
Abstract
Cloud computing is a recent computer technology that has virtualized infrastructure to offer secure and reliable services to users in 
a complex environment. The main advantage of the cloud is its scalability. Vast scalability is possible because of load balancing. Due 
to the advancement of the cloud, huge numbers of service provisioning requests are generated from users. Cloud needs a better and 
more efficient load-balancing mechanism to handle all the user’s requests. This paper proposes the principal component gradient round 
robin load balancing (PCGRLB) technique to balance the workload in a cloud server for handling a huge workload within a minimum 
time. The PCGRLB technique performs two processes: Virtual machine analysis and load balancing. The PCGRLB technique is evaluated 
on factors such as throughput, makespan, and response time concerning several tasks. The results show that the PCGRLB technique 
offers an efficient solution in achieving higher load balance, efficiency, throughput, and minimized makespan and response time than 
the conventional techniques.
Keywords: Cloud computing, Load balancing, Contingency correlative principal component projection, Gradient weighted MapReduce, 
Round-robin load balancing, Makespan.
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Introduction 
With the rapid growth of information technology and the 
ever-increasing network bandwidth, the amount of data 
from the end users increases exponentially, and this data is 
stored in cloud data centers. Cloud computing technology 
integrates many distributed resources and provides safe, 
reliable, low-cost, highly scalable computing or storage 
services. In cloud computing, users’ requests are increasing 
load also be increased resulting in poor performance in 
terms of resource usage. Load balancing is a significant 
aspect of enhancing the operational performance of the 
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cloud service provider. The main advantage of balancing 
the workload is higher resource utilization, improving overall 
performance (Vani K. et al., 2023). 

An integrated concept of artificial intelligence machine 
learning techniques was developed by (Nilayam Kumar 
Kamila et al., 2022) for load balancing and computing unit 
metadata. However, the designed model failed to include 
more cloud components to handle the video and audio 
stream data. An inquisitive genetic grey wolf optimization 
algorithm was designed using a combination of grey wolf 
optimization (IG-GWO) algorithms (Suman Sansanwal, 2022). 
However, the efficiency of load balancing was not improved.

Stochastic fractal search (SFS) algorithms were 
developed by (Faraz Hasan et al., 2022) to enhance resource 
consumption and minimize the load imbalance on the 
virtual machine. However, the performance of the makespan 
was not minimized. Two optimization objectives were 
introduced by Zeinab Nezami et al., 2021 to solve the load-
balancing problem for IoT service placement. However, the 
delay-tolerant load balancing was not archived.

A receiver-initiated deadline-aware load-balancing 
method was developed by (Raza A. Haidri et al., 2022) to 
migrate incoming cloudlets to suitable virtual machines. A 
two-stage genetic method was developed by (Lung-Hsuan 
Hung et al., 2021) for the migration-based load balancing 
of virtual machine hosts. However, the energy-aware 
load balancing remained unaddressed. To minimize the 
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makespan and response time, a content-aware machine 
learning-based load balancing scheduler (CA-MLBS) was 
developed (Muhammad Adil et al., 2022). However, the 
migration cost was not minimized. Two effective distributed 
load-balancing algorithms were developed for the cloud 
environment (Yogesh Gupta, 2021). However, the storage 
capacity of the server was not analyzed. 

Contribution of Paper
In this paper, a novel load-balancing approach called the 
PCGRLB technique is developed for cloud computing 
environments. The PCGRLB technique distributed the 
multiple tasks of users on different computing resources 
with a high degree of load balancing.

The main contributions of this paper comprise the 
following:
•	 A principal component gradient round-robin load 

balancing (PCGRLB) technique is proposed to balance 
the workload based on virtual machine resource 
capacity analysis and load balancing.

•	 First, the contingency correlative principal component 
projection is applied in the PCGRLB technique to 
analyze the virtual machine resource capacity based 
on the multiple resources such as energy, bandwidth, 
memory and CPU. Based on the analysis, the overloaded, 
less loaded and balanced loaded virtual machines are 
projected. 

•	 Next, the gradient weighted map reduction round-robin 
load balancing is employed in the PCGRLB technique to 
balance the load among the virtual machines through 
task migration. The load balancer finds the maximum 
weighted virtual machines with the help of the gradient 
ascent function and balances the workload. This helps 
improve the load balancing efficiency and minimizes 
the response time and makespan. 

