
Abstract
Cloud computing, a revolutionary paradigm, connects computing resources and users via the internet, offering services like cloud storage
and on-demand computing. In this context, efficient task scheduling is crucial, aiming to minimize costs and makespan. We introduce
hazard regressive multipoint elitist spiral search optimization (HRMESSO), a novel technique for efficient task scheduling with reduced
time consumption. User tasks are initially received, prioritized, and optimized. Cox proportional hazard regression is applied to establish
relationships between task attributes (e.g., priority level, request arrival time, file size) and task prioritization. The great deluge elitist
spiral search optimization identifies optimal virtual machines, considering factors like energy, memory, and CPU availability. The spiral
search employs logarithmic spirals and Jenson Shannon divergence to find global optimal virtual machines. Finally, the task assigner
schedules prioritized tasks onto the identified optimal virtual machines. Experimental evaluation is conducted with different metrics
such as task scheduling efficiency, makespan, throughput and energy consumption. The quantitatively compared results exhibit the
HRMESSO technique provides better scheduling efficiency, lesser makespan, throughput and energy consumption.
Keywords: Cloud computing, Resource optimization, Task scheduling, Cox proportional hazards regression, Great deluge elitist spiral
search optimization, Jenson Shannon divergence.

Hazard regressive multipoint elitist spiral search optimization
for resource efficient task scheduling in cloud computing
A. Jabeen1*, A. R. M. Shanavas2

RESEARCH ARTICLE

© The Scientific Temper. 2024
Received: 12/04/2024				 Accepted: 12/05/2024			 Published : 15/06/2024

1Department of Computer Science, Cauvery College for
Women (Autonomous), (Affiliated to Bharathidasan University)
Thiruchirappalli, Tamil Nadu, India.
2Department of Computer Science, Jamal Mohamed College
(Autonomous), (Affiliated to Bharathidasan University),
Thiruchirappalli, Tamil Nadu, India.
*Corresponding Author: A. Jabeen, Department of Computer
Science, Cauvery College for Women (Autonomous), (Affiliated
to Bharathidasan University) Thiruchirappalli, Tamil Nadu, India.,
E-Mail: jabeen.ca@cauverycollege.ac.in
How to cite this article: Jabeen, A., Shanavas, A. R. M. (2024).
Hazard regressive multipoint elitist spiral search optimization
for resource efficient task scheduling in cloud computing. The
Scientific Temper, 15(2):2143-2151.
Doi: 10.58414/SCIENTIFICTEMPER.2024.15.2.26
Source of support: Nil

Conflict of interest: None.

Introduction
Cloud computing is a distributed computing model that
enables users to access on-demand computing services,
including storage, databases, and software, through the
internet. The efficiency of task scheduling in the cloud
addresses issues such as long scheduling times, high-cost
consumption, and heavy virtual machine loads. Consequently,

The Scientific Temper (2024) Vol. 15 (2): 2143-2151	 E-ISSN: 2231-6396, ISSN: 0976-8653

Doi: 10.58414/SCIENTIFICTEMPER.2024.15.2.26	 https://scientifictemper.com/

the task of scheduling tasks in a cloud computing environment
remains a challenge, to access a quick and efficient solution.
To tackle task scheduling in cloud computing, numerous
methods have proposed cloud computing task scheduling
models that leverage metaheuristic algorithms.

Multi objective trust aware task scheduling algorithm
using whale optimization (MOTSWAO) was designed
by Mangalampalli, S., Karri, G. R., & Kose, U., (2023). This
algorithm aims to efficiently allocate tasks to appropriate
virtual resources to reduce both makespan and energy
consumption. However, the machine learning model was not
implemented to predict upcoming workloads and improve
the scheduling efficacy. Multi-objective algorithm integrates
hybrid artificial bee colony and Q-learning (MOABCQ) was
designed (Kruekaew, B., & Kimpan, W., 2022) to reduce the
makespan, cost, and increase throughput and average
resource utilization.The principal component gradient
round-robin load balancing algorithm was designed by
Mathanraj, E., & Reddy, R. N. (2024) to improve load balancing
efficiency with maximum throughput and lesser makespan,
migration cost, and response time. However, the desired
higher level of efficiency was not achieved.

A metaheuristic framework was developed (Alsadie,
D.,2021) to dynamically schedule the task to the virtual
machine. However, an optimal strategy for selecting
and placing virtual machines in the cloud computing

2144	 Jabeen and Shanavas	 The Scientific Temper. Vol. 15, No. 2

environment was not developed. A parallel genetic
algorithm with a MapReduce design was developed in
(Peng, Z., et al., 2022) to distribute tasks across various
priority queues. However, the intended reduction in
execution time was not achieved. In addition, the effective
utilization of available resources was not maximized. A novel
hybrid genetic algorithm (HGA) was introduced in (Hussain,
A. A., & Al-Turjman, F., 2022) for efficient task scheduling with
better resource utilization. However, it failed to increase the
throughput with the computations to get more smoothed
efficient task scheduling results.

