
Abstract
Cloud-distributed systems offer significant opportunities for fault-tolerant applications. Microservices have gained significant acceptance
as a cloud-based architecture for building fault-tolerant cloud applications. The primary aim of this study is to develop a dependable
resilience framework, incorporating appropriate design patterns, that can be applied to any cloud application. This framework combines a
bulkhead utilizing a little law approach and an auto-retry circuit breaker, which can be seen as a fault tolerance pattern. This will eliminate
the need for manual setting of design patterns, resulting in maximum throughput availability of resources and the performance can
be increased up to 55.3% from the average execution duration.
Keywords: Bulkhead, Little law, Fault tolerance, Auto retry circuit breaker, Resilience, Framework, Microservices.

A resilience framework for fault-tolerance in cloud-based
microservice applications
Punithavathy E.1*, N. Priya2

RESEARCH ARTICLE

© The Scientific Temper. 2024
Received: 08/07/2024				 Accepted: 08/08/2024			 Published : 10/09/2024

1Department of Computer Applications, Madras Christian College,
Affiliated to University of Madras, Chennai, India.
2PG Department of Computer Science, Shrimathi Devkunvar
Nanalal Bhatt Vaishnav College for Women, Affiliated to University
of Madras, Chennai, India.
*Corresponding Author: Punithavathy E., Department of
Computer Applications, Madras Christian College, Affiliated to
University of Madras, Chennai, India., E-Mail: punithavathy@mcc.
edu.in
How to cite this article: Punithavathy, E., Priya, N. (2024).
A resilience framework for fault-tolerance in cloud-based
microservice applications. The Scientific Temper, 15(3):2564-2569.
Doi: 10.58414/SCIENTIFICTEMPER.2024.15.3.23
Source of support: Nil

Conflict of interest: None.

The Scientific Temper (2024) Vol. 15 (3): 2564-2569	 E-ISSN: 2231-6396, ISSN: 0976-8653

Doi: 10.58414/SCIENTIFICTEMPER.2024.15.3.23	 https://scientifictemper.com/

Introduction
The microservice architecture is ideal for developing
cloud-based applications because of its high productivity,
cost-effectiveness, and ease of deployment (Muzaffar et
al., 2020). This architecture ensures the main factors of
cloud-based applications, such as scalability and availability,
are guaranteed (Hassan et al.,2023). Applications can be
programmed using many programming languages and
designed as services, providing an additional advantage by
addressing the primary issue of application updates. Despite
their benefits, fault-tolerant features in this domain are still
in the process of improvement (Hylbovets and Paprotskyi,
2024). Applications hosted on distributed systems are

prone to failure. Network failures can arise due to various
factors, including the intricacy of the network, challenges in
synchronization, and difficulties in managing partial failures.

If there is an overwhelming demand or a service failure,
it will have an adverse effect on the entire system, causing
many failures (Fu et al.,2023). When a service experiences a
prolonged response time to a request, other requests will be
unable to utilize that particular service during that period. In
order to address the aforementioned issue, the microservice
architecture employs a specific design pattern known as
resilience pattern to safeguard all services from network
outages. The resilience pattern is highly advantageous for
shielding applications against the propagation of faults or
cascading of failures.

Cascading failures occur when the failure of one service
causes other unaffected services to also fail. These can
result in significant repercussions and extensive disruptions
across various industries. In order to prevent these issues,
cloud applications prioritize resilience characteristics, which
enable them to avoid failure scenarios and recover from
them. These durable characteristics are only effective in the
presence of temporary breakdowns.

Transient failures are failures that can automatically
recover within a certain period of time. If these issues are
not properly addressed it results in a complete application
outage lasting many hours. Failures can occur as a result
of a rapid surge in requests, which is also known as
request overhead. In such instances, the service request
can be temporarily halted, at which time the services will
be provided an idle time and gradually restored. This is

	 A resilience framework for fault-tolerance in cloud-based microservice applications	 2565

accomplished by utilizing the existing resilience patterns
of microservice architecture. These resilience patterns
provide a solution for cloud services that experience these
temporary failures.