•	 Finally, a comprehensive experimental assessment is 
carried out using CloudSim with various performance 
parameters to show the improvement of the PCGRLB 
with some of the most recent techniques. 

Organization of the Paper 
The following sections are organized into different sections 
as follows. Section 2 presents some of the previous works 
related to load-balancing approaches in cloud computing. 
Section 3 elaborates on the details of the proposed PCGRLB 
technique. In section 4, the CloudSim setting details of the 
proposed approach and existing methods are presented and 
explained. Section 5 provides the results and discussions of 
different parameters. Section 6 concludes the paper.

Related Work
Many researchers proposed different load balancing and 
scheduling approaches to enhance the efficiency of their 
approaches. Some of the methods are discussed in this 

section. Hadeer Mahmoud et al. (2022) proposed the multi-
objective task scheduling decision tree (TS-DT) technique to 
allocate multiple application tasks with a lower makespan 
and improved load balancing efficiency with better resource 
consumption. The intended TS-DT method, however, was 
unable to carry out energy-aware task execution to improve 
load balancing with the shortest reaction time. 

Deepika Saxena et al. (2022) proposed the online VM 
prediction-based multi-objective load balancing (OP-MLB) 
framework to provide effective resource management and 
minimize power usage in cloud environments. Nonetheless, 
the reliability-based VM allocation scheme did not enhance 
the load-balancing performance in the cloud data center.

Arabinda Pradhan et al. (2022) developed a hybrid 
scheduling policy for balancing a load of virtual machines 
by combining the actor-critic method and the particle 
swarm optimization (PSO) algorithm. However, the notion of 
resource allocation and management does not specifically 
address cloud data centers.

Dalia Abdulkareem Shafiq et al. (2021) created a load-
balancing method to decrease makespan and enable 
effective resource utilization. However, it was unable to 
manage requests from large numbers of users. In order 
to reduce the average reaction time and makespan of the 
system, Stavros Souravlas et al. (2022) designed a fair load-
balancing approach. However, the planned approach took 
longer to complete altogether, which hurt performance.

Mayank Sohani et al. (2021) developed the predictive 
priority-based modified heterogeneous earliest finish time 
(PMHEFT) algorithm for effective and dynamic resource 
provisioning-based load balancing and to meet end-user 
requirements. The PMHEFT was more difficult to create a 
resource provisioning system that is more effective for end 
users.

Ronghui Cao et al. (2021) proposed a hybrid decision-
making technique to automate the transfer of virtual 
machines while balancing the nodes’ load. However, it did 
not meet the more intricate user requirements. Jyotirmoy 
Karjee et al. (2022) developed the dynamic split computing 
(DSC) approach to divide the DNN layers as optimally as 
possible in order to reduce the total inference time across IoT 
and edge devices. The load balancing based on the energy 
profile was left unattended.

Mirza Mohd Shahriar Maswood et al. (2022) proposed 
a new optimization model to balance load and reduce 
bandwidth costs. However, the optimization model that 
was created for this context. That strategy, however, was 
unable to provide load balancing and decrease bandwidth 
costs. Ajay Jangra et al. (2020) proposed a load-balancing 
framework to provide resource scheduling in the cloud. 
However, it was unable to deliver quick services and handle 
the demand efficiently. 

Chunlin Li et al. (2022) developed a data placement 
strategy based on Lagrange relaxation for distributed cloud 
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load balancing. Bruno M.P. Moura et al. (2022) proposed 
an interval-valued fuzzy logic approach to estimate 
resource utilization with the least amount of performance 
deterioration. Nevertheless, it was unable to increase VM 
migration frequency or energy efficiency.

Research Methodology 
In cloud computing, load balancing distributes the workload 
across VMs to guarantee the highest possible throughput 
and reliability. Balanced workload allocation helps to attain 
optimal utilization of cloud computing resources. It is an 
essential issue in cloud computing environments. As the 
number of user requests increases, it’s difficult to control 
the process and execution of these requests simultaneously. 
However, the lack of execution causes lower throughput 
and more power consumption. Therefore, load balancing 
is a major task in parallel and distributed computing 
environments.