A modified particle swarm optimization algorithm
was designed in Chaudhary, S., et al. (2023) for excessively
scheduling the tasks with minimum makespan. However, the
throughput was not improved. A pair-based task scheduling
was designed in Panda, S. K., et al. (2022) with the aim of
minimizing layover time. But an, efficient scheduling was
not implemented with a large number of tasks.

An enhanced sunflower optimization (ESFO) algorithm
was designed in (Emami, H., 2022) to enhance task
scheduling with minimum energy consumption and
makespan. However, the machine learning algorithm was
not applied to enhance task scheduling. Distributed grey
wolf optimizer (DGWO) was developed in Abed-Alguni, et al.
(2021) to distribute the dependent tasks to virtual machines
with computation and data transmission costs. Though the
DGWO reduces the makespan, energy consumption was
not reduced. A fuzzy self-defense algorithm was designed
in (Guo, X., 2021) for multi-objective task scheduling with
resource utilization. However, an optimization algorithm was
not employed to enhance the task scheduling performance.

Related Works
A multi-objective scheduling framework was introduced in
(Reddy, P. V., & Reddy, K. G., 2023) using linear scaling-crow
search optimization algorithm. However, the framework
failed to extend with some advanced neural networks and
perform the workflow scheduling across multiple clouds.
A hybrid swarm optimization algorithm (Eldesokey, H. M.,
et al., 2021) was designed to resolve task scheduling issues
with the available resource. The primary objective was to
minimize both execution time and computational costs.
However, the work failed to extend with QoS parameters
to perform task scheduling.

Task scheduling based queue algorithm was designed in
(Lu, S., Gu, R., Jin, H., Wang, L., Li, X., & Li, J., 2021) with the aim
of minimizing the data transmission delay and server load.
But the energy aware task scheduling was major challenging
issue. The whale optimization algorithm (WOA), introduced
in (Chen, X., et al., 2020) for optimizing cloud task scheduling
with multi-objective functions. Its primary objective is to
enhance the performance of a cloud system by efficiently
allocating the computing resources. However, accuracy in
task scheduling was not enhanced.

An artificial bee colony (ABC) algorithm was designed
in (Babadi, M. S., Shiri, M. E., Goudarzi, M. R. M., & Javadi,
H. H. S., 2022) for solving the task scheduling problem
of cloud computing network with available processing
resources. However, the performance of throughput was not
improved. An integration of genetic algorithm (GA) and the
gravitational emulation local search (GELS) algorithm were
designed in (Praveen, S. P., Ghasempoor, H., Shahabi, N., &
Izanloo, F., 2023) for task scheduling. But the performance
of makespan was not reduced.

A priority assignment method was introduced in (Lipsa,
S., et al., 2023) for task scheduling problem using M/M/n
queuing approach to assign priority to individual tasks.
However it did not consider multi-objective task scheduling.
An improved whale optimization algorithm (IWC) was
designed in (Jia, L., et al., 2021) for task scheduling and
distribution model with lesser time and cost. But it failed
to develop an efficient scheduling system for various task
workloads.

Using artificial and convolutional neural network, a
failure-aware task scheduling approach was introduced in
(Alahmad, et al., 2021). But the task scheduling efficiency was
not minimized. A hybrid model was developed in (Gupta, P.,
et al., 2023) based on meta-heuristic technique and neural
network for optimal assignment of the tasks. However the
designed model failed to attain higher throughput.

Proposed Methodology
Cloud computing is a highly demanding platform for
managing user needs across the internet. The cloud
computing system is constructed from a diverse range
of distributed servers, data storage devices, and network
infrastructures to provide highly manageable services. Task
scheduling has emerged as a significant and challenging
concern in cloud computing. Task scheduling entails the
allocation of user tasks to servers that optimize performance
and minimizes execution time. Resource utilization refers
to the efficient utilization of available resources, which
leads to improved system performance and cost savings.
Therefore, task scheduling and resource utilization pose
fundamental challenges across various domains to achieve
optimal performance efficiency. With this motivation,
the HRMESSO technique has been developed to address
resource-optimized task scheduling in the cloud computing
environment.

Figure 1 illustrates the architecture diagram of HRMESSO
technique for resource-optimized task scheduling in cloud
environment. The system model of task scheduling in cloud
computing comprises four entities: user , cloud server

, task assigner () and virtual machines ‘ ’. First the
cloud user ‘ ’ submit the incoming tasks to
the cloud server . In the cloud server, the task assigner
() analyzes the incoming tasks and find the priority level
using Cox proportional hazard regression. After finding the

	 Hazard regressive multipoint elitist spiral search optimization for scheduling in cloud	 2145

priority, task scheduler determines the resource optimal
virtual machines using great deluge elitist
spiral search optimization. Then the assigner schedules the
tasks to the optimal virtual machine.

