
Abstract
The coupled fractional dual phase-lag hygrothermoelasticity theory, developed using fractional calculus principles, extends classical 
Fourier’s and Fick’s laws to a time-fractional differential equation. The concept is applied to a thin circular plate that is exposed to 
hygrothermal loadings. The finite integral transform method and decoupled technique are utilized to create closed-form expressions 
for various factors such as temperature, moisture, large deflection, and stresses. The study compares the results of the dual phase-lag 
model with those of classical and hyperbolic models. The phase-lags parameters play a crucial role in regulating the heat and moisture 
transfer mechanism.
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Introduction
The research on thermal conduction and moisture diffusion 
in composites is a fascinating field involving various 
methods to explore the effects of heat and moisture on 
composite material strain and distortion. Sih and Shih (1981) 
used the finite difference method to analyze the influence 
of heat and moisture combinations on hygrothermal 
stresses in composite materials. Chang (1994) developed a 
decoupling methodology to develop analytical solutions 
for time-dependent stresses in both hollow and solid 
cylinders. Chen and Hwang (1994) utilized the finite element 
method to study hygrothermoelastic phenomena on a two-
dimensional surface. Sobhy’s (2016) plate theory provides a 
comprehensive understanding of the vibration and buckling 
characteristics of functionally graded sandwich plates. 
Ebrahimi and Barati (2017) utilized advanced beam theory to 
investigate the vibration-damping properties of viscoelastic 
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nanobeams in hygrothermal conditions. The previously 
mentioned research discussed is built on the fundamental 
principles of the Fourier and Fick laws. 

Xu et al. (2011) quoted that Fourier’s and Fick’s equations 
are widely utilized in classical hygrothermal systems, 
focusing on long-term dynamics and a wide geographical 
scope. Fourier’s and Fick’s equations may pose challenges 
in rapid heating and heat and moisture exchange at micro/
nano-scale levels by Chester (1963), Joseph and Preziosi 
(1989), and Qiu and Tien (1992) in their papers. The Fourier 
and Fick equations suggest that heat and moisture can 
rapidly spread across a medium, causing uniform effects on 
the entire medium, as advised by Zhang et al. (2019). Classical 
Fourier and Fick equation is inefficient at micro- and nano-
scale systems, leading to the development of alternative 
heat conduction models to better understand material heat 
spread. The hyperbolic heat conduction model, introduced 
by Cattaneo (1958) and Vernotte (1958), enhances the Fourier 
model by incorporating thermal relaxation, providing 
a more accurate representation of heat propagation’s 
wave-like behaviour. Yang and Chen (2019) developed a 
precise analytical model based on non-Fourier and non-
Fick concepts to describe the behavior of a half-plane with 
fractures exposed to sudden temperature changes. Lee et 
al. (2015) conducted a study on the non-Fourier effect in 
the bio-heat conduction equation, analyzing temperature 
and surface heat flow distributions within multiple-layered 
tissue. Xue et al. (2018) conducted a study on the impact of 
memory-dependent derivatives on the transient thermal 
stress of a fractured hollow cylinder in the hyperbolic 
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model. Peng et al. (2018) introduced the hyperbolic heat-
moisture coupling model to study the dynamic behaviour 
of an infinite-length cylinder under hygrothermal stresses, 
considering its hygrothermoelastic properties. Xue et al. 
(2020) utilized the hyperbolic hygrothermal model to study 
the fracture problem of a cylinder with a crack along its 
circumference. Tzou (1995) introduced the dual-phase-lag 
heat conduction model (DPL model) to explain simultaneous 
reactions at micro and nano-scales for heat transfer. The 
model considers the phase-lag of heat flux and temperature 
gradient. 

A study conducted by Tzou (1995) on delayed heat 
transfer in small-scale systems with fast changes found 
the model’s superior performance in analyzing observed 
responses. Liu and Chen (2010) conducted a reverse study 
using experimental data to confirm the thermal properties 
of DPL in cow muscle tissue, using phase-lag values for 
synchronization. The DPL model’s applications are not 
fully unstated despite studies by Zhou et al. (2009), Liu 
et al. (2012), Guo et al. (2018), Majchrzak and Mochnacki 
(2018), and Borjalilou et al. (2019), which have specifically 
examined the DPL heat conduction model, highlighting a 
gap in understanding the hygrothermal coupling model that 
integrates dual-phase-lag behavior and fractional calculus. 

