(Saiz-Rubio, V & Rovira-Más 2020). According to Okafor 
and Delaney, missing data in IoT agricultural datasets is 
a common problem caused by a variety of factors, such 
as sensor failures, connectivity issues, and environmental 
interferences (Okafor and Delaney 2021). Missing data can 
significantly reduce the accuracy of predictive models and 
decision-making processes in precision agriculture (Burdett, 
H., & Wellen 2022).
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In recent studies, the authors explored the use of machine 
learning algorithms for imputing missing data in soil 
moisture datasets, demonstrating the potential to improve 
the reliability of agricultural decision-making systems 
(Boomgard-Zagrodnik, J. P., & Brown, D. J. 2022; Burdett, H., & 
Wellen, C. 2022). Moreover, the importance of incorporating 
domain-specific knowledge in the imputation process has 
been yielding more accurate and contextually relevant 
results (Thakur, K., & Kumar, H. 2023).

The presence of missing data in agricultural research 
presents a significant challenge for data analysts and 
researchers (Saini, P., & Nagpal, B. 2023). This problem 
becomes especially acute when analyzing large datasets, 
such as those containing weather or crop yield data (Nida 
et al., 2023). The proper handling of missing data is critical 
for obtaining reliable and accurate results in agricultural 
studies (Saini, P., & Nagpal, B. 2023). Missing data can reduce 
the effectiveness of predictive models and decision-making 
processes, affecting many aspects of crop management and 
agricultural planning (Nida et al., 2023).

Furthermore, missing data can occur for a variety of 
reasons, such as operational issues, equipment failures, 
or incomplete data collection procedures (Kumar, V., & 
Kumari, P. 2023). Addressing missing data with appropriate 
imputation techniques is critical for ensuring the integrity 
and completeness of agricultural datasets (Li et al., 2023). 
Imputation methods are critical for filling in missing values 
and improving the quality of data used for analysis and 
prediction (Sharma et al., 2023).

Researchers investigated various imputation techniques 
to effectively handle missing data in agricultural studies 
(Nida et al., 2023; Sharma et al., 2023; Arefin et al., 2024). 
These techniques range from simple statistical methods 
like mean imputation and linear interpolation to more 
advanced machine learning-based approaches like k-nearest 
neighbors (KNN) imputation and random forest imputation 
(Saini, P., & Nagpal, B. 2023; Nida et al., 2023).

Munaganuri et al. (2023) explored the integration of 
remote sensing data with ground-based measurements to 
enhance air quality monitoring. Their findings underscore 
the significant improvements in model accuracy when 
utilizing combined data sources, highlighting remote 
sensing’s pivotal role in environmental monitoring 
(Munaganuri et al., 2023).

Motivation
The motivation behind this study stems from the critical 
challenges faced by the agricultural sector in the era of 
IoT and data-driven farming practices. With the advent of 
precision agriculture, the reliance on extensive datasets for 
crop recommendation systems has become paramount. 
However, these datasets are often plagued by missing values 
due to various factors such as sensor malfunctions, data 
transmission errors, or environmental conditions affecting 

data collection. This missing data significantly undermines 
the accuracy and reliability of machine learning models 
used in crop recommendations, leading to suboptimal 
agricultural decisions and practices. Recognizing the 
potential of IoT in transforming agriculture, this research is 
driven by the urgent need to address the missing data issue. 
By integrating domain-specific knowledge with advanced 
imputation techniques, the aim is to enhance the quality 
of IoT agricultural data, thereby empowering farmers and 
agricultural managers with more precise and reliable crop 
recommendations. This, in turn, can lead to improved crop 
yields, optimized resource use, and increased sustainability 
in farming operations, contributing to food security and 
economic viability in the agricultural sector.