Cox Proportional Hazard Regression
Priority-based task scheduling in cloud computing
involves assigning priorities to different tasks based on
their importance or urgency and then scheduling these
tasks on available computing resources consequently.
This approach ensures that high priority user requested
tasks are completed in a timely manner than other this in
turn enhances the overall system efficiency. Therefore, the
proposed HRMESSO technique uses the Cox proportional
hazard regression to identify the priority level of the arrived
tasks.

Cox proportional hazard regression is a statistical model
used for analyzing time-to-event data in the context of task
scheduling. Cox regression is widely used for measuring the
relationship between among dependent data, (i.e., priority
level) and one or more independent data of cloud user
requested task, (i.e., request arrival time, file size, predicted
job completion time).

Let us consider the cloud user ‘ ’ submit the incoming
tasks in cloud server. The task scheduler first
analyzes incoming tasks regarding request arrival time, file
size, and predicted job completion time.

Request arrival time is a time at which a user’s task
or request arrives. This arrival time is often measured in
seconds, minutes or hours.

File size is an important consideration in storage because
it affects how much space a requested user consumes. It

measured in terms of bytes, kilo bytes (KB), mega bytes (MB),
giga bytes (GB). A larger file size is related to an increased
likelihood of the task being assigned a high priority.

Predicted task completion time is an important
independent variable affecting the task’s priority. The tasks
with shorter predicted completion times are taken higher
priority. This completion time is typically based on various
factors such as the task’s complexity, historical data.

 	 (1)

Where, denotes a predicted task completion time,
 a completion time of tasks, and a starting time of the

particular user tasks. This time is often measured in seconds,
minutes or hours.

In this way, the independent variables are estimated.
Therefore, the Cox proportional hazard regression is applied
to analyze the one or more independent data as given
below,

 	 (2)

Where, denotes a dependent variable, denotes
a base line hazard function with non negative, denotes
a request arrival time, indicates a file size, denotes a
predicted task completion time, are the coefficients.
From (2) provides the outcomes values from 0 to 1 used for
predicting outcomes such as high, medium and low priority
based on independent variables.

 	 (3)

Where, denotes a regression outcomes, ‘ ’ indicates
a dependent variable. If the dependent variable ranges
from 0 to 0.5, a low priority is assigned to the task. When
the dependent variable is exactly 0.5, a medium priority is
assigned to the task. If the dependent variable falls between
0.5 and 1, a high priority is assigned to the task. This way,
incoming user tasks are prioritized and stored in the queue.
The algorithmic process of task prioritization is given below.

Algorithm 1 provided above outlines the step-by-step
process of task scheduling in a cloud environment. When
dealing with each incoming user-requested task, the task
scheduler initially identifies independent variables, such as
the task’s arrival time, file size, and predicted completion
time. Subsequently, the Cox proportional hazard regression
is employed to analyze these independent variables. Based
on the regression analysis results, the incoming tasks are
categorized and prioritized as low, medium, and high
priority. Finally, the prioritized tasks are stored in queue for
subsequent task scheduling.

Great Deluge Multipoint Spiral Search Resource
Optimization based Task Scheduling
Once the tasks get prioritized, the scheduling process is
carried out in a resource optimal manner. Task scheduling
in the context of cloud computing refers to the process

Figure 1: Architecture diagram of HRMESSO technique

2146	 Jabeen and Shanavas	 The Scientific Temper. Vol. 15, No. 2

of allocating tasks to execute a set of virtual machines
efficiently in a distributed cloud infrastructure. This
process also ensures optimal resource utilization to achieve
desired performance, throughput, and resource utilization
efficiency. The proposed HRMESSO technique uses the
great deluge multipoint spiral search algorithm for resource
efficient task scheduling in cloud.

Great deluge multipoint spiral search algorithm is a
metaheuristic inspired by spiral phenomena in nature. The
main objective of the algorithm is to generate logarithmic
spirals share the diversif ication and intensif ication
performance. The diversification behavior enables for
global search (exploration) and the intensification behavior
enables a search around a current solution (i.e. local search)
(exploitation).

The spiral search algorithm is a multipoint search
algorithm that uses multiple spiral models described as
deterministic systems. Because search points track the
logarithmic spiral route towards the common center, defined
as the current best point. Then the global best solution is
determined by updating the common center.

Great deluge algorithm starts with a broad search and
progressively focuses on escaping local optima and finding
better solutions. The global best solution is obtained by
defining the number of neighbor’s search points. The
neighbor’s search points are identified based on removing
or adding the points from the current solution.

