
Abstract
The present study examines the impact of a three-phase lags thermoelastic infinite medium with a spherical cavity subjected to 
thermal shock in the temperature of its internal boundary. In this study, a new time-fractional three-phase-lag thermoelasticity model 
with memory-dependent derivatives is utilized. From the suggested model, we recover certain previous thermoelasticity models as 
special instances. Laplace transform techniques are used. The solution to the problem in the transformed domain is obtained by using 
the Gaver-Stehfest algorithm. The validity of the proposed theory is evaluated through a comparison with the existing literature. The 
numerical computations are conducted and represented graphically. The numerical values of field variables show significant differences 
for a specific material, highlighting important points related to the prediction of the new model. The article’s physical viewpoints could 
be helpful in the development of novel materials.
Keywords: Thermoelastic; three-phase-lags; memory-dependent derivative; fractional calculus; spherical cavity; non-simple.
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Introduction
The classical uncoupled thermoelasticity model has two 
issues that do not align with observed physical phenomena: 
the equilibrium state of heat conduction does not impose 
constraints on elastic terms, and the heat conduction 
equation produces an unlimited speed of propagation for 
thermal waves.

Biot (1956) formulated the theor y of coupled 
thermoelasticity (CTE), which integrates governing 
equations and resolves the initial dilemma of the classical 
theory. However, the second paradox, with the coupled 
theory’s heat conduction equation being a parabolic type, 
was still as is. Lord and Shulman (1967) formulated a novel 
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law of heat conduction, which is classified as hyperbolic and 
predicts finite propagation speeds for both thermal and 
mechanical waves. Miller (1971) proposed a limit on a class 
of constitutive equations, imposing an entropy inequality. 
Green and Laws (1972), Green and Lindsay (1972), and Suhubi 
(1975) expanded upon this imbalance. Youssef (2005); Youssef 
(2005) successfully addressed challenges about generalized 
thermo-elasticity for an in- finite material with a spherical 
cavity. Tzou (2014) introduced a dual-phase-lag (DPL) 
model to study microstructural interactions within solid 
heat conductors at a microscopic scale, incorporating delay 
time translation of heat flux vector and temperature gradient. 
Youssef (2016) successfully solved the initial mathematical 
model of thermoelasticity with fractional order strain for 
a homogeneous isotropic one-dimensional thermoelastic 
half-space, utilizing various thermo-elasticity models.

The present study presents a theoretical framework 
based on a two-temperature, three-phase lag (TPL) 
thermoelastic model to elucidate the influence of heat 
propagation within an infinite medium featuring a spherical 
cavity. To tackle the challenge of infinite speed propagation, the 
Fourier model has been modified through the incorporation 
of a specific time constant, referred to as the phase lag of 
the heat flux, temperature gradient, and displacement 
gradient. The closed-form solutions of temperature 
distribution components across the proposed model are 
derived using the integral transform approach. The Gaver-
Stehfest procedure is employed to derive the numerical 
Laplace inversion.
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Mathematical modeling

Notations
q heat conduction vector b discrepancy factor

T thermodynamic temperature u displacement

Φ conductive temperature ( )H t Heaviside function

k thermal conductivity Γ Gamma function

Q Internal heat source ρ density

e dilation s Laplace parameter

ije strain components ijδ Kronecker’s delta

eC specific heat 2∇ Laplacian operator

iτ phase lags ( , , )i T q u= t time

,λ µ Lame’s constants γ (3 2 ) tλ µ α+

Modified governing equation
Green and Naghdi (1992) proposed a heat conduction law

( , ) ( , )q Tq P t k T P tτ τ+ = − ∇ +


    (1)

Green and Naghdi (1993) further modeled a heat 
conduction law

( , ) ( , ) ( , )q Tq P t k T P t k u P t ϑτ τ τ∗+ = − ∇ + − ∇ +
    (2)

where /u t T∂ ∂ =  and ( 0)k∗ >  is a material constant 
characteristic of the theory.