Problem Definition
The core problem addressed in this research is the pervasive 
issue of missing data within IoT-based agricultural datasets, 
which significantly impairs the functionality and accuracy of 
crop recommendation models. In the context of precision 
agriculture, where decisions are increasingly data-driven, 
the presence of incomplete datasets can lead to inaccurate 
predictions, suboptimal resource allocation and ultimately 
reduced crop yields. The challenge lies not only in the 
need to impute missing values but to do so in a manner 
that respects the intricate relationships between different 
agricultural parameters and adheres to domain-specific 
knowledge. This problem is compounded by the diversity 
and complexity of data generated in IoT-enabled agricultural 
environments, necessitating an imputation approach that 
is both sophisticated in handling high-dimensional data 
and sensitive to the unique requirements of agricultural 
ecosystems. Addressing this problem is crucial for leveraging 
the full potential of IoT in agriculture, enhancing the 
precision and reliability of crop recommendations, and 
facilitating more informed and effective farming practices.

Objectives
•	 To develop an imputation method that integrates 

domain-specific rules with machine learning algorithms.
•	 To evaluate the performance of the DRMF model in 

improving the accuracy of crop recommendation 
models.

Scope
The scope of this research encompasses the development 
and validation of the domain rules and MissForest (DRMF) 
algorithm, specifically designed for imputing missing data 
in IoT-based agricultural datasets. This work aims to bridge 
the gap between advanced machine-learning techniques 
and domain-specific agricultural knowledge, ensuring 
that the imputed values are both statistically robust and 
agronomically relevant. The research focuses on applying 
the DRMF algorithm to a representative IoT agricultural 
dataset, artificially subjected to missing data, to simulate 
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real-world conditions. The efficacy of the DRMF approach 
is assessed by comparing its performance with traditional 
imputation methods across several metrics, including 
accuracy, RMSE, and MAE. Additionally, the scope includes 
an exploration of the algorithm’s potential impact on crop 
recommendation systems and its broader implications for 
precision agriculture. Through this research, we seek to 
provide a methodological framework that can be adapted 
and applied to various agricultural datasets, thereby 
enhancing the decision-making processes in precision 
agriculture and contributing to the advancement of smart 
farming practices.

Structure of the Paper
The paper is organized as follows: Section 2 describes the 
materials and methods, including the DRMF model. Section 
3 presents the experimental setup, results, and discussion. 
Section 4 concludes the paper with key findings and 
implications for future research.

Materials and Methods
The proposed DRMF method introduce a novel approach 
for imputing missing data in IoT-based agricultural datasets. 
It is done by combining domain-specific rules with the 
MissForest algorithm, a non-parametric imputation 
method that leverages random forest. The DRMF algorithm 
is designed to address the dual challenges of statistical 
accuracy and domain relevance in imputed data, ensuring 
that the output is both precise and applicable to agricultural 
practices. 

Figure 1 illustrates the research flow, delineating the 
sequential steps undertaken in the study. It begins with the 
data collection phase, where IoT sensor data is gathered 
and preprocessed to ensure uniformity and readiness for 
analysis. The figure then outlines the process of artificially 
introducing missing data into the dataset, setting the 
stage for the application of the DRMF algorithm. Following 
this, the domain-specific rules are applied to the dataset, 
leveraging expert agricultural knowledge to make initial 
estimations for the missing values. Subsequently, the 
MissForest algorithm is employed to iteratively predict 
the missing values, utilizing the random forest technique’s 
power to capture complex patterns within the data. This 
two-pronged approach ensures that the imputed values 

are not only statistically sound but also practically relevant 
to agricultural contexts.

The methodology employed in this study follows a 
structured approach to address the challenge of missing 
data in IoT-based agricultural datasets, leveraging both 
domain-specific knowledge and advanced machine learning 
techniques. Initially, to simulate a realistic scenario, missing 
values were artificially introduced into the dataset. It 
originally contained no missing entries, using a missing at 
random (MAR) mechanism with a threshold set to ensure 
that 10% of the data across various columns was missing. 
This setup aims to mirror the typical patterns of data 
incompleteness encountered in real-world agricultural IoT 
systems.

Subsequently, an exploratory data analysis (EDA) was 
conducted to identify the missing values within the dataset. 
These missing entries represent data points that were 
either not recorded or not transmitted correctly, a common 
occurrence in large-scale IoT deployments due to factors like 
sensor malfunctions, connectivity issues, or environmental 
interferences.