The issue with the current resilience patterns is that
they rely on static or manual setups, which limits their
functionality. The static configuration may not provide a
comprehensive solution for all the issues in a distributed
system, as the failure types vary significantly from one
another. The objective of this research is to facilitate the
automation of commonly employed resilience patterns,
with the value being determined by the type of failure that
happens. The primary goal is to present a framework that
can be universally utilized by any cloud-based microservice
application, without any worries regarding its setups. This
framework implements a modified bulkhead pattern using
little law in combination with auto retry circuit breaker, to
promote resiliency for all types of transient failures.

Background
Resilience is the capacity to endure setbacks and bounce
back from them. The primary objective is to facilitate
uninterrupted operations and minimize downtime and
disturbances for users of cloud applications. Microservice
architectures provide resilience through the use of
specific design patterns, including the circuit breaker,
retry, and bulkhead patterns (Norton & Shoney,2023).
These patterns are utilized in many areas, including fault
detection and fault isolation. The retry pattern is the
simplest among all these patterns (Frank et al.,2021). The
circuit breaker is a fault detection pattern that simplifies the
handling of breakdowns in a system when they occur. At the
user’s end, the fallback technique is employed without any
notification of failure (Rahman,2022).

Circuit breaker
This design pattern is identical to the one used in electrical
applications. This design pattern is employed for service
monitoring and maintaining a record of successful and
unsuccessful requests. When the number of failures reaches
the specified count, an action is triggered. The service
experiencing a problem is contained and the incoming
requests are being responded to with temporary alternative
statements (Norton & Shoney, 2023). As shown in Figure 1,
this pattern consists of three states: open, half-open, and
closed. The open state will not redirect the request to the
designated service. The half-open state will initiate a limited
number of queries to the service in order to verify if the
service becomes operational. The closed state is similar to the
state of sleep. This is the primary state of the circuit breaker.

Retry
One of the most often employed patterns in networking is
the retry pattern. The system addresses service outages by
automatically attempting to resend the request. The method

of retrying the request can be classified into three distinct
types: fixed retry, retry after exponential backoff, and retry
with randomized interval. The fixed retry function will attempt
again after a predetermined duration of fixed waiting time.
The retry mechanism using exponential backoff will attempt
to retry an operation after increasing delays, whereas the
randomized retry approach will retry with a randomly
determined waiting time.

Figure 2, explains the process of retrying the requests
in response to the error.

Bulkhead pattern
The purpose of this pattern is to safeguard the application
by preventing failures in one service from impacting other
services and triggering a chain reaction of failures. The
requests for services are restricted to the relevant service,
which prevents excessive requests as the number of requests
increases.

Figure 3 illustrates the procedure of the bulkhead
pattern. Each service, A, B, and C, is allotted a different pool.

Figure 1: Process flow of circuit breaker pattern

Figure 2: Retry pattern (Punithavathy & Priya,2023)

Figure 3: Bulkhead pattern

2566	 Punithavathy and Priya	 The Scientific Temper. Vol. 15, No. 3

Each service is assigned a certain pool, and as a result, a limit
is established for each pool. It permits a restricted quantity
of requests to be made to a certain service for processing.
By using this approach, a separate pool is created for any
sensitive service that is likely to get a higher volume of
requests. This prevents overloading from impacting the
subsequent service.

Methodology
The order and inventory services are the two services that
make up the microservice application. By sending the
request to the inventory service, the order service will obtain
the product’s inventory details. The product’s details are
contained in the inventory service. Intellij Idea framework
and Spring Boot were used in the creation of the services.
The maven dependency was added for dependency files.
The order service and the inventory service are designed to
operate on ports 8081 and 8080, respectively.