Chen and Gurtin (1968) proposed two-temperature 
concepts as

2[1 ( / )] , 0; /b t T b tΦ = − ∂ ∂ > ∇ = ∂ ∂    (3)

Thus, a non-simple non-Fourier law can be proposed 
using Eqs. (2) and (3)

( , ) [1 ( / )] ( , ) ( , )q T uq P t k b t T P t k u P tτ τ τ∗+ = − − ∂ ∂ ∇ + − ∇ +
   (4)

The TPL model by Roy Choudhuri in a modified form:

( , ) ( , ) ( , )q T uq P t k T P t k u P tτ τ τ∗+ = − ∇ + − ∇ +
    (5)

and then Eq. (5) was taken with Taylor’s expansion as 
proposed by Jumarie (2010)

q u T
qq k T k u
t t

τ τ τ∗ ∗∂ ∂ + = − + ∇ − ∇ ∂ ∂ 

      (6)

The second order in Taylor’s expansion, as expressed in 
Eq. (2), one obtains

2
2

2
11 1
2q q u Tq k b k T k u

t t tt
τ τ τ τ∗ ∗ ∂ ∂ ∂ ∂  + + = − + + ∇ − ∇     ∂ ∂ ∂  ∂ 

    (7)

where u uk kτ τ∗ ∗= +  and 0 u T qτ τ τ≤ ≤ ≤ .
The rise in entropy S leads to the energy equation taken 

by Biot (1956) as 

0
( )

e
uC T q Q

t t
θρ γ∂ ∂ ∇ ⋅
+ =−∇ ⋅ +

∂ ∂




    (8)

Taking divergence on both sides of Eq. (8), and using Eq. 
(9), and differentiating both equations with respect to time, 

one obtains
2 2 2

2
02 2 2

2 2

1 ( )1
2

1

q q e

u T

T uC T Q
t t t t

k b k T k T
t t

τ τ ρ γ

τ τ∗ ∗

  ∂ ∂ ∂ ∂ ∇ ⋅
+ + + −    ∂ ∂ ∂ ∂  

∂ ∂  = + + ∇ − ∇  ∂ ∂  




 


   (9)

Caputo’s fractional-order derivative can be expressed 
as Caputo and Mainardi (1971).

( ) 1
( ) ( ) , 1

( )

nt n
a

a

t
D Y t D Y d n n

n

α
α τ

τ τ α
α

− −−
= − ≤ ≤∫

Γ −
   (10)

where the operator nD  denotes n -th derivative 
operation.

Diethelm (2010) introduced a kernel in the integrand 
form to enhance the fractional derivative of the Caputo 
type as follows: 

( )( ) ( ) ( )
t m

a
a

D Y t K t Y dα
α ξ ξ ξ= −∫     (11)

The order derivative, denoted by ( )mY , is the kernel 
function with the following form:

1( )( )
( )

mtK t
n

α
α

ξξ
α

− −−
− =

Γ −
     (12)

Wang and Li (2011) defined the MDD, introducing the 
“memory-dependent derivative” to illustrate memory 
influence. They applied an integral definition of a first-order 
common derivative of MDD for functions over a sliding 
interval. 

1( ) ( ) '( )
t

t
D Y t K t Y dτ α

τ
ξ ξ ξ

τ −
= −∫     (13)

In a particular instance where the kernel 1Kα = , we find 
that

1 ( ) ( )( ) ( ) ( )
t

t

Y t Y t dYD Y t Y d Y t DY
dtτ

τ

τξ ξ
τ τ−

− −′ ′= = → = =∫   (14)

If ( )Y t  and kernel ( )mK t ξ−  are differentiable m  times 
around t  and ξ , where m∈�  and �  are natural numbers, 
then

( )1( ) ( ) ( )
tm m

m
a

D Y t K t Y dτ ξ ξ ξ
τ

= −∫     (15)