This study presents a hygrothermal coupling model 
incorporating a dual phase-lag effect. The objective is to 
analyze the transient behavior of a thin circular plate with 
restricted dimensions by employing fractional calculus. This 
analysis will consider the impact of hygrothermal loadings 
on the external surface. The hygrothermal distribution 
within a thin circular plate is estimated using integral 
transform techniques and a decoupling methodology. 
Graphical depictions of the influence of each phase-lag 
parameter on the hygrothermoelastic fields are operated 
to contrast them with the outcomes derived from classical 
and hyperbolic models.

Statement of the Problem

Modified dual-phase lag hygrothermoelastic theory
The microscopic approach suggested by Sih et al. (1986) 
proposed the first approximation for the variation of 
moisture and temperature as constant+ ,M C Tχ ω= −  
where /M C χ∂ ∂ =  and /M T ω∂ ∂ = − . Then, the amount 
of moisture in composite per unit mass of solid, m, can 
be expressed as m C Mρ υ ρ′= + . Due to the presence of 
liquid and vapor, the moisture and heat transfer obey the 
conservation of mass and energy as 

h p
M Tq C
t t

ργ ρ∂ ∂
∇ ⋅ = −

∂ ∂
 	 (1)

m
M Cq
t t

ρ
υ

∂ ∂
∇ ⋅ = − −

′ ∂ ∂
 	 (2)

Following the dual phase-lag model suggested by Peng 
et al. (2018), which incorporates delay time translation of heat 

flux vector and temperature gradient, enables a microscopic 
examination of microstructural interactions within solid heat 
conductors. The proposed DPL law is found to be highly 
consistent with both Fourier and Fick laws:

1 1qh h h Thq k T
t t

τ τ∂ ∂   + =− + ∇   ∂ ∂   
 	 (3)

1 1qm m m Cmq k C
t t

τ τ∂ ∂   + =− + ∇   ∂ ∂   
 	 (4)

Eliminating variables hq  and mq  in Eqs. (1)-(4), one obtains

21 1Th qh
T CL T

t t t t
τ τ η∂ ∂ ∂ ∂    + ∇ = + −    ∂ ∂ ∂ ∂    

 	 (5)

21 1Cm qm
C TD C

t t t t
τ τ λ∂ ∂ ∂ ∂    + ∇ = + −    ∂ ∂ ∂ ∂    

 	 (6)

in which 
/ , / , / ( ), / ( )h p p mL k C C D kρ γω η γχ γω υ υ ρχ λ ρω υ ρχ′ ′ ′= = = + = +  	 (7)

The hygrothermoelasticity theory was reformed using 
the fractional derivative definition, as proposed by Caputo 
(1967) and Sherief et al. (2010), and Equations (5)-(6):

21 1Th qh
T CL T
t tt t

α α

α ατ τ η
   ∂ ∂ ∂ ∂ + ∇ = + −        ∂ ∂ ∂ ∂   

 	 (8)

21 1Cm qm
C TD C
t tt t

β β

β βτ τ λ
   ∂ ∂ ∂ ∂ + ∇ = + −        ∂ ∂ ∂ ∂   

 	 (9)

where ( , ) ( , )/ tα β α β∂ ∂  is understood in the sense of the 
Caputo time fractional derivative of ( , ) (0,1]α β ∈  of an 
absolutely continuous function ( )f t  is given by

( , )
1 ( , )

( , ) ( ) ( )d df t I f t
dtdt

α β
α β

α β
−=  	 (10)

where Iξ  is Riemann-Liouville fractional integral of the 
function ( )f t  of order ξ  which is given as

1

0

( )( ) ( )
( )

t t sI f t f s ds
ξ

ξ
ξ

−−
= ∫

Γ
 	 (11)

where ( )f t  is a Lebesgue integrable function and 0ξ > . 
In the context of the definition of Caputo (1967), the 

time-fractional derivative given by Eqs. (11) and (12), Sherief 
et al. (2010) have considered the following limiting cases: 

( , )
1 ( , )

( , )

( ) (0), ( , ) 0
( )( ) ,0 1

( ) , ( , ) 1

f t f
d f tf t I

tdt
f t

t

α β
α β

α β

α β

α

α β

−


 − →
 ∂= < < ∂
∂ → ∂

 	 (12)