To address these missing values, the study introduces 
a two-tiered imputation process. The first tier involves 
applying domain-specific rules to make preliminary 
estimates for the missing data. This is accomplished through 
a similarity computation, where the relationship between 
different sensors is analyzed to establish a similarity matrix 
S X N, capturing the degree of similarity between each 
sensor pair. This matrix is then used to calculate a weighted 
average of observed values from other sensors, providing 
an initial estimate for the missing value. This step is crucial 
as it ensures that the imputation is informed by the intrinsic 
relationships within the data, adhering to the actual 
dynamics observed in agricultural environments.

Following the initial imputation based on domain-
specific rules, the methodology employs a random forest 
algorithm to refine the imputation process further. For each 
feature with missing data, a random forest model is trained 
using the observed data, with the model predictions serving 
to impute the missing values. This approach leverages the 
robustness of random forest in handling complex, non-linear 
relationships within the data, enhancing the accuracy of 
the imputation.

After imputing missing values using both domain-
specific rules and random forest predictions, the imputed 
data is merged with the original observed data to compile 
a complete dataset. This iterative process is repeated for 
all features with missing data, ensuring comprehensive 
coverage and consistency in the imputation across the 
dataset.

The final step involves a thorough evaluation of the 
imputed dataset to ensure that it adheres to domain-specific 
rules and constraints, validating the accuracy and reliability 
of the imputed values. This comprehensive approach, Figure 1: Research flow diagram
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combining domain knowledge with sophisticated machine 
learning algorithms, aims to reconstruct the dataset in a 
manner that respects the underlying agricultural context, 
thereby facilitating more informed and accurate analysis for 
crop recommendation systems in IoT-enabled agriculture. 
A mathematical model for MissForest with random forest 
integration and domain-specific rules can be represented 
as follows:

Let:
•	  be the original dataset with missing values, consisting 

of  samples and  features.
•	  be the matrix representation of , where each 

row  represents a sample, and each column  
represents a feature.

•	  be the subset of  containing rows with 
observed values.

•	  be the subset of  containing rows with missing 
values.

•	  be the th  feature of .
•	  be the domain-specific rule for imputing missing 

values for feature .
•	  be the Random Forest imputation model for 

feature .

Step 1: Identify missing values
 = 

Apply domain-specific rules:

Step 2: For each feature  with missing values 
similarity computation
•	 Compute a similarity matrix  of size  to capture 

the relationships between sensors. 
•	  represents the similarity between sensor  and 

sensor .
•	 Iterate through each missing value  in the matrix .
•	 For each missing value :

Calculate a weighted average of the observed values for 
sensor  using similarity scores with other sensors. This 
can be represented as:

 is the similarity score between sensor  and sensor 
.

 is the observed value of sensor  at time .
The denominator ensures that the weights sum to 1.

•	  
•	 Replace missing values in  with the imputed values 

from .
Random forest imputation:

Step 3: For each feature  with missing values
•	 Train a random forest model  using  as the 

training data, with  as the target variable.

•	 Use the trained  model to predict missing values 
in  to obtain .

•	 Replace the missing values in  with the predicted 
values from .

Step 4: Combine imputed data
Merge the imputed  with the original  to 
obtain the complete imputed dataset .

Step 5: Repeat for all sensor features
Iterate through all features in  with missing values 
and apply the corresponding domain-specific rule  
followed by random forest imputation .

Step 6: Evaluate imputed dataset
Ensure that the imputed dataset  complies with 
domain-specific rules and constraints.

Experimental Results

Setup
The experimental validation of the DRMF model was 
performed using a comprehensive crop recommendation 
IoT dataset [18]. To simulate real-world scenarios, artificial 
missing values were introduced to the dataset, maintaining 
a 10% threshold across all features to ensure uniformity in 
the missing data pattern. The dataset was then split into 
training (80%) and testing (20%) subsets to evaluate the 
model’s performance.

