
Abstract
Cloud computing is a recent computer technology that has virtualized infrastructure to offer secure and reliable services to users in
a complex environment. The main advantage of the cloud is its scalability. Vast scalability is possible because of load balancing. Due
to the advancement of the cloud, huge numbers of service provisioning requests are generated from users. Cloud needs a better and
more efficient load-balancing mechanism to handle all the user’s requests. This paper proposes the principal component gradient round
robin load balancing (PCGRLB) technique to balance the workload in a cloud server for handling a huge workload within a minimum
time. The PCGRLB technique performs two processes: Virtual machine analysis and load balancing. The PCGRLB technique is evaluated
on factors such as throughput, makespan, and response time concerning several tasks. The results show that the PCGRLB technique
offers an efficient solution in achieving higher load balance, efficiency, throughput, and minimized makespan and response time than
the conventional techniques.
Keywords: Cloud computing, Load balancing, Contingency correlative principal component projection, Gradient weighted MapReduce,
Round-robin load balancing, Makespan.

Enhanced principal component gradient round-robin load
balancing in cloud computing
Ellakkiya Mathanraj*, Ravi N. Reddy

RESEARCH ARTICLE

© The Scientific Temper. 2024
Received: 15/01/2024				 Accepted: 20/02/2024			 Published : 15/03/2024

PG and Research Department of Computer Science, Thanthai
Periyar Govt. Arts and Science College (Autonomous) Affiliated To
Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
*Corresponding Author: Ellakkiya Mathanraj, PG and Research
Department of Computer Science, Thanthai Periyar Govt. Arts
and Science College (Autonomous) Affiliated To Bharathidasan
University, Tiruchirappalli, Tamil Nadu, India. E-Mail: ellakkiya.
researchscholar@gmail.com
How to cite this article: Mathanraj, E., Reddy, R. N. (2024).
Enhanced principal component gradient round-robin load
balancing in cloud computing. The Scientific Temper, 15(1):1806-1815.
Doi: 10.58414/SCIENTIFICTEMPER.2024.15.1.32
Source of support: Nil

Conflict of interest: None.

Introduction
With the rapid growth of information technology and the
ever-increasing network bandwidth, the amount of data
from the end users increases exponentially, and this data is
stored in cloud data centers. Cloud computing technology
integrates many distributed resources and provides safe,
reliable, low-cost, highly scalable computing or storage
services. In cloud computing, users’ requests are increasing
load also be increased resulting in poor performance in
terms of resource usage. Load balancing is a significant
aspect of enhancing the operational performance of the

The Scientific Temper (2024) Vol. 15 (1): 1806-1815	 E-ISSN: 2231-6396, ISSN: 0976-8653

Doi: 10.58414/SCIENTIFICTEMPER.2024.15.1.32	 https://scientifictemper.com/

cloud service provider. The main advantage of balancing
the workload is higher resource utilization, improving overall
performance (Vani K. et al., 2023).

An integrated concept of artificial intelligence machine
learning techniques was developed by (Nilayam Kumar
Kamila et al., 2022) for load balancing and computing unit
metadata. However, the designed model failed to include
more cloud components to handle the video and audio
stream data. An inquisitive genetic grey wolf optimization
algorithm was designed using a combination of grey wolf
optimization (IG-GWO) algorithms (Suman Sansanwal, 2022).
However, the efficiency of load balancing was not improved.

Stochastic fractal search (SFS) algorithms were
developed by (Faraz Hasan et al., 2022) to enhance resource
consumption and minimize the load imbalance on the
virtual machine. However, the performance of the makespan
was not minimized. Two optimization objectives were
introduced by Zeinab Nezami et al., 2021 to solve the load-
balancing problem for IoT service placement. However, the
delay-tolerant load balancing was not archived.

A receiver-initiated deadline-aware load-balancing
method was developed by (Raza A. Haidri et al., 2022) to
migrate incoming cloudlets to suitable virtual machines. A
two-stage genetic method was developed by (Lung-Hsuan
Hung et al., 2021) for the migration-based load balancing
of virtual machine hosts. However, the energy-aware
load balancing remained unaddressed. To minimize the

1807	 Round robin load balancing in cloud

makespan and response time, a content-aware machine
learning-based load balancing scheduler (CA-MLBS) was
developed (Muhammad Adil et al., 2022). However, the
migration cost was not minimized. Two effective distributed
load-balancing algorithms were developed for the cloud
environment (Yogesh Gupta, 2021). However, the storage
capacity of the server was not analyzed.

Contribution of Paper
In this paper, a novel load-balancing approach called the
PCGRLB technique is developed for cloud computing
environments. The PCGRLB technique distributed the
multiple tasks of users on different computing resources
with a high degree of load balancing.

The main contributions of this paper comprise the
following:
•	 A principal component gradient round-robin load

balancing (PCGRLB) technique is proposed to balance
the workload based on virtual machine resource
capacity analysis and load balancing.

•	 First, the contingency correlative principal component
projection is applied in the PCGRLB technique to
analyze the virtual machine resource capacity based
on the multiple resources such as energy, bandwidth,
memory and CPU. Based on the analysis, the overloaded,
less loaded and balanced loaded virtual machines are
projected.

