
Abstract
Cloud-distributed systems offer significant opportunities for fault-tolerant applications. Microservices have gained significant acceptance 
as a cloud-based architecture for building fault-tolerant cloud applications. The primary aim of this study is to develop a dependable 
resilience framework, incorporating appropriate design patterns, that can be applied to any cloud application. This framework combines a 
bulkhead utilizing a little law approach and an auto-retry circuit breaker, which can be seen as a fault tolerance pattern. This will eliminate 
the need for manual setting of design patterns, resulting in maximum throughput availability of resources and the performance can 
be increased up to 55.3% from the average execution duration.
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Introduction
The microservice architecture is ideal for developing 
cloud-based applications because of its high productivity, 
cost-effectiveness, and ease of deployment (Muzaffar et 
al., 2020). This architecture ensures the main factors of 
cloud-based applications, such as scalability and availability, 
are guaranteed (Hassan et al.,2023). Applications can be 
programmed using many programming languages and 
designed as services, providing an additional advantage by 
addressing the primary issue of application updates. Despite 
their benefits, fault-tolerant features in this domain are still 
in the process of improvement (Hylbovets and Paprotskyi, 
2024). Applications hosted on distributed systems are 

prone to failure. Network failures can arise due to various 
factors, including the intricacy of the network, challenges in 
synchronization, and difficulties in managing partial failures.

If there is an overwhelming demand or a service failure, 
it will have an adverse effect on the entire system, causing 
many failures (Fu et al.,2023). When a service experiences a 
prolonged response time to a request, other requests will be 
unable to utilize that particular service during that period. In 
order to address the aforementioned issue, the microservice 
architecture employs a specific design pattern known as 
resilience pattern to safeguard all services from network 
outages. The resilience pattern is highly advantageous for 
shielding applications against the propagation of faults or 
cascading of failures. 

Cascading failures occur when the failure of one service 
causes other unaffected services to also fail. These can 
result in significant repercussions and extensive disruptions 
across various industries. In order to prevent these issues, 
cloud applications prioritize resilience characteristics, which 
enable them to avoid failure scenarios and recover from 
them. These durable characteristics are only effective in the 
presence of temporary breakdowns.

Transient failures are failures that can automatically 
recover within a certain period of time. If these issues are 
not properly addressed it results in a complete application 
outage lasting many hours. Failures can occur as a result 
of a rapid surge in requests, which is also known as 
request overhead. In such instances, the service request 
can be temporarily halted, at which time the services will 
be provided an idle time and gradually restored. This is 
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accomplished by utilizing the existing resilience patterns 
of microservice architecture. These resilience patterns 
provide a solution for cloud services that experience these 
temporary failures.

The issue with the current resilience patterns is that 
they rely on static or manual setups, which limits their 
functionality. The static configuration may not provide a 
comprehensive solution for all the issues in a distributed 
system, as the failure types vary significantly from one 
another. The objective of this research is to facilitate the 
automation of commonly employed resilience patterns, 
with the value being determined by the type of failure that 
happens. The primary goal is to present a framework that 
can be universally utilized by any cloud-based microservice 
application, without any worries regarding its setups. This 
framework implements a modified bulkhead pattern using 
little law in combination with auto retry circuit breaker, to 
promote resiliency for all types of transient failures.

Background
Resilience is the capacity to endure setbacks and bounce 
back from them. The primary objective is to facilitate 
uninterrupted operations and minimize downtime and 
disturbances for users of cloud applications. Microservice 
architectures provide resilience through the use of 
specific design patterns, including the circuit breaker, 
retry, and bulkhead patterns (Norton & Shoney,2023).  
These patterns are utilized in many areas, including fault 
detection and fault isolation. The retry pattern is the 
simplest among all these patterns (Frank et al.,2021). The 
circuit breaker is a fault detection pattern that simplifies the 
handling of breakdowns in a system when they occur. At the 
user’s end, the fallback technique is employed without any 
notification of failure (Rahman,2022). 

Circuit breaker
This design pattern is identical to the one used in electrical 
applications. This design pattern is employed for service 
monitoring and maintaining a record of successful and 
unsuccessful requests. When the number of failures reaches 
the specified count, an action is triggered. The service 
experiencing a problem is contained and the incoming 
requests are being responded to with temporary alternative 
statements (Norton & Shoney, 2023). As shown in Figure 1, 
this pattern consists of three states: open, half-open, and 
closed. The open state will not redirect the request to the 
designated service. The half-open state will initiate a limited 
number of queries to the service in order to verify if the 
service becomes operational. The closed state is similar to the 
state of sleep. This is the primary state of the circuit breaker.

Retry
One of the most often employed patterns in networking is 
the retry pattern. The system addresses service outages by 
automatically attempting to resend the request. The method 

of retrying the request can be classified into three distinct 
types: fixed retry, retry after exponential backoff, and retry 
with randomized interval. The fixed retry function will attempt 
again after a predetermined duration of fixed waiting time.  
The retry mechanism using exponential backoff will attempt 
to retry an operation after increasing delays, whereas the 
randomized retry approach will retry with a randomly 
determined waiting time.