Postman, an application programming interface,
was utilized to handle this request. The aforementioned
application was used to implement this framework.
Resilience 4j was used to add the current resilience design
patterns. Method-based implementation was used to put
these design patterns into practice. These services are
created using the Java programming language. Jmeter was
used to generate requests at random. This microservice
application was developed as a prototype, and its errors
were intentionally introduced to explore the pattern’s
operational model.

Figure 4, explains the process flow of the proposed
fault tolerance framework. As shown in the figure, once
the request reaches the pool, it checks whether the thread
pool is full. The request is routed to the little law bulkhead
pattern as soon as the program begins to receive it. The
request is sent for processing and the response is returned
if there is sufficient space. Requests are sent to sleep,
where they wait for a short while if the queue is full. If the
requests are still active after the waiting period, they will
keep trying to reach the thread pool. Requests are sent for
execution if there is sufficient space in the thread pool. If
the requests are successfully processed for execution, the
response will be returned. Requests that fail are routed

to the ARCB pattern, which logs the error and tries the
request again after the predetermined amount of time.
Every incoming request will get a fallback response, even in
case of an error. If the requests are blocked from processing
by the timeout feature, the appropriate exception or fallback
will be utilized.

This framework encompasses the proposed little law
bulkhead feature with an auto retry circuit breaker (ARCB)
to handle the failure of applications dynamically.

This framework was framed using two stages
•	 Proposed bulkhead with law
•	 Proposed bulkhead with law & ARCB pattern.

Stage: 1 Proposed Bulkhead with Law

Existing Bulkhead
The bulkhead is one of the resilience patterns that is used to
enhance the fault-tolerant capability of the applications by
limiting the request thread from obtaining the services for
a long duration (Kapikul et al.,2024). This feature is usually
deployed in applications and used along with circuit breaker
patterns for providing a suitable framework of resilience.
These patterns are usually available from libraries such as
Hystrix, Resilience4j, Polly, etc. These available patterns are
static configurations. The list of parameters required for
setting this bulkhead parameters are:

Table 1 displays the set of parameters that are required
for implementing this bulkhead pattern. The max concurrent
calls display the number of concurrent calls that can be
allowed in the service for processing. The max_wait_
duration specifies the waiting time of the request if the
number of concurrent requests limit is full. These two
parameters were part of a semaphore-based bulkhead.
The max_threadpool_size specifies the maximum size
that the threads can accommodate. The core thread pool

Figure 4: Proposed fault tolerance framework

Table 1: Parametric configurations of bulkhead

Parameters Description Default values

max_concurrent_
calls

The count of requests
that can be performed
simultaneously

25

max_wait_duration Maximum waiting time
of a newly arriving
request if concurrent
calls count is full

0

maxThreadPoolSize Maximum number of
threads available

Available runtime
processors

coreThreadPoolSize Minimum number of
threads available

Available runtime
processors

queueCapacity Maximum number of
tasks that can wait

100

keepAliveDuration Wait time of newly
arriving threads

20ms

writableStackTrace
Enabled

Details of error
information

True

	 A resilience framework for fault-tolerance in cloud-based microservice applications	 2567

size displays the number of threads that are available for
processing. The queue capacity specifies the number of
tasks that can be held in the queue. The keep alive duration
specifies the time limit that the thread can hold on. In case of
an error, the writable stack trace would leave an exception
indicating the type of error.

The use of bulkheads is gaining popularity as a means to
safeguard applications from excessive requests. However,
that does not address the issue of the cascade of failures. In
order to enhance the application with robust and resilient
capabilities, the isolation strategy is integrated with a fault
detection technique. The fault isolation approach serves
as the outer layer of protection, while the circuit breaker
functions as the interior layer.