The equation through the relation between MDD of first 
and second-order as

[ ]2 ( ) ( ) ( )dD Y t DD Y t D f t
dtτ τ τ= =     (16)

The m − order MDD moreover fulfills the subsequent 
relation for any m∈�  

[ ]
1

1
1( ) ( ) ( )

m
m m

m
dD Y t D D Y t D Y t
dt

τ τ τ
−

−
−

= =    (17)

The MDD equations are practical and can be expressed 
as a recognized derivative of order, making them useful for 
real-world problems, as explained in Eq. (12) as

( )

2 2
0 1 2 2

02 2

1 2

1
2

1

q q q

T

q q e

u T

T eD D D C T Q
t t

k b k D k T
t t

τ τ τ

τ

τ τ ρ γ

τ τ∗ ∗

 ∂ ∂ + + + −     ∂ ∂ 
 ∂ ∂ = + + + ∇  ∂ ∂  



   (18) 
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Here, Eq. (18) with 0b = , T = Φ  is reduced to different 
theories of thermoelasticity:

• Roy Choudhuri (2007) TPL model: 0, 0, 0q T uτ τ τ≠ ≠ ≠

• Tzou (2014) DPL model: 0, 0, 0, 0q T u kτ τ τ ∗≠ ≠ = =

• Green and Naghdi (1993) GN-III model: 0, 0, 0q T uτ τ τ= = =

• Lord and Shulman (1967) LS model : 2
00, 0, 0, 0, 0q T u q kτ τ τ τ τ ∗= = = = > =

• Biot (1956) CTE model: 2
00, 0, 0q T u q kτ τ τ τ τ ∗= = = = = =

Eq. (18) with 0b ≠ , T ≠ Φ  is reduced to thermoelasticity 
theory as given below:

• Mukhopadhyay et al. (2011) (MTE) model: 2 0, 0q q T u kτ τ τ τ ∗= = = = =

• Youssef (2006)(YTE) model: 2
00, 0, 0q T u q kτ τ τ τ τ ∗= = = = > =

Statement of Problem
Let us consider an infinite isotropic medium with a spherical 
cavity and no external body forces. It is assumed that the 
spherical cavity occupies the space 3D⊂   defined by 

3{( , , ) |D r θ ϕ= ⊂   0 ,0 2 ,0 }r a θ π ϕ π< ≤ < ≤ < ≤ . The center 
of the cavity is taken to be the origin of the spherical polar 
system ( , , )r θ φ , as shown in Figure 1. 

Governing equation of thermoelasticity 
The governing equations for motion in the absence of body 
forces

2

2
2( )rrrr u

r r t
θθσ σσ ρ

−∂ ∂
+ =

∂ ∂
     (19)

The non-zero strain components in terms of displacement 
are 

, ,rr
u ue e e
r rθθ φφ θθ φφσ σ∂

= = = =
∂

    (20)

Then, the stress components are obtained as 

2 (3 2 )rr r te e Tσ λ µ α λ µ= + − +     (21)

2 (3 2 )te e Tθθ θσ λ µ α λ µ= + − +     (22)

From Eqs. (19)-(22), the equation of motion without 
external body forces is given by

2 2

2 2 2( 2 ) 2 2u u u u T
r rr r t

λ µ ρ γ
 ∂ ∂ ∂ ∂

+ + − = +  ∂ ∂∂ ∂ 
    (23)

Dimensionless parameter
Let us now present the following non-dimensional variable 
for convenience:

2
0 0

0

ˆˆ ˆ ˆ ˆ ˆ( , ) ( , ) , ( , , , ) ( , , , ),

2ˆ ˆ, , ,
2 2

q T q T

err
rr

r u c r u t c t

CTT c

υ υη τ τ τ η τ τ τ

ρσγ λ µσ η
λ µ λ µ κ ρ

= =

+
= = = =

+ +

   (24)

The form of Eqs. (18), and (19)-(23) are reduced by using 
Eq. (24) as a non-dimensional quantity and dropping the 
overhat prime for further calculation