Figure 2, explains the process of retrying the requests 
in response to the error.

Bulkhead pattern
The purpose of this pattern is to safeguard the application 
by preventing failures in one service from impacting other 
services and triggering a chain reaction of failures. The 
requests for services are restricted to the relevant service, 
which prevents excessive requests as the number of requests 
increases.

Figure 3 illustrates the procedure of the bulkhead 
pattern. Each service, A, B, and C, is allotted a different pool. 

Figure 1: Process flow of circuit breaker pattern

Figure 2: Retry pattern (Punithavathy & Priya,2023)

Figure 3: Bulkhead pattern
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Each service is assigned a certain pool, and as a result, a limit 
is established for each pool. It permits a restricted quantity 
of requests to be made to a certain service for processing. 
By using this approach, a separate pool is created for any 
sensitive service that is likely to get a higher volume of 
requests. This prevents overloading from impacting the 
subsequent service. 

Methodology
The order and inventory services are the two services that 
make up the microservice application. By sending the 
request to the inventory service, the order service will obtain 
the product’s inventory details. The product’s details are 
contained in the inventory service. Intellij Idea framework 
and Spring Boot were used in the creation of the services. 
The maven dependency was added for dependency files. 
The order service and the inventory service are designed to 
operate on ports 8081 and 8080, respectively. 

Postman, an application programming interface, 
was utilized to handle this request. The aforementioned 
application was used to implement this framework. 
Resilience 4j was used to add the current resilience design 
patterns. Method-based implementation was used to put 
these design patterns into practice. These services are 
created using the Java programming language. Jmeter was 
used to generate requests at random. This microservice 
application was developed as a prototype, and its errors 
were intentionally introduced to explore the pattern’s 
operational model.

Figure 4, explains the process flow of the proposed 
fault tolerance framework. As shown in the figure, once 
the request reaches the pool, it checks whether the thread 
pool is full. The request is routed to the little law bulkhead 
pattern as soon as the program begins to receive it. The 
request is sent for processing and the response is returned 
if there is sufficient space. Requests are sent to sleep, 
where they wait for a short while if the queue is full. If the 
requests are still active after the waiting period, they will 
keep trying to reach the thread pool. Requests are sent for 
execution if there is sufficient space in the thread pool. If 
the requests are successfully processed for execution, the 
response will be returned. Requests that fail are routed 

to the ARCB pattern, which logs the error and tries the 
request again after the predetermined amount of time.  
Every incoming request will get a fallback response, even in 
case of an error. If the requests are blocked from processing 
by the timeout feature, the appropriate exception or fallback 
will be utilized.

This framework encompasses the proposed little law 
bulkhead feature with an auto retry circuit breaker (ARCB) 
to handle the failure of applications dynamically.

This framework was framed using two stages
•	 Proposed bulkhead with law
•	 Proposed bulkhead with law & ARCB pattern.

Stage: 1 Proposed Bulkhead with Law

Existing Bulkhead
The bulkhead is one of the resilience patterns that is used to 
enhance the fault-tolerant capability of the applications by 
limiting the request thread from obtaining the services for 
a long duration (Kapikul et al.,2024). This feature is usually 
deployed in applications and used along with circuit breaker 
patterns for providing a suitable framework of resilience. 
These patterns are usually available from libraries such as 
Hystrix, Resilience4j, Polly, etc. These available patterns are 
static configurations. The list of parameters required for 
setting this bulkhead parameters are:

Table 1 displays the set of parameters that are required 
for implementing this bulkhead pattern. The max concurrent 
calls display the number of concurrent calls that can be 
allowed in the service for processing. The max_wait_
duration specifies the waiting time of the request if the 
number of concurrent requests limit is full. These two 
parameters were part of a semaphore-based bulkhead. 
The max_threadpool_size specifies the maximum size 
that the threads can accommodate. The core thread pool 

Figure 4: Proposed fault tolerance framework

Table 1: Parametric configurations of bulkhead

Parameters Description Default values

max_concurrent_
calls

The count of requests 
that can be performed 
simultaneously

25

max_wait_duration Maximum waiting time 
of a newly arriving 
request if concurrent 
calls count is full

0

maxThreadPoolSize Maximum number of 
threads available

Available runtime 
processors

coreThreadPoolSize Minimum number of 
threads available

Available runtime 
processors

queueCapacity Maximum number of 
tasks that can wait 

100

keepAliveDuration Wait time of newly 
arriving threads

20ms

writableStackTrace 
Enabled

Details of error 
information

True



	 A resilience framework for fault-tolerance in cloud-based microservice applications	 2567

size displays the number of threads that are available for 
processing. The queue capacity specifies the number of 
tasks that can be held in the queue. The keep alive duration 
specifies the time limit that the thread can hold on. In case of 
an error, the writable stack trace would leave an exception 
indicating the type of error.