Applying the various values of phase-lags ,qh Thτ τ ,Cm qmτ τ  
and fractional order ( , )α β , one will obtain the following 
particular cases of the FDPL hygrothermal  coupled model 
as follows: 
•	 Taking 0qh Th qm Cmτ τ τ τ= = = =  and 1α β= =  in Eqs. (8) and (9), 

then the model is parabolic and leads to the classical 
coupled theory suggested by Sugano and Chuuman 
(1993)

2

2

/ ( / ) 0,

/ ( / ) 0
c

c

L T T t C t

D C C t T t

η

λ

∇ −∂ ∂ + ∂ ∂ =

∇ −∂ ∂ + ∂ ∂ =
 	 (13)
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•	 Taking 0Th Cmτ τ= =  and 1α β= =  in lift side of Eqs. (8) and 
(9), then the model is hyperbolic and leads to a theory of 
hygrothermoelasticity suggested by Zhang and Li (2017)

2

2

[1 ( / )]( / / ) 0,

[1 ( / )]( / / ) 0

qh c

qm c

L T t T t C t

D C t C t T t

α α

β β

τ η

τ λ

∇ − + ∂ ∂ ∂ ∂ − ∂ ∂ =

∇ − + ∂ ∂ ∂ ∂ − ∂ ∂ =
 	 (14)

•	 Taking α β=  in the above-coupled model as given in 
Eq. (14) with an equal fractional model suggested by 
Zhang and Li (2017).

Formulation of the problem
Governing equation of hygrothermal field
Let us consider a clamped circular thin plate of thickness 
h  and radius 0r  and define it in a cylindrical system of 
coordinates (r, η, z). The center of the plate in the middle 
surface is taken as the origin, and the z-axis is normally 
downwards, which is subjected to heat flux and moisture 
flux at the surface, as shown in Figure 1. 

Here, we only consider the hygrothermal effect on 
elastic stresses and deformation; conversely, moisture 
and temperature do not change due to the elastic field. 
We introduce the following dimensionless parameters for 
simplicity in analysis:

0 0 0 0 0
2
0

2 2 2 2
1 0 0 1 0

ˆ ˆ( , ) ( , ) / , ( ) / , ( ) / ,

ˆ ˆ ˆ ˆ ˆ ˆ( , , , , , ) ( , , , , , ) / ,

ˆ / , , /

c

qh Th qm Cm qh Th qm Cm

r z r z r T T T C C T

t t L t t r

w w T r c r K D L

α α

θ ψ λ

τ τ τ τ τ τ τ τ

γ β

= = − = −

=

= = =

 	 (15)

where the initial temperature and initial humidity are 
denoted by 0T  and 0C , respectively. With these dimensionless 
parameters, Eqs. (8) and (9) can be rewritten as the 
dimensionless expressions listed below:

21 1Th qh c ct tt t

α α

α α
θ ψτ θ τ η λ

   ∂ ∂ ∂ ∂ + ∇ = + −        ∂ ∂ ∂ ∂   
 	 (16)

2 11 1Cm qm K t tt t

β β

β β
ψ θτ ψ τ

   ∂ ∂ ∂ ∂ + ∇ = + −         ∂ ∂ ∂ ∂   
 	 (17)

and dropping the overhat -like a symbol for simplicity 
and efficiency.

The linearly coupled differential equations (16) and 
(17) are accomplished by the following initial and physical 
boundary conditions with the prescribed sectional value of 
the matter flux, stated as

( , ,0) ( , ,0) 0, for all 0 1 and 0 ,r z r z r z hθ ψ= = < < < <  	 (18)
( , ,0) ( , ,0) 0, for all 0 1 and 0 , if , 1r z r z r z h

t t
θ ψ α β∂ ∂

= = < < < < >
∂ ∂

    (19)

1 1(1, , ) ( , ), (1, , ) ( , ), for all 0 and 0,z t f z t z t g z t z h tθ ψ= = < < >  	 (20)

2 2( ,0, ) ( , ), ( ,0, ) ( , ), for all 0 1 and 0,r t f r t r t g r t r tθ ψ= = < < >  	 (21)

3 3( , , ) ( , ), ( , , ) ( , ), for all 0 1 and 0,r h t f r t r h t g r t r tθ ψ= = < < >  	 (22)

where 1 1( , ), ( , ),f z t g z t 2 2( , ), ( , ),f r t g r t 3( , ),f r t  and 3( , )g r t  are 
known.