2 2
0 1 2 2

2 0 12 2

1 2 2
2
0

1
2

1

q q q

T

q q e

T
u

T eD D D C p T p Q
t t

k b k D T k T
t t c

τ τ τ

τ

τ τ ρ γ

ττ
η

∗ ∗

 ∂ ∂ + + + −     ∂ ∂ 
 ∂ ∂ = + + ∇ + ∇   ∂ ∂  


   (25)

subjected to initial and boundary conditions

( ,0) ( ,0) 0T r T r
t
∂

= =
∂

     (26)

1 1( , ) ( )T a t H t p T=      (27)
Applying the operator 2 2(1/ ) / ( )r r r∂ ∂  in Eq. (23), one gets

2
2 2

2 2
0

1 ee T
c t

∂
∇ −∇ =

∂
     (28)

The stress components of Eq. (21) and (22) are
2 2(1 )rr

ue T
r

σ ∂
= −Ω +Ω −

∂
     (29)

2 2(1 ) ue T
rθθσ = −Ω +Ω −      (30)

The resulting in traction-free conditions 
( , ) 0rr a tσ =       (31)

and the quiescent state

( ,0) ( ,0) 0rr rrr r
t

σ σ∂= =
∂

     (32)

( ,0) ( ,0) 0u r u r
t
∂

= =
∂

     (33)

where
2 2 0

1 2 0, , ,
2 2 2u

cp p c p k γµ γ ητ
λ µ λ µ λ µ

∗ ∗ ∗Ω = = = =
+ + +

  (34)

and the cubic dilation e is given by 
2

2
1 ( ) 2r u u ue u

r r rr
∂ ∂

= ∇ ⋅ = = +
∂ ∂

    (35)

Solution of the problem
The Laplace transform is defined by 

0
( , ) [ ( , )] ( , ) ,Re( ) 0stf r s f r t e f r t dt s

∞ −= = >∫   (36)

By utilizing the convolution theorem, it becomes 
possible to employ the Laplace transform to the higher-
order memory-derivative 

i

pDτ , satisfying the property
1[ ( , )] [ ( ) ( , ) ] ( , ) [ ( , )]

i
i

tp p p
i it
D f r t K t f r d s G s f r tτ τ

τ ξ ξ ξ τ−

−
= − =∫    (37)

Figure 1: Schematic of the infinite body with a spherical cavity
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and we define the kernel function as

2

2

2

1, if 0, 0

12 1 , if 0, , 0( ) 1 ( ) ( ) 2

( )1 , if 1, 1, 1

p

i

e f p

tf e e f pK t t t

t e f p

ξ
ξ ξ ξ ττ τ

ξ
τ

= = =


 − − = = =− = − − + − = 

 −  − = = =  

 (38)

where is the delay time τ ; e  and f  are constants, and 
p∈ , respectively.

Taking Laplace Transform as written by Debnath and 
Bhatta (2006) on Eqs. (25) and (28)-(33), one get

2
2 3 0( ) ( )l T l T se Qγ∇ − = −     (39)

2 2 2 2
0[ (1/ ) ]c s e T∇ − = ∇      (40)

2 2(1 )rr
ue T
r

σ ∂
= −Ω +Ω −

∂
    (41)

2 2(1 ) ue T
rθθ φφσ σ= = −Ω +Ω −     (42)

where
2

0 2 0

1 0
2

2 1 3 1 1
2 2

2
2 2

(1 )[ ( / ) ( , )] ,
[1 ( , ) (1 / 2) ( , )] / ,

( ), ,

2 2 2( , ) (1 ) 1 2i i

T T

q q

e

s s
i

i ii

l ks bs p k c G s k
l G s sG s l

l l C s l l p s

f e eG s e e f e
s ss

τ τ

τ η τ
τ τ

ρ

τ
τ ττ

∗

− −

= + + +

= + +

= =

   
= − − + − − +     

  

  (43)