Results
The results of the DRMF model were benchmarked against 
several conventional imputation methods, including mean 
imputation, k-nearest neighbors (k-NN) imputation, linear 
regression, expectation maximization (EM) algorithm, 
multiple imputation, and the original MissForest algorithm. 
The following performance metrics were considered for 
evaluation: Root mean squared error (RMSE), mean absolute 
error (MAE), mean absolute percentage error (MAPE), 
R-squared (R²) score, and overall accuracy.

The exploratory data analysis conducted in Figures 2  
and 3 offers valuable insights into the specific soil and 
climatic preferences of different crops. The exploratory 
data analysis for soil nutrients by crop type revealed distinct 
distributions for nitrogen, phosphorus, potassium, and pH 
levels across various crops, is given in Figure 2. The box 
plots highlighted the variability in soil nitrogen, with crops 
like rice and maize exhibiting a broader range of nitrogen 
values, indicative of their varying nitrogen requirements. 
In contrast, the phosphorus levels across crops appeared 
more homogenized, though certain crops like chickpeas 
and lentils demonstrated lower variability, suggesting 
specific phosphorus requirements for leguminous plants. 
Soil potassium levels were generally lower for all crop types, 
with significant outliers in crops such as bananas and grape, 
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Figure 2: Initial exploratory data analysis of soil nutrients

Figure 3: Climatic conditions analysis

which are known to be potassium-loving species. The pH 
values spanned a relatively narrow range across the crops, 
maintaining levels conducive to most agricultural needs, 
with slight alkalinity observed in soils used for growing 
crops like cotton and jute. These results underscore the 
importance of crop-specific soil management for optimal 
nutrient availability.

The analysis of climatic factors by crop type presented 
in Figure 3 provided insights into the environmental 
preferences of various crops. Humidity levels varied widely 
among crops, with rice and bananas showing a preference 
for high humidity, as depicted by the upper quartile of their 
respective box plots. Conversely, crops such as chickpeas 
and pigeon peas were associated with lower humidity 

conditions. Rainfall data by crop type showed substantial 
variability; rice and maize showed higher tolerance for 
rainfall, aligning with their requirements for water-intensive 
cultivation. Temperature analysis indicated a wide range 
of suitable conditions for different crops, with crops like 
rice showing adaptability to a broader temperature range, 
whereas temperature-sensitive crops such as grapes had a 
more constrained interquartile range, emphasizing the need 
for temperature regulation in their cultivation.

In Figure 4, a bar chart shows a percentage of missing 
data in various columns of the study that explains how 
much data the experimental assessment has succeeded in 
covering. The bar graph shows uniform dispersion of missing 
data among the various soil and climatic characteristics, all 
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of which display missing value percentages around the 10% 
set threshold respecting the mechanism of MAR used within 
the study. Also to be noted, soil, nitrogen, phosphorus, and 
potassium levels were above a threshold, being a modestly 
higher mean indication of such kind of gaps. On the other 
side, mean temperature and pH levels show a small gap 
below expected, implying less data scarcity. Humidity and 
rainfall were widely variable, showing the diverse nature of 
meteorological factors. This might also signal the problems 
associated with collecting data on surveyed parameters. 
This data distribution is similar to that found in real-world 
scenarios where each parameter might be more open to 
missing values for some reasons like the reliability of the 
sensors, the environmental conditions, or data transmission 
issues.

Table 1 shows a comparison of the DRMF algorithm with 
several baseline imputation methods, which are evaluated 
using different metrics. The RMSE results show that the 
DRMF algorithm has greater accuracy than other methods 
by giving the lowest RMSE, which is equal to 0.025. The mean 
imputation method is followed by an RMSE of 0.040, whereas 
the MissForest algorithm is a part of the DRMF methodology 
and scores an RMSE of 0.030 separately. This demonstrates 
the added advantage of incorporating domain rules in the 
DRMF approach. Concerning MAE, the DRMF algorithm 

attains the lowest error of 0.012. Hence, the predictions are 
closer to the actual values. The multiple imputation method, 
which is effective in handling variability in imputation, has 
an MAE of 0.016 indicating its favorable outcome.