Optimal load balancing also enhances cloud task 
execution and response time. Load balancing techniques 
use various algorithms to compute the available workload of 
cloud resources. An optimal load-balancing method is needed 
to receive the incoming user task, estimate the workload of 
VMs, and balance the workload among the VMs. Based on 
his motivation, a novel PCGRLB technique is introduced to 
achieve higher throughput and less execution time. 

Figure 1 depicts the architecture diagram of the 
proposed PCGRLB technique for load balancing in the 
cloud. The cloud architecture includes several cloud 
users’  Who dynamically generates the 
numerous requests or tasks . The generated 
requests or tasks are submitted to a cloud server, a powerful 
physical or virtual infrastructure that performs certain 
tasks and data storage. A cloud server comprises several 
virtual machines  used to store 
data, connect to networks, and perform other computing 
functions.

The cloud server collects the number of requested 
tasks . The cloud server’s load balancer 
analyses each virtual machine’s resource status by using 
Contingency correlative principal component projection. 
The load balancer in the cloud server identifies the load 
capacity based on the available resources such as energy, 
bandwidth, memory and CPU. Contingency correlation is 
measured between the resource and mean value. Based on 
the analysis, the virtual machine’s overloaded, less loaded 
and balanced load capacity is identified. 

Then, the load balancer uses the weighted MapReduce 
round-robin load balancing to balance the workload among 
the virtual machine. A MapReduce is a data processing model 
used to process a large volume of data (i.e., user requests) in 
a parallel manner. The proposed load balancing algorithm 
assigns the dynamic weight to the less loaded virtual 

machine. Consequently, the tasks in the overloaded virtual 
machine are migrated to the less loaded virtual machine to 
improve the throughput and minimize the response time. A 
detailed explanation of the PCGRLB technique is presented 
in the following section. 

Contingency Correlative Principal Component 
Projection 
Load imbalance in a cloud computing data center occurs 
mainly due to ineffective approaches in allocating user-
requested demand or tasks. Therefore, when a user submits 
a requested task, the task is distributed by the server in the 
cloud data center. The cloud server randomly selects a virtual 
machine to perform a certain task. If the number of resources 
for the particular task request is higher than the number 
of resources available, the virtual machine cannot process 
the certain task. Therefore, load balancing is required to 
process the incoming tasks with the available resources of 
the virtual machine. The proposed PCGRLB technique uses 
the contingency correlative principal component projection 
to find the capacity of the virtual machine. 

Let us consider the requests or tasks  
arrived from the user. The generated requests or tasks are 
submitted to the cloud server. A cloud server comprises 
several virtual machines . The load 
balancer in the cloud server identifies the load capacity of 
the virtual machine based on the available resources. In 
this work, the available resources of the virtual machine are 
included as given below,

			   …(1)
Where  denotes resources of the virtual machine that 

include a memory capacity.’ ’bandwidth capacity ‘
’energy capacity ‘ ’ and CPU utilization.’ ’. 

Figure 1: Architecture diagram of the proposed PCGRLB technique
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First, the memory capacity is estimated based on the 
difference between total and consumed memory capacity. 

			   …(2)
From (2), represents the memory capacity of the 

virtual machine and denotes the total memory 
capacity of the virtual machine and  denotes a 
consumed memory capacity. The difference between the 
total and consumed memory capacity measure is used to 
identify the virtual machine’s current memory capacity. 

Likewise, the major resource is bandwidth, specifically 
the capacity at which a virtual node handles the maximum 
amount of data measured as Mbps. Therefore, the current 
status of the bandwidth is mathematically calculated as 
follows,

			  …(3)
Where,  indicates the bandwidth capacity of the 

virtual machine,  represents the total bandwidth 
of the virtual machine and  denotes a consumed 
bandwidth. Based on the above-said parameters, the current 
status of bandwidth capacity is identified. 

Saving energy is an important issue for cloud computing 
to reduce energy costs in load balancing. The total energy 
consumption is computed by considering the total energy 
consumption made by a virtual machine. The unit for energy 
consumption is kilowatt per hour (kWh). Therefore, the 
energy capacity of the virtual machine is evaluated as follows,

 				    …(4)
From (4),  indicates the energy capacity of the virtual 

machine  symbolizes total energy,  is the consumed 
energy. 