The basic equation of large deflection formulation
If we neglect the strain energy due to the second invariant 
in the middle plane of the plate, then following the modified 
Berger approximate approach suggested by Dhakate et al. 
(2018), the equations for large deflection in dimensionless 
form can be given as 

2 2 2 2( ) ( , )gD c w M r t∇ ∇ − = −∇  	 (23)
where 3 2/12(1 )D Eh υ= −  is the flexural rigidity of the plate, 

E  is Young’s modulus, υ  is Poisson ratio, 2∇  is Laplacian 
operator, ( , )w w r t=  is lateral displacement, ( , )u u r t=  is radial 
displacement, ( , )gM r t  is induced resultant moment given as

0( , ) ( , , )h
gM r t z g r z t dz= ∫  	 (24)

in which 2 1( , , ) ( / )cg r z t θ λ γ γ ψ= + , and c  is a normalized 
constant of integration in the dimensionless form given by 

2
2 21 ( , )

2 g
u u w c Q N r t
r r r
∂ ∂ + + = + ∂ ∂ 

 	 (25)

with 2 2 2
0 1(1 ) / ( 12)Q h ETυ γ= − ,  and ( , )gN r t  is induces 

resultant force: 

0( , ) ( , , )h
gN r t g r z t dz= ∫  	 (26)

Consider the clamped circumference of a circular plate 
subjected to heat and moisture flux for which the boundary 
conditions:

(1, ) 0, (1, ) / 0, (1, ) 0w t w t r u t= ∂ ∂ = =  	 (27)
The bending stresses at the surface of the circular plate:

2

2 2

2

2 2

6 ( , ),

6 1 ( , )

r
D w r t

r rh r

D w r t
r rh r

θ

υσ

σ υ

 ∂ ∂
= +  ∂∂ 

 ∂ ∂
= +  ∂∂ 

 	 (28)

Eqs. (16) to (28) constitute mathematical formulation 
under consideration.

Construction of the General Solution to the Problem 

Solution of the hygrothermal field
Introducing Laplace transform with respect to t  on both 
sides of fundamental Eqs. (16)-(17), with initial conditions 
(18)-(19). To simply further, we recall the following property 
of the Laplace transform of the Caputo derivative operator 

( , ) 1( , ) ( , ) 1
( , ) 0

( ) (0)( )
mn m

mm

f t fs f s s
t t

α β
α β α β

α β

−∗ − −

=

∂ ∂
= − ∑

  
 
  ∂∂
  	 (29)

where 1 ( , ) ,n nα β− < <  s  is the transform variable and f ∗  
stands for the Laplace transform of f , respectively. With the 
help of property (29), bearing the initial boundary conditions 
(18)-(19) in mind, one obtainsFigure 1: Schematic of a circular plate under large deflection
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2 2
1

2 2
1(1 ) ( )( )Th qh c cs s s
r rr z

α ατ θ τ θ η λ ψ+ ∂ ∂ ∂
+ + + = + −  ∂∂ ∂ 

 	 (30)

2 2
1

2 2
1 1(1 ) ( )( )Cm qms s s
r r Kr z

β βτ ψ τ ψ θ+ ∂ ∂ ∂
+ + + = + −  ∂∂ ∂ 

 	 (31)

where overbar is the transformed function of θ  and ψ . 
We introduce the first-order finite Hankel integral 

transform of the special type to solve differential equations 
(30)-(31) as well as its inverse in the interval 0 1r< <  stated 
in Debnath and Bhatta (2007) that responds to the boundary 
conditions given in Eq. (20) as

1
[ ( )] ( ) ( ) ( ) , 1, 2,3..., discrete1 1 1

0
f r f r f r J r dr jj j jµ µ= = = ∞∫       (32)

then ( )f r  can be represented by the Fourier-Bessel 
series as

( )11[ ( )] ( ) 2 ( ) , 0 11 11 2( )1 2

J rjf f r f rj jj Jj j

µ
µ µ

µ

∞− = = < ≤∑
=

        (33)

and the orthogonal property as
2 1 2 ( ) ( )1 1 2 12

d f df f J fj j j jj rr drdr
µ µ µ µ

 
 + = − + = 
 

  	 (34)

where the summation is taken over the positive roots 
of ( ) 01J µ = .