In this algorithm, multiple search points are related to
the number of virtual machines in the cloud server. First, the
multi = points (virtual machines) populations are initialized
in search space.

 	 (4)
By applying a great deluge algorithm, neighbor’s search

points are initialized based on removing the points from the
current solution.

 	 (5)

For every point in current and neighboring points, the
fitness value is calculated based on multiple resources such
as energy, memory, and CPU time.

Energy is a significant resource in task scheduling and
resource allocation scenarios, particularly in the context of
cloud computing. It involves optimizing the allocation and
execution of tasks on computational resources.

First, the energy availability of a virtual machine is
measured as follows

	 (6)
Where, represents an energy availability of the

virtual machine, represents total energy of virtual
machine, be the consumed energy.

Memory is the significant resource in task scheduling. It is
measured as the amount of storage space required to process
the user requested tasks. Therefore, the memory availability
is estimated to find out the storage availability of virtual
machine. It is mathematically formulated as given below,

 	 (7)

Where, indicates the memory availability of the
virtual machine, represents a total memory capacity
of the virtual machine and denotes a consumed
memory capacity of a virtual machine.

CPU time
This is the time the virtual machine spends executing user
tasks.

 	 (8)

From (8), which indicates the virtual machine’s
CPU time, represents a total time to execute the
particular task.

The fitness of each solution and its neighboring solutions
is computed by assessing the virtual machine’s resources.
This process helps identify both the current and global
best solutions. The fitness measurement is performed as
described below:

 	 (9)

Where, represents a fitness, indicates an
argument of a maximum function, denotes an
argument of minimum function.

The Elitist selection technique is applied to determine
the current best solution as a center point. Then the elitist
selection strategy is applied to determine the current best
solution, (i.e. center point) based on fitness.

 	 (10)

Where, indicates elitist selection outcomes,
denotes a fitness of the neighboring virtual machine,

 denotes a fitness of initial solution. As a result, the
neighboring point () with higher fitness than the initial
solution is selected as the center point (). Otherwise, the
higher fitness among the initial solution is selected as a
center point ().

// Algorithm 1: Cox proportional hazard regression based task
prioritization

Input: Number of cloud user tasks
Output: prioritizes the user tasks

Begin
Step 1: For each incoming task
Step 2: Find the independent parameters request arrival time, File
size and predicted task completion time
Step 3: Perform regression analysis ‘ ’ using (2)
Step 4: If then
Step 5: The task is said to be a low priority
Step 6: else if then
Step 7: The task is said to be a medium priority
Step 8: else if then
Step 7: The task is said to be a high priority
Step 8: End if
Step 9: Tasks are stored in the queue
Step 10: End for

	 Hazard regressive multipoint elitist spiral search optimization for scheduling in cloud	 2147

After selecting the center point, the position of the next
search point gets updated as follows,

 	 (11)

Where, denotes a update next search point
position, indicates a current position of the search
point, denotes a step rate value from 0 to 1, indicates
a rotation matrix, i.e., identity matrix, Jensen
Shannon divergence between the current position of search
point ‘ ’ and ‘ ’ indicates a position of the center
point.

Followed by, the center point is updated as follows,

 	 (12)

Where, indicates an updated position of the
center point, new position of the center point,

 indicates a current position of the center point. If the
fitness of the updated position of the center point ‘ ’
is greater than current position of the center point ‘ ’,
the position gets updated as ‘ . Otherwise, the
previsions position is selected as final.

Figure 2 depicts the flowchart of the optimization
technique aimed at selecting the optimal point (i.e. virtual
machine) for scheduling incoming tasks. First, the defined
search space generates a population of search points and
their corresponding neighboring points. The fitness is
evaluated for every point within this population, considering
multiple objective functions. Subsequently, the center
point is identified, and the positions of the search points
are updated accordingly. This iterative process continues
until the maximum iteration limit is attained. After reaching
the maximum iteration, the task assigner schedules high-
priority tasks onto the optimally selected virtual machine,
thereby ensuring optimal efficiency. The algorithmic process
of great deluge elitist spiral search optimization based task
scheduling is shown in Figure 2.