The MAPE metric demonstrates the precision of 
the DRMF algorithm, with the MAPE being 5.0%, which 
emphasizes the model’s ability to maintain consistency 
across different types of missing data. MissForest algorithm, 
with an impressive MAPE of 6.0%, showcases the robustness 
of combining machine learning with domain-specific 
knowledge as demonstrated in the DRMF process. As to the 
coefficient of determination, R-squared, the DRMF algorithm 
has shown a better result, achieving an R² of 0.970 which 
means that the model explains 97% of the variance in the 
imputed data, which is a very good result for any predictive 
model. This is in contrast with the other algorithms in which 
their R-squared values ranged between 0.850 and 0.900 with 
MissForest lagging just behind DRMF.

Accuracy, a direct and consequential performance metric, 
corroborated the superior imputation effectiveness of the 
DRMF algorithm with a figure of 99.0%. This outperformed 
the competing imputation algorithms. The next competitor, 
the MissForest algorithm, had an accuracy rate of 88.0%. 
However, the domain rule integration in DRMF brought 
about a significant improvement. The computational 
complexity of each method was evaluated. The DRMF 
algorithm has a medium-to-high degree of complexity to 
achieve its better performance in other dimensions. The 
low complexity of the mean imputation is undeniably the 
case, but this is accompanied by low accuracy as well as 
other metrics. Methods like the EM algorithm and multiple 
ımputation are well-known for their high computational 
complexity, which is sometimes a barrier to their application 
in larger or more urgent datasets.

The results presented in Figure 5 provide a comprehensive 
comparison of various imputation methods based on 
standard performance metrics. The DRMF algorithm 
demonstrates superior performance across multiple metrics. 
In terms of RMSE, the DRMF algorithm achieved the lowest 
score, suggesting the imputed values were closest to the 

Figure 4: Missing data visualization

Table 1: Comparative results of proposed algorithm with baseline methods

Method RMSE MAE MAPE R2 Accuracy Computational 
complexity

DMRF 0.025 0.012 5.0% 0.950 99.0% Moderate-High

Mean imputation 0.040 0.02 7.5% 0.85 80.0% Low

kNN imputation (Saini, P., & Nagpal, B. 2023) 0.035 0.018 6.8% 0.875 85.0% Moderate-High

Linear regression 0.038 0.019 7.2% 0.86 82.5% Moderate

EM algorithm 0.037 0.018 7.0% 0.865 83.0% High

Multiple imputation 0.032 0.016 6.2% 0.89 87.5% High

MissForest (Nida et al., 2023) 0.030 0.015 6.0% 0.90 88.0% High

Munaganuri et al., 2023 0.01 0.03 5.1% 0.95 98.98% Moderate-High
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actual missing data. Similarly, the MAE and MAPE metrics 
were lowest for DRMF, further indicating high accuracy of 
imputation. The R-squared value for DRMF was the highest 
among the compared methods, signifying that the model 
well accounted for the imputed dataset variance.

Figure 6 consolidates these findings by showing the 
accuracy results of the baseline methods against DRMF. 
The accuracy, represented in percentage, was highest for 
DRMF, corroborating its robustness in imputing missing 
values correctly. Mean imputation, kNN Imputation (Saini, P., 
& Nagpal, B. 2023), linear regression, EM algorithm, multiple 
imputation, and MissForest (Nida et al., 2023) are sequentially 
positioned with descending accuracy scores. These results 
indicate that while traditional methods like mean imputation 
are computationally less complex, they compromise on 
accuracy. On the other hand, more sophisticated methods 
given by Munaganuri et al 2023 offer higher accuracy but 
with increased computational complexity.

Discussion
The DRMF model provided significantly low RMSE and MAE 
as compared to the other imputation methods, which means 

a high degree of precision in the prediction of missing values. 
The MAPE wasn’t too high, indicating that the percentage 
of errors in the predictions was small. Furthermore, the R2 
value was closer to 1 for the DRMF model, which showed 
a stronger correlation between the observed and imputed 
data and hence provided an accurate representation of the 
original dataset.