CPU utilization refers to the amount of work handled by a 
CPU. Actual CPU utilization varies based on the amount and 
type of managed computing tasks. Certain tasks consume 
heavy CPU time, while others require less. The utilization 
CPU time of the virtual machine is mathematically calculated 
based on the difference between the total CPU time and 
consumed time for processing certain tasks as given below,

				    …(5)
Where, indicates the capacity of CPU time of the 

virtual machine,  denotes a total time and  represents 
the time consumed by the virtual machine to process the 
particular task. 

After calculating the resources, the current status of the 
virtual machine is calculated to identify the best-performing, 
efficient load-balancing machine. Instead of using the 
covariance matrix in the conventional PCA, the proposed 
technique constructs the correlation matrix between the 
estimated resource of the virtual machine and their mean 
value.

	 …(6)

				    …(7)

					     …(8)

Where,  denotes a correlation matrix between the 
resource ‘ ’ and their mean value ‘ ’,  denotes 
a correlation between the resource ‘ ’ and mean value ‘

’. The mean square contingency correlation coefficient 
measures the relationship between the resource and the 
mean value. The correlation coefficient provides the results 
from 0 to 1 

The obtained correlation matrix evaluates Eigen values 
and Eigen vectors as given below. 

					     …(9)
From the above formulates (9), ‘ ’ represents the column 

vector denoting the Eigenvector and ‘ ’ denotes the 
Eigenvalues of the corresponding correlation matrix values 
‘ ’ of each virtual machine. 

Estimating Eigenvalues are arranged in descending 
order to find the principe components (overloaded, 
balanced, and less loaded). 

			   …(10)
After arranging the values, the largest Eigenvalues are 

determined by satisfying the following rule. 
				    …(11)

Where,  denotes the number of chosen largest 
Eigenvalues,  denotes the total Eigenvalues,  denotes a 
threshold,  indicates an outcome of the rule estimation. 
The chosen largest Eigenvalue satisfies the above equation 
(11), then it is selected as a first principle component, i.e., a 
less resource-capacity virtual machine or an overloaded 
virtual machine. The second largest Eigenvalues are selected 
as second principle components, i.e. balanced resource 
capacity or balanced load virtual machine. The other largest 
Eigenvalues are selected as third principle components, i.e. 
higher resource capacity or less loaded virtual machine. 
In this way, the resource capacity status of the virtual 
machine is projected from high-dimensional space into 
low-dimensional space. 

 …(12)

The algorithm of the contingency correlative principal 
component projection-based load capacity analysis is given 
below, 

Algorithm 1
Contingency correlative principal component projection-
based load capacity analysis

Input
Number of users requested tasks T_1,T_2,T_3,….T_n , 
number of virtual machines 〖Vm〗_1,〖Vm〗_2,…,〖Vm〗_n, 
cloud server, loads balancer



1810	 Mathanraj and Reddy	 The Scientific Temper. Vol. 15, No. 1

Output
Identify the load capacity of the virtual machine 

Begin 
•	 Send the number of requests or tasks T_1,T_2,T_3,….T_n 

to server
•	 LB maintains finding the load capacity of the virtual 

machine 
•	 For each virtual machine ‘〖Vm〗_1’
•	 Measure the resource capacity R= {〖Mem〗_c,〖BaW〗_( 

C),E_C, CPU〗_Ut} 
•	 Construct a correlation matrix between the resource and 

mean value using (6)
•	 Compute Eigen value and Eigen vector using (9)
•	 Arrange the Eigenvalues in descending order using (10)
•	 If (Z=λ_H) then
•	 Project the less loaded virtual machine 
•	 else if (Z=λ_M) then
•	 Project the balanced loaded virtual machine 
•	 else if (Z=λ_L ) then
•	 Project the balanced loaded virtual machine 
•	 End if
•	 End for

End
Algorithm 1 above illustrates the step-by-step process of 
contingency correlative principal component projection for 
identifying the load capacity of the virtual machine. For each 
arriving task, the load balancer identifies the load capacity 
of the virtual machine based on different resources such 
as memory, bandwidth, CPU, and energy. The correlation 
matrix is constructed based on resource estimation. The 
mean contingency correlation is measured between the 
resources of the virtual machine and the mean value. 

Followed by Eigen value and Eigen vector measured. From 
the analysis, the load balancer determines a less loaded, 
overloaded, balanced load virtual machine.