•	 Next, the gradient weighted map reduction round-robin
load balancing is employed in the PCGRLB technique to
balance the load among the virtual machines through
task migration. The load balancer finds the maximum
weighted virtual machines with the help of the gradient
ascent function and balances the workload. This helps
improve the load balancing efficiency and minimizes
the response time and makespan.

•	 Finally, a comprehensive experimental assessment is
carried out using CloudSim with various performance
parameters to show the improvement of the PCGRLB
with some of the most recent techniques.

Organization of the Paper
The following sections are organized into different sections
as follows. Section 2 presents some of the previous works
related to load-balancing approaches in cloud computing.
Section 3 elaborates on the details of the proposed PCGRLB
technique. In section 4, the CloudSim setting details of the
proposed approach and existing methods are presented and
explained. Section 5 provides the results and discussions of
different parameters. Section 6 concludes the paper.

Related Work
Many researchers proposed different load balancing and
scheduling approaches to enhance the efficiency of their
approaches. Some of the methods are discussed in this

section. Hadeer Mahmoud et al. (2022) proposed the multi-
objective task scheduling decision tree (TS-DT) technique to
allocate multiple application tasks with a lower makespan
and improved load balancing efficiency with better resource
consumption. The intended TS-DT method, however, was
unable to carry out energy-aware task execution to improve
load balancing with the shortest reaction time.

Deepika Saxena et al. (2022) proposed the online VM
prediction-based multi-objective load balancing (OP-MLB)
framework to provide effective resource management and
minimize power usage in cloud environments. Nonetheless,
the reliability-based VM allocation scheme did not enhance
the load-balancing performance in the cloud data center.

Arabinda Pradhan et al. (2022) developed a hybrid
scheduling policy for balancing a load of virtual machines
by combining the actor-critic method and the particle
swarm optimization (PSO) algorithm. However, the notion of
resource allocation and management does not specifically
address cloud data centers.

Dalia Abdulkareem Shafiq et al. (2021) created a load-
balancing method to decrease makespan and enable
effective resource utilization. However, it was unable to
manage requests from large numbers of users. In order
to reduce the average reaction time and makespan of the
system, Stavros Souravlas et al. (2022) designed a fair load-
balancing approach. However, the planned approach took
longer to complete altogether, which hurt performance.

Mayank Sohani et al. (2021) developed the predictive
priority-based modified heterogeneous earliest finish time
(PMHEFT) algorithm for effective and dynamic resource
provisioning-based load balancing and to meet end-user
requirements. The PMHEFT was more difficult to create a
resource provisioning system that is more effective for end
users.

Ronghui Cao et al. (2021) proposed a hybrid decision-
making technique to automate the transfer of virtual
machines while balancing the nodes’ load. However, it did
not meet the more intricate user requirements. Jyotirmoy
Karjee et al. (2022) developed the dynamic split computing
(DSC) approach to divide the DNN layers as optimally as
possible in order to reduce the total inference time across IoT
and edge devices. The load balancing based on the energy
profile was left unattended.

Mirza Mohd Shahriar Maswood et al. (2022) proposed
a new optimization model to balance load and reduce
bandwidth costs. However, the optimization model that
was created for this context. That strategy, however, was
unable to provide load balancing and decrease bandwidth
costs. Ajay Jangra et al. (2020) proposed a load-balancing
framework to provide resource scheduling in the cloud.
However, it was unable to deliver quick services and handle
the demand efficiently.

Chunlin Li et al. (2022) developed a data placement
strategy based on Lagrange relaxation for distributed cloud

1808	 Mathanraj and Reddy	 The Scientific Temper. Vol. 15, No. 1

load balancing. Bruno M.P. Moura et al. (2022) proposed
an interval-valued fuzzy logic approach to estimate
resource utilization with the least amount of performance
deterioration. Nevertheless, it was unable to increase VM
migration frequency or energy efficiency.

Research Methodology
In cloud computing, load balancing distributes the workload
across VMs to guarantee the highest possible throughput
and reliability. Balanced workload allocation helps to attain
optimal utilization of cloud computing resources. It is an
essential issue in cloud computing environments. As the
number of user requests increases, it’s difficult to control
the process and execution of these requests simultaneously.
However, the lack of execution causes lower throughput
and more power consumption. Therefore, load balancing
is a major task in parallel and distributed computing
environments.

Optimal load balancing also enhances cloud task
execution and response time. Load balancing techniques
use various algorithms to compute the available workload of
cloud resources. An optimal load-balancing method is needed
to receive the incoming user task, estimate the workload of
VMs, and balance the workload among the VMs. Based on
his motivation, a novel PCGRLB technique is introduced to
achieve higher throughput and less execution time.

Figure 1 depicts the architecture diagram of the
proposed PCGRLB technique for load balancing in the
cloud. The cloud architecture includes several cloud
users’ Who dynamically generates the
numerous requests or tasks . The generated
requests or tasks are submitted to a cloud server, a powerful
physical or virtual infrastructure that performs certain
tasks and data storage. A cloud server comprises several
virtual machines used to store
data, connect to networks, and perform other computing
functions.