Algorithm 2, as described above, outlines the various
steps involved in task scheduling using the great deluge
elitist spiral search optimization approach. The task assigner
performs the scheduling process for each prioritized user
task by identifying the resource-optimal virtual machine.
The initial phase involves the random initialization of
search points (i.e. virtual machines) in the search space
for both the population of search points and neighboring
search points. For each point within these populations, the
proposed optimization technique assesses fitness based on
multiple resources, including the virtual machine’s energy,
memory, and CPU time. Following fitness evaluation, the
center point is selected using an elitist selection strategy
with the highest fitness compared to others. Subsequently,
the position of the next search point is updated. Followed
by, the position of the center point is adjusted. This entire
process iterates until the algorithm reaches its maximum
specified number of iterations denoted by ’t’. This iterative

approach allows the spiral search algorithm to identify the
optimal virtual machine. Finally, the task assigner allocates
high-priority tasks to the selected optimal virtual machine
to achieve improved resource utilization. This overall process
enhances task scheduling efficiency and minimizes the

Figure 2: Flow chart of the great deluge elitist spiral search
optimization

// Algorithm 2: Great deluge elitist spiral search optimization based
task scheduling

Input: cloud server (), number of virtual machines ,
number of prioritized tasks ,
Output: improve the task scheduling efficiency

Begin
Step 1: Initialize the population of the virtual machine
Step 2: Initialize the population of the neighbors’ solution

Step 3: for each solution in both populations
Step 4: Estimate resource availability ‘ ’, ‘ ’, ‘ ’
Step 5 Calculate the fitness ‘ ’
Step 6: End for
Step 7: While (t < max_ iteration)
Step 8: Select the center point with high fitness using (10)
Step 9: Update the next search point based on the selected center
point using (11)
Step 10: then
Step 11: Update the center point as a
Step 12: else
Step 13: Update the center point as a ‘ ’
Step 14: t= t+1
Step 15: end while
Step 16: Obtain the optimal virtual machine
Step 17: Task manager schedules the tasks to the optimal virtual
machine
End

2148	 Jabeen and Shanavas	 The Scientific Temper. Vol. 15, No. 2

makespan, contributing to more efficient task management
and execution.

Experimental Analysis
Experimental evaluations of the proposed HRMESSO
technique and existing methods namely MOTSWAO (Guo,
X., 2021) and MOABCQ (Kruekaew, B., & Kimpan, W., 2022) are
implemented in Java with the CloudSim network simulator.
In order to conduct the experiment, personal cloud datasets
is considered and take from http://cloudspaces.eu/results/
datasets. The primary objective of this dataset is to facilitate
the analysis of load and transfer workloads within a cloud
environment. This dataset is comprised of 17 attributes
(columns) and 66,245 instances. Among these attributes,
two, namely time zone and capped, are excluded from
consideration. The remaining 15 attributes are utilized
for the purpose of resource-aware task scheduling across
multiple virtual machines within the cloud server. These
attributes include row id, account id, file size (task size),
operation_time_start, operation_time_end, operation_id,
operation type, bandwidth trace, node_ip, node_name,
quoto_start, quoto_end, quoto_total (storage capacity),
failed, and failure info.

Results and Discussion
This section presents the experimental evaluation of the
HRMESSO technique alongside two existing methods,
namely MOTSWAO (Guo, X., 2021) and MOABCQ (Kruekaew,
B., & Kimpan, W., 2022) in terms of task scheduling efficiency,
makespan, throughput and energy consumption. The
performances of these parameters are analyzed using table
and graphical representation.

Comparative Task Scheduling Efficiency Analysis
Task scheduling efficiency refers to the ratio of the number
of successfully scheduled tasks to the total number of
tasks. This efficiency is calculated using the following
mathematical formula:

 	 (13)

From (13), denotes a task scheduling efficiency,
indiacates the number of tasks scheduled, ‘ ’

represents the number of tasks ‘ ’. The efficiency is measured
in percentage (%).

Table 1 and Figure 3 provide a graphical representation
of task scheduling efficiency across distinct numbers
of user tasks ranging from 1000 to 10000. The graph’s
horizontal axis represents the number of user tasks, while
the vertical axis represents the task scheduling efficiency.
Figure 3 compares the results of three different algorithms:
HRMESSO, MOTSWAO (Guo, X., 2021), and MOABCQ
(Kruekaew, B., & Kimpan, W., 2022). It is evident that the
HRMESSO technique yields the highest task scheduling
efficiency. This observation is validated through statistical
evaluation. In an experiment involving 1000 user tasks, the

HRMESSO technique achieved a task scheduling efficiency
of 91%. In contrast, the efficiency of (Guo, X., 2021) and
(Kruekaew, B., & Kimpan, W., 2022) was measured at 87.5%
and 84%, respectively. Similar distinct efficiency results were
obtained for each method. Comparing the performance
outcomes, HRMESSO demonstrated a 7% improvement
in task scheduling efficiency over (Guo, X., 2021) and a
3% improvement over (Kruekaew, B., & Kimpan, W., 2022).
The application of the great deluge elitist spiral search
optimization technique is introduced as the basis for these
results. This optimization algorithm identifies the optimal
virtual machine based on resource availability. By utilizing
Jenson Shannon divergence, the optimization algorithm
effectively identifies the global optimal virtual machine,
enhancing the optimization process. Consequently, the task
assigner within the cloud server schedules incoming tasks to
this selected optimal virtual machine, improving efficiency.