Now e  eliminating from Eqs. (39) and (40), one gets
4 2 2

1 2 3 4( ) ( )A A T l l Q∇ − ∇ + = −∇     (44)

where
2 2

1 2 3 0 4 2 2 4 4 0, , /A l l T s l A l l l s cγ= + + = =     (45)

Since 1A  and 2A  are real positive numbers, then Eq.(44) 
becomes

2 2 2 2 2
1 2 3 4( )( ) ( )m m T l l Q∇ − ∇ − = −∇     (46)

where 2
1m and 2

2m are the roots of the characteristics 
equation

4 2
1 2 0m A m A− + =      (47)

Henceforth, we consider internal heat sources as
0( , ) ( ) ( ) /Q r t q H t r rδ=     (48)

Therefore Eq.(46) become

2 2 2 2 20 3
1 2 4

( )( )( ) ( )q l rm m T l
s r

δ
∇ − ∇ − = −∇    (49)

Use the Hankel transformation 

0 0
0

ˆ[ ( , )] ( , ) ( ) ( , )
a

H f r s f s rJ r f r s drζ ζ ζ= = ∫     (50)

and inversion of Hankel transformation is 

0
0

ˆ( , ) ( , ) ( )f r s f s J r drζ ξ ζ
∞

= ∫      (51)

where 0( )J rζ  is the Bessel function of the first kind of 
order 0, and 0( ) 0J aζ = . 

The Hankel transformation on Eq. (49) has been applied, 
resulting as 

2 2 2 2
1 2 0 3 4( )( ) /m m T q l l sζ ζ+ + =     (52)

Then the solution of the function ( , )T r s  in Laplace domain is 

[ ]0 3 4
0 2 0 12 2

1 2
( , ) ( ) ( )

( )
q l lT r s K m r K m r

s m m
= −

−
   (53)

w h e r e  0( ), 1, 2iK m r i =  i s  t h e  s e co n d  k i n d  o f 
modified Bessel function of zero order, and we have 

0 1( / ) ( ) ( )i i id dr K m r m K m r= −  and 2 2
0 0( ( )) ( )i i iK m r m K m r∇ = .

Substituting equation (53) into /u T r= ∂ ∂ , one obtains 

[ ]0 3 4
1 1 1 2 1 22 2

1 2
( ) ( )

( )
q l lu m K m r m K m r

s m m
= −

−
   (54)

where 1( ), 1, 2iK m r i =  is the second kind of modified 
Bessel function of one order.

The cubic dilation e can be obtained using Eq. (54) as 

( ) ( )0 3 4
1 1 1 0 1 2 0 2 1 22 2

1 2
( ) ( ) ( ) ( )

( )
q l le m K m r rK m r m rK m r K m r

rs m m
 = − + − −

  (55)

Substituting Equations (53)-(55) in Equations (41)-(42), 
one obtains

2
0 3 4 1 1 1 2 1 2
2 2

1 0 1 2 0 21 2

(1 2 )[ ( ) ( )]
( 1) ( ) ( 1) ( )( )

rr
q l l m K m r m K m r

m rK m r m rK m rrs m m
σ

 − Ω − −=  
− + −−   

  (56)

2 2
0 3 4 2 0 2 1
2 2

0 1 1 1 1 2 1 21 2

[(1 ) 1] ( ) [(1 ) 1]
( ) ( ) ( )( )

q l l m rK m r m
rK m r m K m r m K m rrs m m

θθσ
 −Ω − − −Ω −

=  
× + −−   

  (57)

The Gaver-Stehfest algorithm as proposed by Stehfest 
(1970) is used to solve a problem in the Laplace transform 
domain, obtaining conductive temperature increment, 
dynamical temperature increment, displacement, and stress 
distributions in the time domain

In(2) In(2)/2( ) ( ) ( 1) ,
1

/2min( , /2) (2 )!
( / 2 )! !( 1)!( )!(2 )![( 1)/2]

L nn Lf t f t a Fn nt tn
Ln L k kan L k k k n k k nk n

 +≈ = −∑   =

= ∑
− − − −= +

   (58)

where [.]F  is the Laplace transform of ( )f t , 1,n ≥  0,t >
1 L n≤ ≤ . 