Gradient Weighted MapReduce Round-Robin Load 
Balancing
After finding the load capacity of the virtual machine, the 
load balancer uses gradient weighted MapReduce round-
robin load balancing to minimize the response time of 
cloud user requests. The proposed weighted round-robin 
algorithm maintains a weighted list of virtual machines. This 
algorithm uses less computation time by distributing the 
requests to the server more efficiently.

In the proposed PCGRLB technique, the load balancer 
uses the MapReduce function for migrating the user-
requested tasks in a parallel manner. A MapReduce function 
is a programming model that includes two steps: maps and 
reduces. The Map phase performs the weighted round-
robin load balancing in which the incoming tasks from the 
heavily loaded are migrated into the less loaded virtual 
machine. The reducer phase executes after the map phase; 
it minimizes the workload across the data centers. 

Figure 2, given above, illustrates a gradient-weighted 
MapReduce round-robin load balancing. The above figure 
clearly illustrates an efficient load balancing among the 
virtual machines. The load balancer receives numerous 
tasks from the users. Then, the load balancer uses the Map 
Reduce function to assign the weights to the overloaded, 
less loaded and balanced loaded virtual machine. 

		  …(13)
From (13), denotes a load balancer, ,  

denotes a weight assigned to the virtual machine in each 
round. After assigning the weight, the load balancer uses the 
Tsukamoto fuzzy concept to perform task migration (TM) 
by assigning the special rule consequents. As a result, the 
inferred output of each rule is defined as a crisp value. The 
operating principle of the Tsukamoto fuzzy concept uses 
two inputs and a single output. Here, the two inputs are 
weight and number of tasks. The output is a task migration. 

The load balancer selects the less loaded virtual machine 
with the weight ‘ ’. Then, it migrates the tasks from heavy-
loaded virtual machines to less-loaded machines. This 
process is done by the load balancer finding the maximum 
weighed virtual machine with the help of the gradient ascent 
method. The gradient ascent method is used to find the local 
maximum of that function.

				    …(14)
Where  denotes the output of the gradient ascent 

function,  denotes a maximum weighted 
virtual machine. In other words, the virtual machine with 
less load has maximum weight. The rules originated using 
the algorithmic formalism are  (condition) and  
(termination). The condition part verifies that the number 

Figure 2: Gradient weighted MapReduce round-robin load 
balancing
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of migrated tasks is lesser than the weight of the particular 
virtual machine, and the termination part provides the 
verification outputs. 

	 …(15)

Where  denotes an output of the Tsukamoto fuzzy 
concept,  denotes the number of tasks,  denotes a 
weight assigned to the less loaded virtual machine. If 
the number of tasks ‘ ’ is lesser than the weight of that 
particular less loaded virtual machine, then the tasks are 
assigned to the less loaded virtual machine. Otherwise, the 
load balancer assigns the tasks to the next virtual machine 
with maximum weight. Finally, the reducer phase executes 
the efficient load balancing among the data centres. In 
this way, the load balancer handled the workloads among 
the virtual machines in the server. The gradient-weighted 
MapReduce round-robin load balancing algorithmic 
process is given below. 

Algorithm 2
Gradient weighted MapReduce round robin load balancing

Input
Number of cloud user requests T_1,T_2,T_3,….T_n , virtual 
machines (〖Vm〗_1,〖Vm〗_2,〖….,Vm〗_n)

Output
Improve load balancing efficiency 

Begin
•	 for each less-loaded 〖Vm〗_i
•	 load balancer assigns weight ‘ω_j’ using (14)
•	 apply gradient ascent to find maximum weight using (15)
•	 formulate the Tsukamoto fuzzy rule
•	 If (T_j≤ω_j ) then
•	 load balancer migrates the tasks to less loaded V_m
•	 else
•	 assign tasks to the next virtual machine with maximum 

weight 
•	 end if 
•	 return ( workload balanced) 
•	 end for

End
As shown in algorithm 2 above, the step-by-step process of 
gradient-weighted MapReduce round-robin load balancing 
is described. First, the load balancer assigns the weight to 
the less loaded virtual machine. Then, apply the gradient 
ascent function to find the virtual machine with maximum 
weight. After that, the fuzzy rule is applied to balance the 
workload among the virtual machines in the cloud server. 
The load balancer performs task migration until it reaches 
the maximum weight of that less loaded virtual machine. 
This process minimizes the workload across the cloud 
server, improves load balancing efficiency, and minimizes 
response time. 