Further, to solve the differential equations (30)-(31), let 
us introduce the Fourier sine transform stated in Debnath 
and Bhatta (2007) in the variable z  extends over a finite 
domain as

[ ( )] ( ) ( ) sin( ) ,0 , 1, 2,3...
0

h
g z g q g z z dz z h qs ζ= = ≤ ≤ =∫  	 (35)

21[ ( )] ( ) ( )sin( ), 0
1

g q g z g q z z hs h q
ζ

∞− = = < ≤∑
=

  	 (36)

From this, and the property:
2 ( ) 2[ (0) ( 1) ( )] ( )2

d g z qg g h g qs
dz

ζ ζ
 
  = − − −
  

  	 (37)

where sin( )zζ , /q hζ π=  is the kernel of the function.
Now, by using the integral transformation using Eq. (34), 

considering the condition (20); and similarly transforming 
the differential equations (30)-(31) using Eq. (37), bearing 
the boundary conditions (21)-(22) in mind the following 
reduction is made:

2
1(1 )( ) (1 )( )Th qh c cs sA sα ατ θ τ θ η λ ψ+ − = + −Ω

    	 (38)

2
2(1 )( ) (1 )( ) /Cm qms s KA sβ βτ ψ τ ψ θ+ − = −Ω +

   	 (39)

where

3 1

1
2 2

1 2 1

2 2 3 1
2

( , ) ( , ) ( ) ( ),

( , ) ( , ) ( )1 ( ),

( 1)

( )

j j
n

n
j

j j j

j

A q s f q s J

q

f f

A s q s g Jg g

µ µ µ

µ µ µ

µ γ

= − + − +

= −

+

+ − +

Ω =



 



  	 (40)

Now, solving the Eqs. (38) and (39), one gets the dimensionless 
temperature and moisture in the Laplace domain below

2
1 3 2

2
3

(1 ) (1 ) (1 )

(1 ) (1 ) (1 )(1 )[ ]
Th qh Cm

T ch qh q

c

q

c

h mc

s s s K s

s s s s s

A A A

A s

α α β

α α α β
τ τη λ

η

τ
θ

τ τ τ τλ

+ − + +

Ω + + + + +
=

+

     (41)

1

2
3

2

2
2

( )

)

(1 ) (1 ) [ (1 )

(1 )] 1

(1 ) (1 ) (1 )[ ] (1

Th qm Th

qh Cm

Th qh qh qc mc

s s s A s

s s A K s

s s s sA s s

α β α

α β

α α α βη λ

τ τ τ

τ τ
ψ

τ τ τ τ

 
 
 


+ + + Ω +
−

+ + +

Ω + + + +


+


+

=
 	 (42)

where
2

3 (1 ) (1 )Cm qmA K s s sβ βτ τ= − Ω + − +  	 (43)

Finally, the differential equations in Eqs. (41)-(42) are 
solved using the inversion theorem from Eqs. (36) and (33), 
the solutions are found in the Laplace domain:

1 3 2

1 1 3
2

2
0 2

2
(1 ) (1 ) (1 )

(1 ) (1 ) (1 )(1
4

[ ]

sin( ) ( ) / ( )

)
Th qh Cm

q j Th qh qh q

j

c

j

c m

c

c

s s
h

s K s

s

A A

s s s

A

A

z J r J

s s

α α β

α α α β
τ τ τ

θ
η λ

η λτ τ τ τ

ζ µ µ

∞ ∞

= =

+ − + +

Ω + + + +

×

+
= ∑ ∑

+  	 (44)

21 1 3

0

2
1

2

2
2

2

(1 ) (1 ) [ (1 )

(1 )] 1

(1 ) (1 ) (1 )(1 )

( )4
[ ]

sin( ) ( ) / ( )

Th qm Th

qh Cm

q j Th qh qh qm

j

c

j

c

s s s A s

s s A K s

s s s s sA sh

z J r J

α β α

α β

α α α β

τ τ τ

τ τ
ψ

τ τ τ τ

µ

η λ

ζ µ

∞ ∞

= =

+ + + Ω +
−

+ + +

Ω + + + + + +
= ∑ ∑

×

  (45)

The functions given in Eqs. (44) and (45) represent the 
temperature and moisture at every instant and all points 
of the circular plate of finite height in the Laplace domain.