Numerical results and their discussion in the time 
domain 
The numerical illustration illustrates the use of hypothetical 
copper-like as a thermoelastic material to achieve the 
desired objective, considering various physical constant 
values Youssef (2005), for which k = 386 kg m k−1s−3, αt =1.78 x 
10−5 k−1, ρ =8954 kg m−3, T0=293 K, Ce =383.1 m2 k−1 s−2, λ =7.76 
x 1010 kg m−1 s−2, µ =3.86 x 1010 kg m−1 s−2. In our numerical 
calculations, we take τq = 0.03 s, τT = 0.03 s, τυ = 0.05 s, k∗ 
= 7. It is well stated in the article of Mondal and Kanoria 
(2019), which aligns with the stability requirement stated 
in Quintanilla and Racke (2008); under three-phase lag heat 
conduction occurs, the solutions are always exponentially 
stable, if k∗τq < τυ

∗ < 2k∗τT /τq.

Model Validation
The present model undergoes a comparison analysis with 
many models in order to evaluate its reliability, as illustrated 
in Figure 2. When the first kernel function of Eq. (38) is 
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assumed to be 1, it is possible to estimate the differential 
over time up to the limit of i

Dτ , as the hysteresis factor iτ  
approaches zero.

According to theoretical considerations, it is projected 
that when the hysteresis factor is low, the MDD will undergo 
a transition into a triple/dual-phase hysteresis model. The 
model we have proposed, which incorporates complex 
differential partial equations, can be simplified to a parabolic 
model when uniform initial conditions 0q Tτ τ= =  are applied. 
In this simplified model, the temperature discrepancy factor 

0b = , 0k∗ =  and considering two temperatures as θ = Φ  
in Eqs. (25), are considered. This simplifies the model to 
the coupled classical thermoelasticity (CTE) model . In the 
present context, when η  is set to zero, the model transforms 
a coupled hyperbolic model to an uncoupled hyperbolic 
model. When 0uτ

∗ =  is taken into account, the current model 
will shift from a coupled hyperbolic model to an uncoupled 
one. Based on Xu and Wang (2018), the heat propagation 
velocity can be determined as 2 2 1/2{1/ [ (1/ 2) ]}q q q qV D Dτ τ= +  using 
Eq. (25). Given that the kernel function in Eq. (38) is equal 
to 1, the result obtained by taking 0.04qτ =  and 2 0.0016qτ =  is 

1/2{50}V = . The dimensionless propagation distance, denoted 
as 1/2{50} 0.35x Vt t∆ = = =  (here 0.05t = ), exhibits a strong 

concurrence with the numerical forecast, as depicted in 
Figure 2. The integral across a region represents the heat 
absorbed from an external heat source. In contrast, the 
temperature distributions of distinct models show distinct 
heat transfer mechanisms occurring at a particular moment. 
The figure clearly illustrates that all models exhibit distinct 
variations in values in close proximity to surface boundaries, 
and this variation diminishes as the distance and sectional 
heat supply increase. The temperature profile reaches its 
peak values in close proximity to the inner curved surface 
and subsequently diminishes until it reaches zero.

Effect of kernel function response along the radius
The RED line refers to the kernel function ( ) 1tκ ξ− = ; the 
BLUE line refers to the kernel function ( ) 1 ( ) / it tκ ξ ξ τ− = − −  , and 
the PURPLE line for the kernel function ( )2( ) 1 ( ) / it tκ ξ ξ τ− = − − . 
The temperature distribution exhibits an initial high value at 
the onset of the curved spherical cavity due to the presence 
of sectional thermal shock, followed by a progressive 
stabilization as the parameter r approaches infinity, as 
depicted in Figure 3. The findings of the study indicate a 
direct proportion to positive phase-lag difference and kernel 
function values, with the coupled scenario exhibiting higher 
temperatures than the uncoupled scenario. 