Experimental Setup
Experimental evaluation of the proposed PCGRLB and 
existing methods TS-DT (Hadeer Mahmoud et al., 2022) 
and OP-MLB (Deepika Saxena et al., 2022) are implemented 
using Java language with CloudSim network simulator. The 
personal cloud datasets (http://cloudspaces.eu/results/
datasets) are considered for the experimental evaluation. 
The main aim of the dataset is to perform the load balancing. 
The dataset comprises 17 attributes and 66245 instances. 
The 17 attributes are row id, account id, file size, (i.e., task 
size), operation_time_start, operation_time_end, time zone, 
operation_id, operation type, bandwidth trace, node_ip, 
node_name, quoto_start, quoto_end, quoto_total (storage 
capacity), capped, failed and failure info. Among the 17 
attributes, two columns, such as time zone and capped, are 
not used. The above columns are considered for efficient 
load balancing among the multiple virtual machines using 
big data in the cloud. 

Results and Discussion
In this section, the experimental evaluation of the proposed 
PCGRLB and existing methods TS-DT (Hadeer Mahmoud 
et al., 2022) and OP-MLB (Deepika Saxena et al., 2022) are 
discussed with various performance metrics such as load 
balancing efficiency, throughput, makespan, response time, 
number of tasks migrated. 

Load balancing efficiency is the ratio of the number 
of user requests that are correctly balanced to the virtual 
machines. The load balancing efficiency is computed as 
given below, 

	 …(16)

Where  indicates a load balancing efficiency, ‘
’ represents the total number of user requests. The load 
balancing efficiency is measured in percentage (%).

Throughput
It is measured as the ratio of user requests executed per 
unit of time. The throughput is computed as given below, 

			   …(17)

Where ‘ ’ indicates a throughput,  denotes a time in 
seconds. The throughput is measured in terms of requests 
per second (requests/sec). 

Makespan
It is measured as the amount of time a virtual machine 
consumes to process a set of user requests. It is mathematically 
computed as the time difference between the starting and 
finishing of the user requested. 

			   …(19)
Where,  represents the makespan,  indicates 

request completion time  denotes a request for 
finishing time. The makespan is measured in milliseconds (ms). 

Response time is defined as the amount of time required 
to respond to a user request through load balancing. Low 
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response time for a good performance of load balancing 
algorithm.

 …(20)

Where indicates a response time,  denotes the 
number of user requests,  denotes the time taken for 
transmission, waiting, and processing the user requests. The 
response time is measured in milliseconds (ms).

Migration cost is defined as the amount of time taken for 
task migration in the virtual machine to the total number of 
virtual machines. The Migration cost is calculated as follows, 

			   …(21)

Where  denotes a Migration cost,  denotes the time 
taken for migrating the tasks. The migration cost is measured 
in milliseconds (ms).

Table 1 and Figure 3 depict the performance results of 
load balancing efficiency concerning user requests taken in 
the range of 5000 to 50000. The number of user requests 
is taken as input in ‘ ’ direction, and the load balancing 
efficiency results are obtained in ‘ ’ direction. Experimental 
load balancing efficiency results are measured using the 
PCGRLB technique and existing methods TS-DT (Hadeer 
Mahmoud et al., 2022) and OP-MLB (Deepika Saxena et al., 
2022). The above result shows that the performance results 
of load balancing efficiency using the PCGRLB technique are 
higher than existing TS-DT (Hadeer Mahmoud et al., 2022) 
and OP-MLB (Deepika Saxena et al., 2022). Let us consider 
the number of user requests, which is 5,000. About 4,921 
user requests are correctly scheduled into the optimal virtual 
machine, and the efficiency was found to be 98.42% using 
the PCGRLB technique. By applying the other two existing 
(Hadeer Mahmoud et al., 2022) and (Deepika Saxena et al., 
2022), the load balancing efficiency was found to be 93.7 
and 94.5%, respectively. Then, the proposed results are 
compared with the existing results. The comparison results 
clearly show that the PCGRLB technique increases the load 
balancing efficiency by 6% and 5% to the conventional load 
balancing techniques (Hadeer Mahmoud et al., 2022) and 
(Deepika Saxena et al., 2022), respectively. This is due to 
the application of a gradient-weighted MapReduce round-
robin load-balancing algorithm that effectively balances 
the load across the virtual machine. When the machine is 
less loaded, the load balancer assigns the weight. Then, the 
balancer assigns the weight until the requests lesser than 
the maximum weight. Therefore, the PCGRLB technique 
balances the workload among the virtual machine, 
increasing the load balancing efficiency. 