N o w,  s u b s t i t u t i n g  E q s .  (4 4)  a n d  (45)  i n t o 

2 1( , , ) ( / )cg r z t θ λ γ γ ψ= + , one obtains

0
21 1 2

( ) ( )4( , , ) sin( )
( )

j

q j j

s J r
g r z s z

h J

φ µ
ζ

µ

∞ ∞

= =
= ∑ ∑  	 (46)

where 

1 3 2 1

2 2 1

3

2
1 2

2 2

(1 ){ (1 )

1 } (1 ) (1 )

(1 ) (1 ) (1 )(1 )

( / )[

( )] [ ( / )]
( )

[ ]

Th c qm

Cm qh Cm c

Th qh qh qm

c

c c

s s s A A K

s s s K s

s s

A

s

A

A
s

sAs s

α β

β α β

α α α β

τ λ γ γ τ

τ τ τ λ γ γ
φ

τ τ τ

η

η λ τ

+ − + +Ω

+ + + +

Ω + +

−

+ +
=

+ +

      (47)

Solution of the large deflection
Substituting Eq. (46) into transformed Eq. (24) and (26), one 
obtains

1 0
2 21 1 2

( ) ( )4( , )
( )

j
g

q j j

s J r
M r s

h J

φ ν µ

ζ µ

∞ ∞

= =
= ∑ ∑  	 (48)

2 0
21 1 2

( ) ( )4( , )
( )

j
g

q j j

s J r
N r s

h J

φ ν µ

ζ µ

∞ ∞

= =
= ∑ ∑  	 (49)

where 1 sin( ) cos( )h h hν ζ ζ ζ= −  and 2 1 cos( )hν ζ= − .

Now substituting Eq. (48) into transformed Eq. (23), one 
obtains

2
1 02 2 2
2 21 1 2

( ) ( )4( ) ( , )
( )

j j

q j j

s J r
c w r s

hD J

φ ν µ µ

ζ µ

∞ ∞

= =
∇ ∇ − = ∑ ∑  	 (50)

We assume ( , )w r s  that it satisfies boundary conditions 
(27) and Eq. (50):
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2
1 0 0

2 2 2 2 21 1 2

( )[ ( ) ( )]4( , )
( )[ ( )]

j j j

q j j j j

s J r J
w r s

hD J c

µ ν φ µ µ

ζ µ µ µ

∞ ∞

= =

−
= ∑ ∑

+
 	 (51)

Substituting Eqs. (49) and (51) into (52). and integrating 
with respect to r , one gets

2 2
1 221 1 2

2
2

12 2 2 2 2
2

2 2 2 2 2 2
1 1 1

4 ( ) ( ) /
2 ( )

( ) 1
( ) [ ( )]

{ [ ( )] ( 1)[ ( )] }

j
q j j

j

j j j

j j j j

rc Q su rJ r
hr J

s
DJ c

r J r r J r C

φ µ ν ζ
µ

µφ ν
µ ζ µ µ

µ µ µ µ

∞ ∞

= =
= + ∑ ∑

 −
 −
 + 

′× + − +

 	 (52)

where 1 0 2( ) [ ( ) ( )] / 2j j jJ r J r J rµ µ µ′ = − .
Using boundary condition (27) and Eq. (52), one obtains

22 22 2 1 1
1 2 2 2 2 21 1 2

( ) ( )4 1
2 [ ( )] ( )

j j

q j j j j

s Jc QC
h D c J

µ ν φ µ

ζ µ µ µ

∞ ∞

= =

 ′
 = − + ∑ ∑
 + 

 	 (53)

Substituting Eqs. (34)-(36) into Eq. (9), one obtains

1
0 13 2 2 2 21 1 2

( )24 (1 )( ) ( )
( )( )

j
r j j j

q j j j

s
J r J r

rh J c
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ζ µ µ
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= =
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   (54)

1
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and at stress at 1r =  can be obtained as

( ) 1 0
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( ) ( )24
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j j j
r r q j j j
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( ) ( )24( )
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j j j
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q j j j
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υν µ φ µ µ
σ
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∞ ∞
=
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+
 	 (57)

Eqs. (56) and (57) give a relationship as

( )1 1( )r r rθσ υ σ= ==  	 (58)

The Numerical Inversion of the Laplace Transforms
Applying the Gaver-Stehfest algorithm suggested by 
Stehfest (1970) to obtain the inverse Laplace transform to 
approximate the time domain solution as

2In(2) In(2)( ) ( ) ,
1

1min( , ) 2
( 1) ,

!( 1)/2

M kf t f t a fM t tk
Mk M MM ka

kMk

 ≈ = ∑   =
+ =    +  = − ∑    −    = + 



  
   

   (59)

where 1,n ≥ 0,t >  1 M≤ ≤  , f  is the Laplace transform 
of ( )f t , 2M  is an even integer whose value depends on 
the word length of the computer used. Kuznetsov (2013) has 
established the convergence of the Gaver-Stehfest algorithm 
for the numerical inversion of the Laplace transform.