The cloud server collects the number of requested
tasks . The cloud server’s load balancer
analyses each virtual machine’s resource status by using
Contingency correlative principal component projection.
The load balancer in the cloud server identifies the load
capacity based on the available resources such as energy,
bandwidth, memory and CPU. Contingency correlation is
measured between the resource and mean value. Based on
the analysis, the virtual machine’s overloaded, less loaded
and balanced load capacity is identified.

Then, the load balancer uses the weighted MapReduce
round-robin load balancing to balance the workload among
the virtual machine. A MapReduce is a data processing model
used to process a large volume of data (i.e., user requests) in
a parallel manner. The proposed load balancing algorithm
assigns the dynamic weight to the less loaded virtual

machine. Consequently, the tasks in the overloaded virtual
machine are migrated to the less loaded virtual machine to
improve the throughput and minimize the response time. A
detailed explanation of the PCGRLB technique is presented
in the following section.

Contingency Correlative Principal Component
Projection
Load imbalance in a cloud computing data center occurs
mainly due to ineffective approaches in allocating user-
requested demand or tasks. Therefore, when a user submits
a requested task, the task is distributed by the server in the
cloud data center. The cloud server randomly selects a virtual
machine to perform a certain task. If the number of resources
for the particular task request is higher than the number
of resources available, the virtual machine cannot process
the certain task. Therefore, load balancing is required to
process the incoming tasks with the available resources of
the virtual machine. The proposed PCGRLB technique uses
the contingency correlative principal component projection
to find the capacity of the virtual machine.

Let us consider the requests or tasks
arrived from the user. The generated requests or tasks are
submitted to the cloud server. A cloud server comprises
several virtual machines . The load
balancer in the cloud server identifies the load capacity of
the virtual machine based on the available resources. In
this work, the available resources of the virtual machine are
included as given below,

			 …(1)
Where denotes resources of the virtual machine that

include a memory capacity.’ ’bandwidth capacity ‘
’energy capacity ‘ ’ and CPU utilization.’ ’.

Figure 1: Architecture diagram of the proposed PCGRLB technique

1809	 Round robin load balancing in cloud

First, the memory capacity is estimated based on the
difference between total and consumed memory capacity.

			 …(2)
From (2), represents the memory capacity of the

virtual machine and denotes the total memory
capacity of the virtual machine and denotes a
consumed memory capacity. The difference between the
total and consumed memory capacity measure is used to
identify the virtual machine’s current memory capacity.

Likewise, the major resource is bandwidth, specifically
the capacity at which a virtual node handles the maximum
amount of data measured as Mbps. Therefore, the current
status of the bandwidth is mathematically calculated as
follows,

			 …(3)
Where, indicates the bandwidth capacity of the

virtual machine, represents the total bandwidth
of the virtual machine and denotes a consumed
bandwidth. Based on the above-said parameters, the current
status of bandwidth capacity is identified.

Saving energy is an important issue for cloud computing
to reduce energy costs in load balancing. The total energy
consumption is computed by considering the total energy
consumption made by a virtual machine. The unit for energy
consumption is kilowatt per hour (kWh). Therefore, the
energy capacity of the virtual machine is evaluated as follows,

 				 …(4)
From (4), indicates the energy capacity of the virtual

machine symbolizes total energy, is the consumed
energy.

CPU utilization refers to the amount of work handled by a
CPU. Actual CPU utilization varies based on the amount and
type of managed computing tasks. Certain tasks consume
heavy CPU time, while others require less. The utilization
CPU time of the virtual machine is mathematically calculated
based on the difference between the total CPU time and
consumed time for processing certain tasks as given below,

				 …(5)
Where, indicates the capacity of CPU time of the

virtual machine, denotes a total time and represents
the time consumed by the virtual machine to process the
particular task.

After calculating the resources, the current status of the
virtual machine is calculated to identify the best-performing,
efficient load-balancing machine. Instead of using the
covariance matrix in the conventional PCA, the proposed
technique constructs the correlation matrix between the
estimated resource of the virtual machine and their mean
value.

	 …(6)

				 …(7)

					 …(8)

Where, denotes a correlation matrix between the
resource ‘ ’ and their mean value ‘ ’, denotes
a correlation between the resource ‘ ’ and mean value ‘

’. The mean square contingency correlation coefficient
measures the relationship between the resource and the
mean value. The correlation coefficient provides the results
from 0 to 1

The obtained correlation matrix evaluates Eigen values
and Eigen vectors as given below.

					 …(9)
From the above formulates (9), ‘ ’ represents the column

vector denoting the Eigenvector and ‘ ’ denotes the
Eigenvalues of the corresponding correlation matrix values
‘ ’ of each virtual machine.

Estimating Eigenvalues are arranged in descending
order to find the principe components (overloaded,
balanced, and less loaded).