Table 2 and Figure 4 depict the performance analysis of 
throughput using three different load balancing algorithms, 
namely PCGRLB technique and existing methods TS-DT 
(Hadeer Mahmoud et al., 2022) and OP-MLB (Deepika Saxena 
et al., 2022). The figure shows that the PCGRLB technique 
increases the throughput compared to existing load-

balancing algorithms. Consider 5000 user requests sent from 
the cloud user in the first iteration. By applying the PCGRLB 
technique, 725 requests are successfully executed in one 
second. Similarly, the throughput was 512 requests/sec and 
589 requests/sec, respectively. The overall ten results were 
used to compare the performance of the PCGRLB technique 
against the existing methods. The average of ten comparison 

Table 1: Load balancing efficiency versus user-requests

Number of 
user-requests

Load balancing efficiency (%)

TS-DT OP-MLB  PCGRLB

5000 93.7 94.5 98.42

10000 93.15 94.25 98.35

15000 93.01 94.16 98.13

20000 92.82 93.25 97.6

25000 92.22 93.2 97.4

30000 91.51 93.03 97.33

35000 90.97 92.71 97.28

40000 90.3 92.38 97.25

45000 89.16 91.67 96.66

50000 88.25 91.31 96.25

Figure 3: Performance analysis based on load balancing efficiency

Table 2: Throughput versus user-requests

Number of user 
requests

Throughput (requests/sec)

TS-DT OP-MLB  PCGRLB

5000 512 589 725

10000 585 645 822

15000 822 895 966

20000 865 962 1120

25000 980 1025 1233

30000 1120 1190 1452

35000 1280 1375 1589

40000 1365 1485 1696

45000 1455 1542 1823

50000 1595 1725 2012
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results confirms that the overall throughput is considerably 
improved by 28 and 18% compared to (Hadeer Mahmoud 
et al., 2022) and (Deepika Saxena et al., 2022). This is because 
the load balancer checks the resource capacity of the virtual 
machine for each incoming request. After that, the load 
balancer migrates the requests from an overloaded virtual 
machine into a less loaded virtual machine. As a result, the 
server responds to the user requests with higher throughput. 

Figure 5 and Table 3 shows the graphical representation of 
makespan using the PCGRLB technique and existing methods 
TS-DT (Hadeer Mahmoud et al., 2022) and OP-MLB (Deepika 
Saxena et al., 2022). From the figure, it is inferred that the 
makespan increases with the number of user requests for 
all three methods. Also, the makespan using the PCGRLB 
technique is comparatively less than the other two methods. 
This is because the PCGRLB technique efficiency finds the 
resource capacity of the virtual machine and balances the 
workload among the virtual machines. The PCGRLB technique 
uses the contingency correlative principal component 
projection to analyze the virtual machine resource capacity, 
such as overloaded, less loaded and balanced load based 
on the energy, bandwidth, memory and CPU. After finding 
the overloaded virtual machine, the load balancer balances 
the load by migrating the user tasks into the less loaded 
virtual machine. The experiment is conducted with 5000 
user requests in the first iteration. The performance of the 
makespan using the PCGRLB technique was found to be 
28ms, whereas the makespan was found to be 42ms and  
38ms using (Hadeer Mahmoud et al., 2022) (Deepika Saxena 
et al., 2022) respectively. From this result, it is inferred that 
the makespan of the PCGRLB technique was found to be 
comparatively lesser. From this result, it is inferred that the 
makespan involved in load balancing analysis using consumer 
recommendation time consumed in recommending the 
users by tracking their interests and activity using the 
PCGRLB technique is better than when compared to (Hadeer 
Mahmoud et al., 2022) and (Deepika Saxena et al., 2022). 
Therefore, the makespan using the PCGRLB technique is 
reduced by 27 and 21% compared to (Hadeer Mahmoud et 
al., 2022) and (Deepika Saxena et al., 2022). 