Comparative Makespan Analysis
Makespan refers to the total duration to complete a set of
tasks in a scheduling problem. It represents the overall time

Table 1: Comparative task scheduling efficiency analysis

Number of user
tasks

Task scheduling efficiency (%)

HRMESSO MOTSWAO MOABCQ

1000 91 87.5 84.5

2000 90.5 85.75 82.5

3000 90 88.33 85.2

4000 91.12 85.62 80.37

5000 88.5 86 84.22

6000 87.4 85.83 83.75

7000 89.35 86.42 84.14

8000 90.17 88.81 86.87

9000 91.72 86.66 84

10000 90.8 87.2 85.2

Figure 3: Comparison of algorithms in terms of task scheduling
efficiency

	 Hazard regressive multipoint elitist spiral search optimization for scheduling in cloud	 2149

required to execute a sequence of tasks. It is an important
metric in various scheduling and optimization problems
to minimize the makespan to achieve efficient resource
utilization and task completion.

 	 (14)
Where ‘ ’ represents the makespan, ‘ ’ number of

tasks ‘ ’ and indicates a time for scheduling single
task. It is measured in terms of milliseconds (ms).

Table 2 and Figure 4, presented above, display the
performance results of the makespan achieved through
three distinct methods: HRMESSO, MOTSWAO (Guo, X., 2021),
and MOABCQ (Kruekaew, B., & Kimpan, W., 2022). To compute
the makespan, a range of task collected from 1000 to 10000
in the dataset. The table reveals that the proposed HRMESSO
technique delivers distinct results when compared to
existing methods. In an experiment involving 1000 user
tasks, the HRMESSO technique exhibited a makespan
performance of 110ms , while (Guo, X., 2021) and (Kruekaew,
B., & Kimpan, W., 2022) demonstrated makespans of 122 ms
and 130ms, respectively. Similar variations in performance
outcomes were observed across varying quantities of cloud
user tasks. This validation outcome underscores that the

HRMESSO technique minimizes an overall time consumption
reduction of when compared to (Guo, X., 2021), and
7% compared to (Kruekaew, B., & Kimpan, W., 2022). This
improvement is realized through an effective task assigner
to identify resource-efficient virtual machines. Initially, the
task assigner employs Cox proportional hazard regression
to distinguish user-requested tasks, relying on the analysis
of dependent and independent data relating to cloud user
requested tasks, including arrival time, file size, and task
completion time. This analysis results in task prioritization
and queuing. Subsequently, the task assigner identifies
resource-efficient virtual machines and schedules tasks with
minimal time consumption.

Comparative Throughput Analysis
Throughput refers to the quantity of user-requested
tasks completed within a specified unit of time in a cloud
environment. Maximizing throughput helps in achieving
higher task completion rates.

 	 (15)

Where denotes a throughput, denotes a time in
second (sec), and it measured in terms of tasks per second
(tasks/sec).

Table 3 and Figure 5 present a comparative performance
analysis of throughput versus the number of user tasks
gathered from datasets of 1000 and 10000 tasks. In Figure 5,
the horizontal axis represents the number of tasks, while
the vertical axis indicates throughput performance.
The results demonstrate that the proposed HRMESSO
technique outperforms the existing methods (Guo, X.,
2021, Kruekaew, B., & Kimpan, W., 2022). Upon analyzing the
outcomes presented above, distinct throughput patterns
were observed for all three methods. HRMESSO achieved
the highest throughput among these methods compared
to the other existing approaches. For each method, ten
separate comparisons were conducted to ensure robustness.

Table 2: Comparative makespan analysis

Number of user
tasks

Makespan (ms)

HRMESSO MOTSWAO MOABCQ

1000 110 122 130

2000 126 130 140

3000 132 138 150

4000 144 160 168

5000 150 165 175

6000 156 168 180

7000 168 175 182

8000 172 184 200

9000 180 198 207

10000 185 200 220

Figure 4: Comparison of algorithms in terms of makespan

Table 3: Comparative throughput analysis

Number of user
tasks

Throughput (tasks/sec)

HRMESSO MOTSWAO MOABCQ

1000 215 185 178

2000 356 286 246

3000 455 375 325

4000 685 455 442

5000 725 685 596

6000 815 725 675

7000 905 875 725

8000 1022 974 865

9000 1128 1025 978

10000 1260 1125 1023

2150	 Jabeen and Shanavas	 The Scientific Temper. Vol. 15, No. 2

Finally, the average of these ten comparisons reveals that
the throughput performance using HRMESSO improved
by 16% compared to (Guo, X., 2021) and 28% compared
to (Kruekaew, B., & Kimpan, W., 2022). This achievement is
occurred due to the application of the great deluge elitist
spiral search optimization algorithm, which enables the
identification of resource-efficient virtual machines. The
proposed optimization algorithm efficiently selects virtual
machines with sufficient energy availability, memory
resources, and minimal CPU time utilization, as measured by
the fitness metric. As a result, these chosen resource-efficient
virtual machines demonstrate the capability to consistently
execute numerous tasks within predefined time intervals.