			 …(10)
After arranging the values, the largest Eigenvalues are

determined by satisfying the following rule.
				 …(11)

Where, denotes the number of chosen largest
Eigenvalues, denotes the total Eigenvalues, denotes a
threshold, indicates an outcome of the rule estimation.
The chosen largest Eigenvalue satisfies the above equation
(11), then it is selected as a first principle component, i.e., a
less resource-capacity virtual machine or an overloaded
virtual machine. The second largest Eigenvalues are selected
as second principle components, i.e. balanced resource
capacity or balanced load virtual machine. The other largest
Eigenvalues are selected as third principle components, i.e.
higher resource capacity or less loaded virtual machine.
In this way, the resource capacity status of the virtual
machine is projected from high-dimensional space into
low-dimensional space.

 …(12)

The algorithm of the contingency correlative principal
component projection-based load capacity analysis is given
below,

Algorithm 1
Contingency correlative principal component projection-
based load capacity analysis

Input
Number of users requested tasks T_1,T_2,T_3,….T_n ,
number of virtual machines 〖Vm〗_1,〖Vm〗_2,…,〖Vm〗_n,
cloud server, loads balancer

1810	 Mathanraj and Reddy	 The Scientific Temper. Vol. 15, No. 1

Output
Identify the load capacity of the virtual machine

Begin
•	 Send the number of requests or tasks T_1,T_2,T_3,….T_n

to server
•	 LB maintains finding the load capacity of the virtual

machine
•	 For each virtual machine ‘〖Vm〗_1’
•	 Measure the resource capacity R= {〖Mem〗_c,〖BaW〗_(

C),E_C, CPU〗_Ut}
•	 Construct a correlation matrix between the resource and

mean value using (6)
•	 Compute Eigen value and Eigen vector using (9)
•	 Arrange the Eigenvalues in descending order using (10)
•	 If (Z=λ_H) then
•	 Project the less loaded virtual machine
•	 else if (Z=λ_M) then
•	 Project the balanced loaded virtual machine
•	 else if (Z=λ_L) then
•	 Project the balanced loaded virtual machine
•	 End if
•	 End for

End
Algorithm 1 above illustrates the step-by-step process of
contingency correlative principal component projection for
identifying the load capacity of the virtual machine. For each
arriving task, the load balancer identifies the load capacity
of the virtual machine based on different resources such
as memory, bandwidth, CPU, and energy. The correlation
matrix is constructed based on resource estimation. The
mean contingency correlation is measured between the
resources of the virtual machine and the mean value.

Followed by Eigen value and Eigen vector measured. From
the analysis, the load balancer determines a less loaded,
overloaded, balanced load virtual machine.

Gradient Weighted MapReduce Round-Robin Load
Balancing
After finding the load capacity of the virtual machine, the
load balancer uses gradient weighted MapReduce round-
robin load balancing to minimize the response time of
cloud user requests. The proposed weighted round-robin
algorithm maintains a weighted list of virtual machines. This
algorithm uses less computation time by distributing the
requests to the server more efficiently.

In the proposed PCGRLB technique, the load balancer
uses the MapReduce function for migrating the user-
requested tasks in a parallel manner. A MapReduce function
is a programming model that includes two steps: maps and
reduces. The Map phase performs the weighted round-
robin load balancing in which the incoming tasks from the
heavily loaded are migrated into the less loaded virtual
machine. The reducer phase executes after the map phase;
it minimizes the workload across the data centers.

Figure 2, given above, illustrates a gradient-weighted
MapReduce round-robin load balancing. The above figure
clearly illustrates an efficient load balancing among the
virtual machines. The load balancer receives numerous
tasks from the users. Then, the load balancer uses the Map
Reduce function to assign the weights to the overloaded,
less loaded and balanced loaded virtual machine.

		 …(13)
From (13), denotes a load balancer, ,

denotes a weight assigned to the virtual machine in each
round. After assigning the weight, the load balancer uses the
Tsukamoto fuzzy concept to perform task migration (TM)
by assigning the special rule consequents. As a result, the
inferred output of each rule is defined as a crisp value. The
operating principle of the Tsukamoto fuzzy concept uses
two inputs and a single output. Here, the two inputs are
weight and number of tasks. The output is a task migration.

The load balancer selects the less loaded virtual machine
with the weight ‘ ’. Then, it migrates the tasks from heavy-
loaded virtual machines to less-loaded machines. This
process is done by the load balancer finding the maximum
weighed virtual machine with the help of the gradient ascent
method. The gradient ascent method is used to find the local
maximum of that function.

				 …(14)
Where denotes the output of the gradient ascent

function, denotes a maximum weighted
virtual machine. In other words, the virtual machine with
less load has maximum weight. The rules originated using
the algorithmic formalism are (condition) and
(termination). The condition part verifies that the number

Figure 2: Gradient weighted MapReduce round-robin load
balancing

1811	 Round robin load balancing in cloud

of migrated tasks is lesser than the weight of the particular
virtual machine, and the termination part provides the
verification outputs.

	 …(15)

Where denotes an output of the Tsukamoto fuzzy
concept, denotes the number of tasks, denotes a
weight assigned to the less loaded virtual machine. If
the number of tasks ‘ ’ is lesser than the weight of that
particular less loaded virtual machine, then the tasks are
assigned to the less loaded virtual machine. Otherwise, the
load balancer assigns the tasks to the next virtual machine
with maximum weight. Finally, the reducer phase executes
the efficient load balancing among the data centres. In
this way, the load balancer handled the workloads among
the virtual machines in the server. The gradient-weighted
MapReduce round-robin load balancing algorithmic
process is given below.