Table 4 and Figure 6 illustrate the performance analysis 
of response time using the proposed PCGRLB technique 
and existing methods TS-DT (Hadeer Mahmoud et al., 

Figure 4: Performance analysis based on throughput 

Table 3: Makespan versus user-requests

Number of 
user-requests

Makespan (ms)

TS-DT OP-MLB PCGRLB

5000 42 38 28

10000 50 45 33

15000 55 50 40

20000 66 57 46

25000 76 69 52

30000 83 77 67

35000 92 88 74

40000 105 96 80

45000 116 110 86

50000 128 122 93

Figure 5: Performance analysis based on makespan

Table 4: Response time versus user-requests

Number of user 
requests

Response time (ms)

TS-DT OP-MLB PCGRLB

5000 72 69 55

10000 90 85 62

15000 105 102 87

20000 120 118 102

25000 145 140 120

30000 177 165 135

35000 192.5 185.5 157.5

40000 220 212 176

45000 243 234 193.5

50000 300 285 240

Figure 6: Performance analysis based on Response time
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2022) and OP-MLB (Deepika Saxena et al., 2022) for 5000 
to 50000 numbers of user requests. An increasing trend is 
observed regarding response time for all three methods. 
However, the performance analysis of response time using 
the PCGRLB technique is comparatively less than that of the 
existing methods. This is because the PCGRLB technique 
uses the gradient weighted MapReduce round-robin load 
balancing to balance the load among the virtual machine. 
The proposed algorithm assigns the dynamic weight 
to the less loaded virtual machine. Afterward, the load 
balancer performs task migration from overload to the less 
loaded virtual machine. In this way, the PCGRLB technique 
minimizes the waiting and processing time for user requests. 
The overall processing results indicate that the proposed 
PCGRLB response time is minimized by 21% compared 
to (Hadeer Mahmoud et al., 2022) and 22% compared to 
(Deepika Saxena et al., 2022). 

The performance results of the migration cost versus 
the number of user requests are described in Table 5 and 
Figure 7. The migration cost using the proposed PCGRLB 
technique is reduced compared to other existing methods. 
As shown in Table 5, let us consider the 5000 user requests 
taken as input to compute the migration cost. From the 
total number of requests, the number of requests to be 
migrated is 55. The time consumption for migrating the 55 

tasks from the overloaded virtual machine to the less loaded 
virtual machine was found to be 8.8ms using PCGRLB. The 
migration times of TS-DT (Hadeer Mahmoud et al., 2022) 
and OP-MLB (Deepika Saxena et al., 2022) are 12.65 and 11 
ms, respectively.

Similarly, different performance results are obtained 
for each method. The overall performance of the PCGRLB 
is compared to existing methods. The observed results 
indicate that the migration cost of the PCGRLB technique is 
reduced by 20% compared to (Hadeer Mahmoud et al., 2022) 
and 10% compared to (Deepika Saxena et al., 2022). The 
gradient weighted MapReduce round-robin load balancing 
algorithm performs the migration to balance the load 
among the virtual machine. The proposed load-balancing 
algorithm assigns the dynamic weight and migrates the user 
requests by satisfying the fuzzy rule. 

Conclusion 
Cloud computing is a promising technology where 
users accomplish their computing requirements based 
on demand. This paper presents a novel load balancing 
technique, PCGRLB, for distributing many tasks within a 
minimum time. The PCGRLB Initially performs the virtual 
machine resource capacity analysis by applying the 
contingency correlative principal component projection. As 
a result, the virtual machine’s overloaded, less loaded, and 
balanced load is identified. After that, gradient weighted 
MapReduce round-robin load balancing is employed in 
the PCGRLB technique to balance the workload among 
the virtual machine in a cloud server. The load balancer 
performs task migration with minimum cost. Finally, the 
reduce phase combines the results of the virtual machine 
and provides the final output results. Experimental 
evaluation of the PCGRLB technique and existing methods 
are carried out, and the performance analysis results prove 
that the proposed algorithm effectively achieves better 
load balancing efficiency with maximum throughput and 
lesser makespan, migration cost, and response time than 
the conventional methods.
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