Numerical Results, Discussion, and Remarks
This section focuses on numerically calculating the large 
deflection of a circular plate made of a composite material. 
The analysis takes into account the hygrothermoelastic 
behavior of the material, considering its specific material 

properties: 𝐸 = 64.3 GPa,  𝜂 = 0.5 cm3 ◦C∕ g, 𝐷 = 2.16×10−6 m2 ∕ 
s, 𝛬 = 2.16 × 10−5 m2∕s,  𝑣 = 0.33, 𝜌 = 1590 kg ∕m3, 𝜆 = 0.5 g ∕(cm3 
◦C), γ1 = 31.3 × 10−6 cm ∕ (cm ◦C), γ2 = 2.68 × 10−3 cm ∕(cm%H2O) 
as inscribed in Sih and Shih (1981). The study uses numerical 
simulations to investigate the impact of hygrothermoelastic 
response on a thin plate, highlighting the need for further 
research using the Berger approximation hypothesis. The 
analysis focuses on a circular plate exposed to constant 
hygrothermal loading on the top edge, maintaining zero 
temperature for the curved circular surface and lower edge. 
The MATHEMATICA software generated figures presenting 
the variation of temperature, moisture, large deflection, 
radial stress, and circumferential stress distribution along 
r and z for different periods. The solid line represents the 
coupled hygrothermoelastic distribution, while the dotted 
line represents the uncoupled model.

Figure 2 shows a dimensionless temperature distribution 
along r, indicating that the temperature distribution grows 
linearly from zero to positive values for various r values. It 
shows that the sectional heat supply may be responsible for 
temperature changes. At the curved surface of the circular 
plate, this heat supply produces tensile tension and a greater 
temperature magnitude. If the temperature is zero, the 

Figure 3: Moisture distribution along r at various β

Figure 2: Temperature distribution along r at various α`
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boundary condition is met, and the maximal compressive 
force operates at the plate’s origin. Figure 3 shows the 
dimensionless moisture distribution along the r-axis of a 
circular plate. The temperature distribution shows a linear 
drop from positive values to zero for different r values. This 
decrease in moisture content is due to the moisture being 
initially at the center of the plate. The sectional heat supply 
is directed towards the plate’s curved surface, causing 
a greater moisture force at the plate’s origin. The plate 
experiences the most compressive stress along its curved 
surface, resulting in zero moisture content and meeting 
boundary requirements.

Figure 4 depicts the transverse deflection of a clamped 
circular plate seen across different fractional orders 

0.2,0.4,0.6,0.9α = . The large deflection was found to be 
most significant near the center of the plate. When the value 
of r becomes unity, the distribution of deflection gradually 
decreases as we approach the outer circular boundary 
surface of the plate. The observation reveals that the radial 
stress function is compressive in nature at the origin, as 
seen in Figure 5. The findings of the investigation indicate 
a direct proportionality between the radial stress and the 
fractional order α in the radial direction. The radial stress 
exhibits an immediate rise within the range 0 0.2r< <  

Figure 4: Deflection profile along r at various α

Figure 5: Radial stress distribution along r at various α Figure 7: Temperature distribution along t at various α

Figure 6: Circumferential stress distribution along r at various α

as a result of the substantial tensile force, followed by a 
gradual increase after that. The compressive force exhibits 
its highest magnitude at the outer circular boundary 
surface of the thin plate at a point 1r = . Similar patterns 
may be detected in the distribution of circumferential stress 
along the r-axis, as shown in Figure 6. The fluctuation in 
temperature during dimensionless time t is seen in Figure 7, 
showcasing different fractional order parameter values α. It 
has been shown that the temperature distribution exhibits 
an initial increase with positive values for 0 1t< < , followed 
by a subsequent decrease until 1 3.5t< < . Subsequently, a 
modest stabilization is seen from 3.5t >  for all phase-lags 
being examined.