Algorithm 2
Gradient weighted MapReduce round robin load balancing

Input
Number of cloud user requests T_1,T_2,T_3,….T_n , virtual
machines (〖Vm〗_1,〖Vm〗_2,〖….,Vm〗_n)

Output
Improve load balancing efficiency

Begin
•	 for each less-loaded 〖Vm〗_i
•	 load balancer assigns weight ‘ω_j’ using (14)
•	 apply gradient ascent to find maximum weight using (15)
•	 formulate the Tsukamoto fuzzy rule
•	 If (T_j≤ω_j) then
•	 load balancer migrates the tasks to less loaded V_m
•	 else
•	 assign tasks to the next virtual machine with maximum

weight
•	 end if
•	 return (workload balanced)
•	 end for

End
As shown in algorithm 2 above, the step-by-step process of
gradient-weighted MapReduce round-robin load balancing
is described. First, the load balancer assigns the weight to
the less loaded virtual machine. Then, apply the gradient
ascent function to find the virtual machine with maximum
weight. After that, the fuzzy rule is applied to balance the
workload among the virtual machines in the cloud server.
The load balancer performs task migration until it reaches
the maximum weight of that less loaded virtual machine.
This process minimizes the workload across the cloud
server, improves load balancing efficiency, and minimizes
response time.

Experimental Setup
Experimental evaluation of the proposed PCGRLB and
existing methods TS-DT (Hadeer Mahmoud et al., 2022)
and OP-MLB (Deepika Saxena et al., 2022) are implemented
using Java language with CloudSim network simulator. The
personal cloud datasets (http://cloudspaces.eu/results/
datasets) are considered for the experimental evaluation.
The main aim of the dataset is to perform the load balancing.
The dataset comprises 17 attributes and 66245 instances.
The 17 attributes are row id, account id, file size, (i.e., task
size), operation_time_start, operation_time_end, time zone,
operation_id, operation type, bandwidth trace, node_ip,
node_name, quoto_start, quoto_end, quoto_total (storage
capacity), capped, failed and failure info. Among the 17
attributes, two columns, such as time zone and capped, are
not used. The above columns are considered for efficient
load balancing among the multiple virtual machines using
big data in the cloud.

Results and Discussion
In this section, the experimental evaluation of the proposed
PCGRLB and existing methods TS-DT (Hadeer Mahmoud
et al., 2022) and OP-MLB (Deepika Saxena et al., 2022) are
discussed with various performance metrics such as load
balancing efficiency, throughput, makespan, response time,
number of tasks migrated.

Load balancing efficiency is the ratio of the number
of user requests that are correctly balanced to the virtual
machines. The load balancing efficiency is computed as
given below,

	 …(16)

Where indicates a load balancing efficiency, ‘
’ represents the total number of user requests. The load
balancing efficiency is measured in percentage (%).

Throughput
It is measured as the ratio of user requests executed per
unit of time. The throughput is computed as given below,

			 …(17)

Where ‘ ’ indicates a throughput, denotes a time in
seconds. The throughput is measured in terms of requests
per second (requests/sec).

Makespan
It is measured as the amount of time a virtual machine
consumes to process a set of user requests. It is mathematically
computed as the time difference between the starting and
finishing of the user requested.

			 …(19)
Where, represents the makespan, indicates

request completion time denotes a request for
finishing time. The makespan is measured in milliseconds (ms).

Response time is defined as the amount of time required
to respond to a user request through load balancing. Low

1812	 Mathanraj and Reddy	 The Scientific Temper. Vol. 15, No. 1

response time for a good performance of load balancing
algorithm.

 …(20)

Where indicates a response time, denotes the
number of user requests, denotes the time taken for
transmission, waiting, and processing the user requests. The
response time is measured in milliseconds (ms).

Migration cost is defined as the amount of time taken for
task migration in the virtual machine to the total number of
virtual machines. The Migration cost is calculated as follows,

			 …(21)

Where denotes a Migration cost, denotes the time
taken for migrating the tasks. The migration cost is measured
in milliseconds (ms).