The use of bulkheads is gaining popularity as a means to 
safeguard applications from excessive requests. However, 
that does not address the issue of the cascade of failures. In 
order to enhance the application with robust and resilient 
capabilities, the isolation strategy is integrated with a fault 
detection technique. The fault isolation approach serves 
as the outer layer of protection, while the circuit breaker 
functions as the interior layer.

Little law rule
The little law concept is one of the laws that is most 
frequently applied in networking systems. In the queueing 
system, it is frequently utilized. It is said that when a thread 
is present in the system, it could be actively running or it 
could be waiting to run. It is stated using the formula:

L= W 	 (1)
where,
L=number of concurrent tasks in the system
W=transaction rate 

=response time (Little & Graves, 2008)
The aforementioned equation can be used to dynamically 

calculate the maximum number of concurrent requests, 
hence resolving the issues with statically specified bulkheads. 
In this case, the average number of transactions can be used 
to establish the transaction rate. For example, if there are 
5000 transactions per hour than the average transaction rate 
is 16000/ 3600 =1.66 request per second (RPS)

The amount of time it takes for a certain service to 
respond is known as the response time. Response times are 
obtained from the application programming interface (API) 
in this instance. In the end, the concurrent requests can be 
computed using the formula below:

concurrent_requests= transaction_rate * response_time

Based on the limitation, only limited number of requests 
are permitted and the remaining requests will be ignored 
and a fallback mechanism will be implemented. To prevent 
displaying errors, the fallback approach is employed as a 
stopgap measure. When this technique is used, a notice such 
as “out of stock” or “try again after some time” is displayed. As 
a result, this pattern will process every request, decreasing the 
error rate and raising the number of requests that are fulfilled.

Stage 2: Proposed Bulkhead using Little Law & Auto 
Retry Circuit Breaker

Auto retry circuit breaker
Figure 5 illustrates the process diagram of the auto-repeat 
circuit breaker, which is an adapted form of a static circuit 

breaker. This modified circuit breaker operates with only 
two states and is designed to automatically repeat calls 
based on the request time. The determination of when to 
retry the calls is determined by the request time attribute 
(Punithavathy and Priya, 2023).

An auto retry circuit breaker (ARCB) is implemented, 
which functions similarly to a circuit breaker. The ARCB is a 
dynamic pattern that calculates the failure counter based on 
the response time and success of the request. The state and 
service idle time is then determined based on the value of the 
failure counter. Furthermore, the request calls are generated 
using a retry-based pattern, following the specified waiting 
duration. In addition to this implementation, other patterns 
such as timeout and fallback patterns, were incorporated. 

Results and Discussion
Upon executing the service and implementing all the 
previously described patterns, issues arose either within 
the service itself or in the networking. Efforts were made to 
escalate the number of queries to the extent of overflowing 
the system with requests. These services are specifically 
designed to do tasks, and the length of time it takes for 
them to respond has been recorded.

The values in Table 2 presents the request arrival rate 
every five seconds, together with the number of arrived 
and completed requests, as well as the maximum allowable 
concurrent requests. It also shows the determination of 
the maximum concurrent requests, the arrival of more 
requests, and the remaining requests permitted in the 
queue. It displays the maximum number of requests that 
can be processed simultaneously. The maximum number 
of requests allowed and the finished amount of requests 
are determined based on the limit.

Figure 5: Auto retry circuit breaker (ARCB) pattern (Punithavathy & 
Priya,2023)

Table 2: Request arrival, allowed and completed

Elapsed time 
(s)

Request 
arrival

Request 
completed

Maximum 
request allowed

1 10 0 10

5 10 10 20

10 10 20 20

15 10 30 20
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Figure 6 illustrates the process of request arrival after 
determining the number of concurrent requests and setting 
the maximum request limit in the queue. The current status 
of the remaining permitted requests is updated every five 
seconds. The graph presents the sample flow of requests.

Table 3 displays the response time of the services 
while implementing several strategies: existing bulkhead 
(Miraj and Fajar, 2022), bulkhead using Little’s law, and 
a combination of bulkhead using Little’s law with ARCB 
pattern. The maximum and minimum durations were 
recorded, and the average duration was calculated. It is 
observed that when comparing the values of these patterns. 
The modified version of the bulkhead using Little’s law and 
ARCB obtains the minimized response time of the request. 

The performance is increased up to 55.3% when compared 
with that of the existing results and the proposed framework 
is 2.2 times faster than the existing bulkhead.

Figure 7 presents the analysis of execution time 
obtained while implementing all the above patterns. It can 
be observed that the static configuration involves a great 
amount of time for execution when compared with the 
dynamically formed patterns.

Conclusion
Distributed systems that prioritize fault tolerance and 
are hosted in the cloud are popular applications. The 
microservice design, despite being quite popular, relies on 
static resilience patterns that have not proven to be effective 
in addressing all forms of failures. Therefore, the framework 
created by the dynamic patterns excels in comparison to 
applications with static setups. The implementation of 
the suggested framework significantly decreases the time 
it takes to execute the request and relieves the resources 
from being overwhelmed by several requests. By alleviating 
the resource from excessive demands, the services are 
safeguarded. Therefore, the attainment of availability and 
throughput is significantly enhanced.
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