Little law rule
The little law concept is one of the laws that is most
frequently applied in networking systems. In the queueing
system, it is frequently utilized. It is said that when a thread
is present in the system, it could be actively running or it
could be waiting to run. It is stated using the formula:

L= W 	 (1)
where,
L=number of concurrent tasks in the system
W=transaction rate

=response time (Little & Graves, 2008)
The aforementioned equation can be used to dynamically

calculate the maximum number of concurrent requests,
hence resolving the issues with statically specified bulkheads.
In this case, the average number of transactions can be used
to establish the transaction rate. For example, if there are
5000 transactions per hour than the average transaction rate
is 16000/ 3600 =1.66 request per second (RPS)

The amount of time it takes for a certain service to
respond is known as the response time. Response times are
obtained from the application programming interface (API)
in this instance. In the end, the concurrent requests can be
computed using the formula below:

concurrent_requests= transaction_rate * response_time

Based on the limitation, only limited number of requests
are permitted and the remaining requests will be ignored
and a fallback mechanism will be implemented. To prevent
displaying errors, the fallback approach is employed as a
stopgap measure. When this technique is used, a notice such
as “out of stock” or “try again after some time” is displayed. As
a result, this pattern will process every request, decreasing the
error rate and raising the number of requests that are fulfilled.

Stage 2: Proposed Bulkhead using Little Law & Auto
Retry Circuit Breaker

Auto retry circuit breaker
Figure 5 illustrates the process diagram of the auto-repeat
circuit breaker, which is an adapted form of a static circuit

breaker. This modified circuit breaker operates with only
two states and is designed to automatically repeat calls
based on the request time. The determination of when to
retry the calls is determined by the request time attribute
(Punithavathy and Priya, 2023).

An auto retry circuit breaker (ARCB) is implemented,
which functions similarly to a circuit breaker. The ARCB is a
dynamic pattern that calculates the failure counter based on
the response time and success of the request. The state and
service idle time is then determined based on the value of the
failure counter. Furthermore, the request calls are generated
using a retry-based pattern, following the specified waiting
duration. In addition to this implementation, other patterns
such as timeout and fallback patterns, were incorporated.

Results and Discussion
Upon executing the service and implementing all the
previously described patterns, issues arose either within
the service itself or in the networking. Efforts were made to
escalate the number of queries to the extent of overflowing
the system with requests. These services are specifically
designed to do tasks, and the length of time it takes for
them to respond has been recorded.

The values in Table 2 presents the request arrival rate
every five seconds, together with the number of arrived
and completed requests, as well as the maximum allowable
concurrent requests. It also shows the determination of
the maximum concurrent requests, the arrival of more
requests, and the remaining requests permitted in the
queue. It displays the maximum number of requests that
can be processed simultaneously. The maximum number
of requests allowed and the finished amount of requests
are determined based on the limit.

Figure 5: Auto retry circuit breaker (ARCB) pattern (Punithavathy &
Priya,2023)

Table 2: Request arrival, allowed and completed

Elapsed time
(s)

Request
arrival

Request
completed

Maximum
request allowed

1 10 0 10

5 10 10 20

10 10 20 20

15 10 30 20

2568	 Punithavathy and Priya	 The Scientific Temper. Vol. 15, No. 3

Figure 6 illustrates the process of request arrival after
determining the number of concurrent requests and setting
the maximum request limit in the queue. The current status
of the remaining permitted requests is updated every five
seconds. The graph presents the sample flow of requests.

Table 3 displays the response time of the services
while implementing several strategies: existing bulkhead
(Miraj and Fajar, 2022), bulkhead using Little’s law, and
a combination of bulkhead using Little’s law with ARCB
pattern. The maximum and minimum durations were
recorded, and the average duration was calculated. It is
observed that when comparing the values of these patterns.
The modified version of the bulkhead using Little’s law and
ARCB obtains the minimized response time of the request.

The performance is increased up to 55.3% when compared
with that of the existing results and the proposed framework
is 2.2 times faster than the existing bulkhead.

Figure 7 presents the analysis of execution time
obtained while implementing all the above patterns. It can
be observed that the static configuration involves a great
amount of time for execution when compared with the
dynamically formed patterns.