Table 1 and Figure 3 depict the performance results of
load balancing efficiency concerning user requests taken in
the range of 5000 to 50000. The number of user requests
is taken as input in ‘ ’ direction, and the load balancing
efficiency results are obtained in ‘ ’ direction. Experimental
load balancing efficiency results are measured using the
PCGRLB technique and existing methods TS-DT (Hadeer
Mahmoud et al., 2022) and OP-MLB (Deepika Saxena et al.,
2022). The above result shows that the performance results
of load balancing efficiency using the PCGRLB technique are
higher than existing TS-DT (Hadeer Mahmoud et al., 2022)
and OP-MLB (Deepika Saxena et al., 2022). Let us consider
the number of user requests, which is 5,000. About 4,921
user requests are correctly scheduled into the optimal virtual
machine, and the efficiency was found to be 98.42% using
the PCGRLB technique. By applying the other two existing
(Hadeer Mahmoud et al., 2022) and (Deepika Saxena et al.,
2022), the load balancing efficiency was found to be 93.7
and 94.5%, respectively. Then, the proposed results are
compared with the existing results. The comparison results
clearly show that the PCGRLB technique increases the load
balancing efficiency by 6% and 5% to the conventional load
balancing techniques (Hadeer Mahmoud et al., 2022) and
(Deepika Saxena et al., 2022), respectively. This is due to
the application of a gradient-weighted MapReduce round-
robin load-balancing algorithm that effectively balances
the load across the virtual machine. When the machine is
less loaded, the load balancer assigns the weight. Then, the
balancer assigns the weight until the requests lesser than
the maximum weight. Therefore, the PCGRLB technique
balances the workload among the virtual machine,
increasing the load balancing efficiency.

Table 2 and Figure 4 depict the performance analysis of
throughput using three different load balancing algorithms,
namely PCGRLB technique and existing methods TS-DT
(Hadeer Mahmoud et al., 2022) and OP-MLB (Deepika Saxena
et al., 2022). The figure shows that the PCGRLB technique
increases the throughput compared to existing load-

balancing algorithms. Consider 5000 user requests sent from
the cloud user in the first iteration. By applying the PCGRLB
technique, 725 requests are successfully executed in one
second. Similarly, the throughput was 512 requests/sec and
589 requests/sec, respectively. The overall ten results were
used to compare the performance of the PCGRLB technique
against the existing methods. The average of ten comparison

Table 1: Load balancing efficiency versus user-requests

Number of
user-requests

Load balancing efficiency (%)

TS-DT OP-MLB PCGRLB

5000 93.7 94.5 98.42

10000 93.15 94.25 98.35

15000 93.01 94.16 98.13

20000 92.82 93.25 97.6

25000 92.22 93.2 97.4

30000 91.51 93.03 97.33

35000 90.97 92.71 97.28

40000 90.3 92.38 97.25

45000 89.16 91.67 96.66

50000 88.25 91.31 96.25

Figure 3: Performance analysis based on load balancing efficiency

Table 2: Throughput versus user-requests

Number of user
requests

Throughput (requests/sec)

TS-DT OP-MLB PCGRLB

5000 512 589 725

10000 585 645 822

15000 822 895 966

20000 865 962 1120

25000 980 1025 1233

30000 1120 1190 1452

35000 1280 1375 1589

40000 1365 1485 1696

45000 1455 1542 1823

50000 1595 1725 2012

1813	 Round robin load balancing in cloud

results confirms that the overall throughput is considerably
improved by 28 and 18% compared to (Hadeer Mahmoud
et al., 2022) and (Deepika Saxena et al., 2022). This is because
the load balancer checks the resource capacity of the virtual
machine for each incoming request. After that, the load
balancer migrates the requests from an overloaded virtual
machine into a less loaded virtual machine. As a result, the
server responds to the user requests with higher throughput.

Figure 5 and Table 3 shows the graphical representation of
makespan using the PCGRLB technique and existing methods
TS-DT (Hadeer Mahmoud et al., 2022) and OP-MLB (Deepika
Saxena et al., 2022). From the figure, it is inferred that the
makespan increases with the number of user requests for
all three methods. Also, the makespan using the PCGRLB
technique is comparatively less than the other two methods.
This is because the PCGRLB technique efficiency finds the
resource capacity of the virtual machine and balances the
workload among the virtual machines. The PCGRLB technique
uses the contingency correlative principal component
projection to analyze the virtual machine resource capacity,
such as overloaded, less loaded and balanced load based
on the energy, bandwidth, memory and CPU. After finding
the overloaded virtual machine, the load balancer balances
the load by migrating the user tasks into the less loaded
virtual machine. The experiment is conducted with 5000
user requests in the first iteration. The performance of the
makespan using the PCGRLB technique was found to be
28ms, whereas the makespan was found to be 42ms and
38ms using (Hadeer Mahmoud et al., 2022) (Deepika Saxena
et al., 2022) respectively. From this result, it is inferred that
the makespan of the PCGRLB technique was found to be
comparatively lesser. From this result, it is inferred that the
makespan involved in load balancing analysis using consumer
recommendation time consumed in recommending the
users by tracking their interests and activity using the
PCGRLB technique is better than when compared to (Hadeer
Mahmoud et al., 2022) and (Deepika Saxena et al., 2022).
Therefore, the makespan using the PCGRLB technique is
reduced by 27 and 21% compared to (Hadeer Mahmoud et
al., 2022) and (Deepika Saxena et al., 2022).