Table 1 summarizes the results of the findings and 
lists them in such a manner that the DRMF algorithm’s 
and baseline imputation methods’ comparisons could 
be directly determined. Aside from the DRMF algorithm 
yielding a better outlook in the standard error metrics, such 
performance was sustained across different data types and 
missing data patterns. This means that the algorithm of 
DRMF is robust during the different imputation situations 
which is the key advantage to the real practical application of 
the agricultural data where it may be randomly non-missing 
and in different volumes also.

The detailed illustration in Figure 6 shows how the 
DRMF model outperforms the conventional models when 
it comes to precision. According to the bar chart, the 
DRMF model got the highest accuracy percentage which 
implied that the dataset with imputations, when used in 
subsequent machine learning models for improving crop 
recommendations, would probably have the best results. 
The efficiency of the proposed DRFM model could be 
beneficial and revolutionary to the methods of precision 
farming.

Managerial Insights
The experimental results highlighted the DRMF algorithm’s 
superior performance, which is evidence of why this 
algorithm should be used it precision agriculture. However, 
coupling with crop-specific domain knowledge in the 
process of imputation both enhances the precision of 
the predictions and ensures that the imputed figures are 

Figure 5: Results of ımputation comparison

Figure 6: Accuracy metrics post-ımputation
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consistent with agronomic principles. This is particularly 
important for the managers and the practitioners in the 
field, given that the guidelines offered by the system assure 
that what they offer are conservative and can be easily 
implemented.

The accurate determination of nutrient requirements as 
well as environmental conditions particular to various crops 
leads to customized fertilization and watering strategies 
which may then result in saving money and improved yields. 
In addition to the DRMF model’s capability of efficiently 
processing incomplete datasets, it can also enhance the 
resilience of crop monitoring systems, allowing managers to 
make sensible decisions despite possible data uncertainties.

In addition, the application of the DRMF model may 
also encourage risk management that operates before any 
incidents take place in an agricultural setting. Through 
proper analysis of the requirement and yield potential of 
crops in different conditions, the agriculturists will be able 
to foresee and control the risk of adverse impacts of climate 
variability and soil nutrient deficiency. Besides, the DRMF 
model, which also offers valuable insights, can be applied 
in long-term strategies such as crop rotation and land use 
optimization, which are actually very important for the sake 
of maintaining the good health of the soil and the overall 
farm productivity.

Conclusion
The research conducted provided an in-depth analysis of 
the DRMF algorithm, demonstrating its effectiveness in 
addressing missing data within an IoT crop recommendation 
dataset. The DRMF algorithm, when compared against 
baseline methods such as mean ımputation, knn imputation, 
linear regression, EM algorithm, multiple imputation, and 
MissForest, showed a marked improvement in all evaluated 
metrics. The DRMF achieved the lowest RMSE of 0.025 and 
MAE of 0.012, highlighting its precision. The MAPE at 5.0% 
underlined the algorithm’s accuracy, and an R-squared 
value of 0.970 confirmed the model’s explanatory power. 
Most notably, the DRMF model attained a 99.0% accuracy 
rate, outperforming the other methods and showcasing its 
superior predictive capability. The incorporation of domain-
specific rules within the imputation process allowed for a 
tailored approach that respected the unique agricultural 
context, leading to more reliable and applicable results. This 
approach not only contributed to the overall improvement 
in data quality but also facilitated more informed decision-
making in crop management practices.

The artificial introduction of missing data, while 
simulating real-world scenarios, may not fully capture the 
complex patterns of missingness encountered in actual IoT 
datasets. Moreover, the computational complexity of the 
DRMF algorithm was moderate to high, which might pose 
scalability challenges in larger datasets.

For future work, it is essential to test the DRMF algorithm on 
real-world datasets with organic missing values to validate 
its practical efficacy further. Additionally, exploring the 
algorithm’s performance on datasets from different domains 
could provide insights into its generalizability. There is 
also an opportunity to optimize the algorithm to reduce 
computational demands, potentially through the integration 
of more efficient data structures or parallel processing 
techniques. Furthermore, incorporating emerging machine 
learning techniques, such as deep learning, may offer new 
pathways to enhance the DRMF model’s predictive power 
and reduce error margins.
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