Conclusion
Distributed systems that prioritize fault tolerance and
are hosted in the cloud are popular applications. The
microservice design, despite being quite popular, relies on
static resilience patterns that have not proven to be effective
in addressing all forms of failures. Therefore, the framework
created by the dynamic patterns excels in comparison to
applications with static setups. The implementation of
the suggested framework significantly decreases the time
it takes to execute the request and relieves the resources
from being overwhelmed by several requests. By alleviating
the resource from excessive demands, the services are
safeguarded. Therefore, the attainment of availability and
throughput is significantly enhanced.

Acknowledgments
None

References
Ali, A., Iqbal, M.M., Jamil, H., Qayyum, F., Jabbar, S., Cheikhrouhou,

O., Baz, M., & Jamil, F. (2021). An Efficient Dynamic-Decision
Based Task Scheduler for Task Offloading Optimization and
Energy Management in Mobile Cloud Computing. Sensors
(Basel, Switzerland), 21.

Ali, M., Ali, S., & Jilani, A. (2020). Architecture for microservice based
system. a report. A report.

Frank, S., Hakamian, A., Wagner, L., Kesim, D., Zorn, C., von
Kistowski, J., & van Hoorn, A. (2021, September). Interactive
elicitation of resilience scenarios based on hazard analysis
techniques. In European Conference on Software Architecture
(pp. 229-253). Cham: Springer International Publishing.

Fu, X., Li, Q., & Li, W. (2023). Modeling and analysis of industrial IoT
reliability to cascade failures: An information-service coupling
perspective. Reliability Engineering & System Safety, 239, 109517.

Hlybovets, A., & Paprotskyi, I. (2024). Increasing the Fault Tolerance
in Microservice Architecture. Cybernetics and Systems

Figure 6: Arrival, processing and completion of requests

Table 3: Execution duration of bulkhead, bulkhead using little law and the combination of bulkhead using little law and ARCB pattern

No of
requests

Existing bulkhead (Miraj & Fajar,2022) Bulkhead using little law (ms) Bulkhead using little law and ARCB (ms)

Min (ms) Max (ms) Avg (ms) Min (ms) Max (ms) Avg (ms) Min (ms) Max (ms) Avg (ms)

100 492 2308 1258 564 1076 820 400 724 562

200 1404 4665 2822 794 1258 1026 510 760 635

300 315 7558 5820 456 1992 1224 350 890 621

400 4146 11424 8880 843 1276 1060 568 1054 811

500 491 9084 5658 921 1732 1327 496 616 556

Figure 7: Analysis of execution time of existing bulkhead, bulkhead
using little law and bulkhead using little law and ARCB

	 A resilience framework for fault-tolerance in cloud-based microservice applications	 2569

Analysis, 1-9.
Kapikul, A., Savić, D., Milić, M., & Antović, I. (2024, February).

Application Development From Monolithic to Microservice
Architecture. In 2024 28th International Conference on
Information Technology (IT) (pp. 1-4). IEEE.

Little, J. D., & Graves, S. C. (2008). Little’s law. Building intuition:
insights from basic operations management models and
principles, 81-100.

MIRAJ, M., & FAJAR, A. N. (2022). MODELBASED RESILIENCE
PATTERN ANALYSIS FOR FAULT TOLERANCE IN REACTIVE
MICROSERVICE. Journal of Theoretical and Applied Information

Technology, 100(9).
Punithavathy, E., & Priya, N. (2024). Auto retry circuit breaker

for enhanced performance in microservice applications.
International Journal of Electrical & Computer Engineering
(2088-8708), 14(2).

Rahman, M. I. (2022). Analysis of Microservice Coupling Measures
(Master’s thesis).

SA, N. S., & Sebastian, S. (2023, December). Circuit Breaker: A
Resilience Mechanism for Cloud Native Architecture. In
2023 Global Conference on Information Technologies and
Communications (GCITC) (pp. 1-8). IEEE.