Comparative Energy Consumption Analysis
Energy consumption is a significant concern in cloud
computing for achieving the efficient task scheduling.
It measured the amount of energy consumed by virtual
machine to execute the number of tasks.

 	 (16)

Where ‘ represents the energy consumption, ‘ ’
number of tasks ‘ ’ and indicates an energy
consumed for executing the single task. Energy consumption
is measured in terms of Watts.

Table 4 and Figure 6 present a performance analysis
of energy consumption using HRMESSO, MOTSWAO (Guo,
X., 2021), and MOABCQ (Kruekaew, B., & Kimpan, W., 2022).
The evaluation involves measuring energy consumption
across a range of cloud user tasks, varying from 1000
to 10000. The outcomes clearly demonstrate that the
proposed HRMESSO technique outperforms the existing
methods. In a specific experiment involving 1000 user
tasks, the HRMESSO technique consumed 52 Watts energy
and energy consumption using existing (Guo, X., 2021) and
(Kruekaew, B., & Kimpan, W., 2022) methods were observed
to be 62 Watts and 76 Watts, respectively. Each method’s
performance outcomes were observed based on the
number of cloud user tasks. The validation results underline
a notable reduction in energy consumption using the
HRMESSO technique minimized by 7% compared to (Guo,
X., 2021) and 15% compared to (Kruekaew, B., & Kimpan,
W., 2022). The integration of the great deluge elitist spiral
search optimization algorithm achieves this improvement.
Each virtual machine’s is assessed using multiple objective
functions, allowing the selection of more energy-efficient
virtual machines through the elitist selection strategy. As
a result, these resource-efficient virtual machines execute
multiple tasks more efficiently, consuming less energy.

Conclusion
A novel technique called HRMESSO aims to enhance the
efficiency of task scheduling in the cloud. The HRMESSO
technique utilizes cox proportional hazard regression to
prioritize tasks based on factors such as request arrival time,
file size and predicted completion time. Subsequently, the
great deluge elitist spiral search optimization algorithm
is employed to identify an optimal virtual machine with

Figure 5: Comparison of algorithms in terms of throughput

Table 4: Comparative energy consumption analysis

Number of user
tasks

Energy consumption (Watts)

HRMESSO MOTSWAO MOABCQ

1000 52 62 76

2000 64 80 86

3000 75 84 93

4000 88 96 100

5000 95 100 111

6000 108 114 120

7000 112 119 126

8000 120 128 136

9000 133.2 137.7 144

10000 141 150 160

Figure 6: Comparison of algorithms in terms of energy consumption

	 Hazard regressive multipoint elitist spiral search optimization for scheduling in cloud	 2151

improved resource availability for scheduling tasks with
higher efficiency.

Experimental analysis is conducted to evaluate the
performance of the HRMESSO technique and compare
it with MOTSWAO and MOABCQ methods using various
metrics, including task scheduling efficiency, makespan,
throughput, and energy consumption. The implementation
and the results demonstrate that the proposed HRMESSO
technique achieved higher task scheduling efficiency,
reduced makespan, and minimized energy consumption.

Acknowledgment
We sincerely acknowledge the Research convenor,
Dr. A .R .Mohamed Shanavas, and Dr. D. I . George
Amalarethinam, Principal of the institution, for providing
the facility to complete this paper successfully.

References
Abed-Alguni, B. H., & Alawad, N. A. (2021). Distributed Grey Wolf

Optimizer for scheduling of workflow applications in cloud
environments. Applied Soft Computing, 102, 107113. https://
doi.org/10.1016/j.asoc.2021.107113

Alahmad, Y., Daradkeh, T., & Agarwal, A. (2021). Proactive failure-
aware task scheduling framework for cloud computing. IEEE
Access, 9, 106152-106168.DOI: 10.1109/ACCESS.2021.3101147

Alsadie, D. (2021). A metaheuristic framework for dynamic virtual
machine allocation with optimized task scheduling in
cloud data centers. IEEE Access, 9, 74218-74233.DOI: 10.1109/
ACCESS.2021.3077901

Babadi, M. S., Shiri, M. E., Goudarzi, M. R. M., & Javadi, H. H. S. (2022).
Multi-objective tasks scheduling using bee colony algorithm
in cloud computing. International Journal of Electrical and
Computer Engineering (IJECE), 12(5), 5657-5666. DOI:10.11591/
ijece.v12i5