Figure 4 shows trends in displacement curves, with 
initial values, acting with high compressed force due to 
sectional heat flux accumulation. The uncoupled case also 
showed a high-magnitude displacement trend as it tends 
to infinity. According to Figure 5, the radial stress exhibits 
a monotonically decreasing trend and recovers in the later 
stage along the radial direction as the kernels vary. Starting 
from zero values, it reaches the deep trough and gradually 
increases till it approaches zero. The fall in stress during the 
first phases and later stages can be attributed to an increase 
in the rate of heat propagation. This decrease in stress is 
primarily driven by the compressive force and later taken 
over by tensile force, which gradually approaches zero as 
its radius approaches infinity. Figure 6 illustrates that the 
compressive force significantly reduces the tangential stress 

Figure 2: Comparisons between the different theories of 
thermoelasticity

Figure 4: Displacement profile with different kernels along r for fixed tFigure 3: Temperature profile with different kernels along r for fixed t
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at the start of the curved spherical cavity. As the radius 
approaches infinity, the strong tensile force steadily raises 
the tangential stress and eventually stabilizes it at zero.

Effect of temperature discrepancy factor on 
temperature profile
Figure 7 illustrates a graph showcasing the temperature 
distribution along r  for the kernel ( ) 1 ( ) / it tκ ξ ξ τ− = − −  at 
fixed time 1.5t = . The graph comprises a variety of data 

points that correspond to distinct values of the temperature 
discrepancy factor, denoted as b. When the value of 0b =
, it indicates that the model mentioned above has been 
simplified to a theory that considers only one temperature. 
On the contrary, 0b ≠  it signifies the existence of two 
temperature theories.

The homogeneous dispersion of thermal energy shows 
that the spherical cavity boundary exhibits the highest 
temperature. At the value of 1.2b = , the temperature graph 
displays a pronounced increase due to the conversion of 
heat energy into strain energy. The primary cause of this 
phenomenon is commonly ascribed to the element of 
high-temperature discrepancy. The observed outcome is 
consistent with what was reported in a prior publication by 
Zenkour and Abouelregal (2016).

Histories of thermal coupling over time
This section examines the correlation between temperature 
and time at various radial points, presenting a graphical 
representation of their changing patterns in Figure 8 for 
the kernel function ( )2( ) 1 ( ) / it tκ ξ ξ τ− = − − . The temperature 
response distribution is influenced by heat wave propagation 
at the curved spherical cavity. It demonstrates a peak in the 
temperature curve, followed by a gradual decline until a 
stable state, attributed to heat shock. Variations in peak 
positions are due to damp-heat wavefront arrival times.

Conclusion
The study develops a comprehensive three-phase-lags 
thermoelastic infinite medium model with a spherical cavity 
via memory-dependent derivatives, examining heat flow 
under rapid temperature increase.The numerical results 
yield several inferences:
• ‘Memory-dependent derivatives’ non-Fourier effects 

significantly impact thermal field response history and 
distribution, with energy dissipation potentially causing 
temperature decrease without heat transfer.

• A revised categorization system for materials based on 
memory-dependent derivative parameters evaluates 

Figure 5: Radial stress with different kernels along r for fixed t

Figure 6: θθσ  with different kernels along r for fixed t

Figure 7: Temperature distribution along r for various b values for 
fixed kernel

Figure 8: Temperature distribution along t for various r values for 
fixed kernel
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heat conduction capacity, considering thermoelasticity 
at two temperatures via memory-dependent derivative.

• The phase-lag heat flux and temperature gradient 
significantly impact thermal field variables in memory-
dependent derivatives time.

• The theories of CTE, Hyperbolic model, LS, GN-III, DPL, 
TPL, YTE, MTE are derived as specific instances and 
illustrated graphically; it shows a good agreement.
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Appendix A 

The kernel function
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