Table 4 and Figure 6 illustrate the performance analysis
of response time using the proposed PCGRLB technique
and existing methods TS-DT (Hadeer Mahmoud et al.,

Figure 4: Performance analysis based on throughput

Table 3: Makespan versus user-requests

Number of
user-requests

Makespan (ms)

TS-DT OP-MLB PCGRLB

5000 42 38 28

10000 50 45 33

15000 55 50 40

20000 66 57 46

25000 76 69 52

30000 83 77 67

35000 92 88 74

40000 105 96 80

45000 116 110 86

50000 128 122 93

Figure 5: Performance analysis based on makespan

Table 4: Response time versus user-requests

Number of user
requests

Response time (ms)

TS-DT OP-MLB PCGRLB

5000 72 69 55

10000 90 85 62

15000 105 102 87

20000 120 118 102

25000 145 140 120

30000 177 165 135

35000 192.5 185.5 157.5

40000 220 212 176

45000 243 234 193.5

50000 300 285 240

Figure 6: Performance analysis based on Response time

1814	 Mathanraj and Reddy	 The Scientific Temper. Vol. 15, No. 1

2022) and OP-MLB (Deepika Saxena et al., 2022) for 5000
to 50000 numbers of user requests. An increasing trend is
observed regarding response time for all three methods.
However, the performance analysis of response time using
the PCGRLB technique is comparatively less than that of the
existing methods. This is because the PCGRLB technique
uses the gradient weighted MapReduce round-robin load
balancing to balance the load among the virtual machine.
The proposed algorithm assigns the dynamic weight
to the less loaded virtual machine. Afterward, the load
balancer performs task migration from overload to the less
loaded virtual machine. In this way, the PCGRLB technique
minimizes the waiting and processing time for user requests.
The overall processing results indicate that the proposed
PCGRLB response time is minimized by 21% compared
to (Hadeer Mahmoud et al., 2022) and 22% compared to
(Deepika Saxena et al., 2022).

The performance results of the migration cost versus
the number of user requests are described in Table 5 and
Figure 7. The migration cost using the proposed PCGRLB
technique is reduced compared to other existing methods.
As shown in Table 5, let us consider the 5000 user requests
taken as input to compute the migration cost. From the
total number of requests, the number of requests to be
migrated is 55. The time consumption for migrating the 55

tasks from the overloaded virtual machine to the less loaded
virtual machine was found to be 8.8ms using PCGRLB. The
migration times of TS-DT (Hadeer Mahmoud et al., 2022)
and OP-MLB (Deepika Saxena et al., 2022) are 12.65 and 11
ms, respectively.

Similarly, different performance results are obtained
for each method. The overall performance of the PCGRLB
is compared to existing methods. The observed results
indicate that the migration cost of the PCGRLB technique is
reduced by 20% compared to (Hadeer Mahmoud et al., 2022)
and 10% compared to (Deepika Saxena et al., 2022). The
gradient weighted MapReduce round-robin load balancing
algorithm performs the migration to balance the load
among the virtual machine. The proposed load-balancing
algorithm assigns the dynamic weight and migrates the user
requests by satisfying the fuzzy rule.

Conclusion
Cloud computing is a promising technology where
users accomplish their computing requirements based
on demand. This paper presents a novel load balancing
technique, PCGRLB, for distributing many tasks within a
minimum time. The PCGRLB Initially performs the virtual
machine resource capacity analysis by applying the
contingency correlative principal component projection. As
a result, the virtual machine’s overloaded, less loaded, and
balanced load is identified. After that, gradient weighted
MapReduce round-robin load balancing is employed in
the PCGRLB technique to balance the workload among
the virtual machine in a cloud server. The load balancer
performs task migration with minimum cost. Finally, the
reduce phase combines the results of the virtual machine
and provides the final output results. Experimental
evaluation of the PCGRLB technique and existing methods
are carried out, and the performance analysis results prove
that the proposed algorithm effectively achieves better
load balancing efficiency with maximum throughput and
lesser makespan, migration cost, and response time than
the conventional methods.

Acknowledgment
We sincerely acknowledge the Head of the Department,
Dr L. Nagarajan, and Dr N. Sumathi, Principal of the
Institution, for providing the facility to complete this paper
Successfully.

References
Ajay Jangra and Neeraj Mangla. (2023). An efficient load balancing

framework for deploying resource scheduling in cloud
based communication in healthcare. Measurement: Sensors,
Elsevier, 25, 1-6.

Arabinda Pradhan , Sukant Kishoro Bisoy ,and Mangal Sain.
(2022). Action-Based Load Balancing Technique in Cloud
Network Using Actor-Critic-Swarm Optimization. Wireless
Communications and Mobile Computing, Hindawi, 1- 17.

Table 5: Migration cost versus the number of virtual machines

Number of
user requests

Migration of
tasks

Migration cost (ms)

TS-DT OP-MLB PCGRLB

5000 55 12.65 11 8.8

10000 100 15 13 11

15000 115 17.25 16.1 13.8

20000 120 20.4 18 15.6

25000 143 22.88 20.73 19.30

30000 159 25.44 22.41 20.67

35000 167 26.72 23.54 21.87

40000 210 31.5 27.93 26.25

45000 228 33.06 29.64 27.81

50000 240 36 32.4 31.2

Figure 7: Performance analysis based on migration cost

1815	 Round robin load balancing in cloud

Bruno M.P. Moura, Guilherme B. Schneider, Adenauer C. Yamin,
Helida Santos, Renata H.S. Reiser, Benjamin BedregaL. (2022).
Interval-valued Fuzzy Logic approach for overloaded hosts in
consolidation of virtual machines in cloud computing. Fuzzy
Sets and Systems, Elsevier, 446, 144-166.