Chaudhary, S., Sharma, V. K., Thakur, R. N., Rathi, A., Kumar, P., &
Sharma, S. (2023). Modified Particle Swarm Optimization
Based on Aging Leaders and Challengers Model for Task
Scheduling in Cloud Computing. Mathematical Problems
in Engineering, 2023. https://doi.org/10.1155/2023/3916735

Chen, X., Cheng, L., Liu, C., Liu, Q., Liu, J., Mao, Y., & Murphy, J. (2020).
A WOA-based optimization approach for task scheduling in
cloud computing systems. IEEE Systems journal, 14(3), 3117-
3128. DOI: 10.1109/JSYST.2019.2960088

Eldesokey, H. M., Abd El‐atty, S. M., El‐Shafai, W., Amoon, M.,
& Abd El‐Samie, F. E. (2021). Hybrid swarm optimization
algorithm based on task scheduling in a cloud environment.
International Journal of Communication Systems, 34(13), e4694.
https://doi.org/10.1002/dac.4694

Emami, H. (2022). Cloud task scheduling using enhanced sunflower
optimization algorithm. Ict Express, 8(1), 97-100. https://doi.
org/10.1016/j.icte.2021.08.001

Guo, X. (2021). Multi-objective task scheduling optimization in

cloud computing based on fuzzy self-defense algorithm.
Alexandria Engineering Journal, 60(6), 5603-5609.https://doi.
org/10.1016/j.aej.2021.04.051

Gupta, P., Rawat, P. S., kumar Saini, D., Vidyarthi, A., & Alharbi,
M. (2023). Neural network inspired differential evolution
based task scheduling for cloud infrastructure. Alexandria
Engineering Journal, 73, 217-230.https://doi.org/10.1016/j.
aej.2023.04.032

Hussain, A . A . , & Al-Turjman, F. (2022). Hybrid Genetic
Algorithm for IOMT-Cloud Task Scheduling. Wireless
Communications and Mobile Computing, 2022.https://doi.
org/10.1155/2022/6604286

Jia, L., Li, K., & Shi, X. (2021). Cloud computing task scheduling
model based on improved whale optimization algorithm.
Wireless Communications and Mobile Computing, 2021, 1-13.
https://doi.org/10.1155/2021/4888154

Kruekaew, B., & Kimpan, W. (2022). Multi-objective task scheduling
optimization for load balancing in cloud computing
environment using hybrid artificial bee colony algorithm
with reinforcement learning. IEEE Access, 10, 17803-17818.
DOI: 10.1109/ACCESS.2022.3149955

Lipsa, S., Dash, R. K., Ivković, N., & Cengiz, K. (2023). Task
Scheduling in Cloud Computing: A Priority-Based Heuristic
Approach. IEEE Access, 11, 27111-27126.DOI: 10.1109/
ACCESS.2023.3255781

Lu, S., Gu, R., Jin, H., Wang, L., Li, X., & Li, J. (2021). QoS-aware task
scheduling in cloud-edge environment. IEEE Access, 9, 56496-
56505. DOI: 10.1109/ACCESS.2021.3072216

Mangalampalli, S., Karri, G. R., & Kose, U. (2023). Multi Objective
Trust aware task scheduling algorithm in cloud computing
using Whale Optimization. Journal of King Saud University-
Computer and Information Sciences, 35(2), 791-809.https://
doi.org/10.1016/j.jksuci.2023.01.016

Mathanraj, E., & Reddy, R. N. (2024). Enhanced principal component
gradient round-robin load balancing in cloud computing.
The Scientific Temper, 15(01), 1806–1815. DOI: https://doi.
org/10.58414/SCIENTIFICTEMPER.2024.15.1.32

Panda, S. K., Nanda, S. S., & Bhoi, S. K. (2022). A pair-based task
scheduling algorithm for cloud computing environment.
Journal of King Saud University-Computer and Information
Sciences, 34(1), 1434-1445.https://doi.org/10.1016/j.
jksuci.2018.10.001

Peng, Z., Pirozmand, P., Motevalli, M., & Esmaeili, A. (2022). Genetic
Algorithm-Based Task Scheduling in Cloud Computing
Using MapReduce Framework. Mathematical Problems in
Engineering, 2022. https://doi.org/10.1155/2022/4290382

Praveen, S. P., Ghasempoor, H., Shahabi, N., & Izanloo, F. (2023).
A hybrid gravitational emulation local search-based
algorithm for task scheduling in cloud computing.
Mathematical Problems in Engineering, 2023.https://doi.
org/10.1155/2023/6516482

Reddy, P. V., & Reddy, K. G. (2023). A Multi-objective based Scheduling
Framework for Effective Resource Utilization in Cloud
Computing. IEEE Access. DOI: 10.1109/ACCESS.2023.3266294