The moisture distribution ψ  exhibits that initial moisture 
decreases when 0 0.05,t< <  followed by a progressive rise 
from 0.05 0.2t< < , and reaches stability at 0.2t >  for all 
phase-lags and fractional order values examined, as seen in 
Figure 8. According to Figure 9, the deflection distribution 
tends towards zero at t = 0 and t > 0.2 as a result of the initial 
exertion of a stronger compressive force. Conversely, the 
temperature reaches its greatest value at t = 0.05 owing 
to the influence of the tensile force. Hence, the curves 
have a somewhat bell-shaped deflection distribution. 
Figure 10 illustrates the trajectory of the radial stress curve, 
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The current model goes through a comparative analysis 
with various models in order to evaluate its reliability, as 
illustrated in Figure 12. Following Gao and Ma (2021),  it is 
learned that the propagation distance 1/2{50} 0.35x Vt t∆ = = =  
(here 0.05t = ), is in good agreement with the numerical 
prediction, as shown in Figure 12. The integral across a 
region represents the heat absorbed from an external 
heat source, whereas the temperature distributions of 
distinct models show alternative heat transfer mechanisms 
occurring at a particular moment.

Conclusion
The proposed study examines a hygrothermoelastic 
problem involving coupled fractional dual-phase-lag 
transient heat and moisture diffusion that obeys non-Fourier 
and non-Fick’s laws. The thin circular plate is subjected to 
physical hygrothermal load at its outer surface. An integral 
transform technique was employed to derive closed-form 
solutions for the hygrothermal distribution, and its impact 
on large deflection is studied. Specifically, outcomes are 
related to those obtained from parabolic and hyperbolic 
hygrothermal models, which were considered an exact 
case of the current model. Graphic illustrations have been 

Figure 8: Moisture distribution along t at various β

Figure 9: Deflection distribution along t at various α

Figure 10: Radial stress profile along t at various α

Figure 11: Circumferential stress distribution along t at various α

which first exhibits an upward trend until reaching its 
peak. Subsequently, it undergoes an exponential decline, 
ultimately aligning with time t. The circumferential stress 
exhibits a decrease to a minimum when the value of time 
ranges from 0 0.05t< < , followed by a progressive rise from 

0.05t > , and eventually reaches stability at 0.2t >  for all 
fractional order parameter values α, for all phase-lags being 
examined, as seen in Figure 11.

Figure 12: Comparisons between the two models with α = 0.3
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generated to depict the numerical outcomes relevant to the 
transient hygrothermoelastic phenomena. The numerical 
results yield several inferences:
•	 The associated non-Fourier and non-Fick effects under 

fractional order and phase-lags significantly affect the 
response history and propagation of hygrothermal 
fields, mostly due to a non-Fourier effect. Even in the 
absence of heat transmission to the surroundings, 
energy dissipation may result in a drop in temperature.

•	 F o l l o w i n g  t h e  t h e o r e t i c a l  f r a m e w o r k  o f 
hygrothermoelasticity with one-temperatures, it is 
necessary to establish a revised categorization system 
for materials based on their phase lag for evaluating 
the materials’ capacity to facilitate the conduction of 
heat and moisture while considering the influence of 
hygrothermoelastic properties.

•	 The theories of coupled classical hygrothermoelasticity, 
generalized hygrothermoelasticity with two relaxation 
times, and Caputo time fractional derivatives can be 
derived as specific instances.

This research enhances the design of machines or 
structures in engineering contexts by incorporating suitable 
factors and functions into expressions.

Nomenclature
T temperature mq moisture flux vector

2∇ Laplace operator hq heat flux vector
χ ,ω material constants γ heat released from a 

unit mass
C mass of moisture pC specific heat
υ′ volume fraction of the 

voids
hk thermal conductivity

ρ density of the material mk moisture diffusion 
coefficient

∇ gradient operator qhτ relaxation time of heat 
flux

u radial displacement qmτ relaxation time of 
moisture

rσ radial stress Thτ phase-lag of heat 
gradient

σθ tangential stress Cmτ phase-lag of moisture 
gradient

ψ moisture distribution 1γ  thermal expansion 
coefficient

υ Poisson ratio 2γ moisture expansion 
coefficient

,α β fractional order s transformed parameter
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