Chunlin Li, Qianqian Cai , Luo Youlong. (2022). Optimal Data
Placement Strategy Considering Capacity Limitation And
Load Balancing In Geographically Distributed Cloud. Future
Generation Computer Systems, Elsevier, 127, 142-159.

Dalia Abdulkareem Shafiq, Noor Zaman Jhanjhi, Azween Abdullah,
Mohammed A. Alzain. (2021). A Load Balancing Algorithm for
the Data Centres to Optimize Cloud Computing Applications.
IEEE Access, 9, 41731 – 41744.

Deepika Saxena, Ashutosh Kumar Singh, Rajkumar Buyya. (2022).
OP-MLB: An Online VM Prediction-Based Multi-Objective
Load Balancing Framework for Resource Management at
Cloud Data Center. IEEE Transactions on Cloud Computing,
10(4), 2804-2816.

Faraz Hasan, Mohammad Imran, Mohammad Shahid, Faisal
Ahmad, Mohammad Sajid. (2022). Load balancing strategy
for workflow tasks using stochastic fractal search (SFS) in
Cloud Computing. Procedia Computer Science, Elsevier,
215, 815-823.

Hadeer Mahmoud, Mostafa Thabet, Mohamed H. Khafagy, Fatma
A. Omara. (2022). Multi-objective Task Scheduling in Cloud
Environment Using Decision Tree Algorithm. IEEE Access,
10, 36140-36151.

Jyotirmoy Karjee , Praveen Naik S , Kartik Anand , Vanamala N.
Bhargav. (2022). Split computing: DNN inference partition
with load balancing in IoT-edge platform for beyond 5G.
Measurement: Sensors, Elsevier, 23, 1-20.

Lung-Hsuan Hung, Chih-Hung Wu, Chiung-Hui Tsai, Hsiang-Cheh
Huang. (2021). Migration-Based Load Balance of Virtual
Machine Servers in Cloud Computing by Load Prediction
Using Genetic-Based Methods. IEEE Access, 9, 49760-49773.

Mayank Sohani and S. C. Jain. (2021). A Predictive Priority-Based
Dynamic Resource Provisioning Scheme With Load Balancing
in Heterogeneous Cloud Computing. IEEE Access, 9, 62653-
62664.

Mirza Mohd Shahriar Maswood, Rahinur Rahman, Abdullah
G. Alharbi, Deep Medhi. (2020). A Novel Strategy to

Achieve Bandwidth Cost Reduction and Load Balancing
in a Cooperative Three-layer Fog-Cloud Computing
Environment. IEEE Access, 8, 113737-113750.

Muhammad Adil, Said Nabi, Muhammad Aleem, Vicente Garcia
Diaz, Jerry Chun-Wei Lin. (2022). CA-MLBS: content-aware
machine learning-based load balancing scheduler in the
cloud environment. Expert System, Wiley, 1-21.

Nilayam Kumar Kamila, Jaroslav Frnda , Subhendu Kumar Pani,
Rashmi Das, Sardar M.N. Islam, P.K. Bharti , Kamalakanta
Muduli. (2022). Machine learning model design for high-
performance cloud computing & load balancing resiliency:
An innovative approach. Journal of King Saud University
- Computer and Information Sciences, Elsevier, 34(10),
9991-10009.

Raza A. Haidri, Mahfooz Alam, Mohammad Shahid, Shiv Prakash,
Mohammad Sajid. (2022). A deadline-aware load balancing
strategy for cloud computing. Concurrency Computations
Practice And Experience, Wiley, 34(1), 1-16.

Ronghui Cao, Zhuo Tang, Kenli Li, Keqin Li. (2021). HMGOWM: A
Hybrid Decision Mechanism for Automating Migration of
Virtual Machines. IEEE Transactions on Services Computing,
14(5), 1397-1410.

Stavros Souravlas, Sofia D. Anastasiadou, Nicoleta Tantalaki,
Stefanos Katsavounis. (2022). A Fair, Dynamic Load Balanced
Task Distribution Strategy for Heterogeneous Cloud
Platforms Based on Markov Process Modeling. IEEE Access,
10, 26149-26162.

Suman Sansanwal, Nitin Jain. (2022). An Improved Approach
for Load Balancing among Virtual Machines in Cloud
Environment. Procedia Computer Science, Elsevier, 215,
556-566.

Vani, K., & Sujatha, S. (2023). Fault tolerance systems in open source
cloud computing environments–A systematic review. The
Scientific Temper, 14(03), 944–949.

Yogesh Gupta. (2021). Novel distributed load balancing algorithms
in cloud storage. Expert Systems with Applications, Elsevier,
186, 1-20.

Zeinab Nezami, Kamran Zamanifar, Karim Djemame, Evangelos
Pournaras. (2021). Decentralized Edge-to-Cloud Load
Balancing: Service Placement for the Internet of Things. IEEE
Access, 9, 64983–65000.

