
Abstract
Enset, also known as the “false banana,” is a staple food in southern and southwestern Ethiopia that could potentially alleviate poverty 
among smallholders. Recently, a bacterial wilt disease that damages enset leaves has resulted in massive economic losses for farmers. 
The use of deep learning for automated plant leaf disease diagnosis in crops has grown in popularity in recent years; however, the 
impact of hyperparameter selection, particularly batch size, on model performance in the context of enset leaf disease detection 
remains unidentified. In this research, we looked at how batch size affects the effectiveness of a deep learning model to detect enset 
leaf disease. The study investigated how different batch size settings affected model performance during the detection of enset leaf 
disease. To confirm this, five commonly used batch sizes [16, 32, 64, 128, and 256] were combined in the proposed experiments. For the 
study, we have collected a total of 2132 infected and healthy leaves of enset from the south-west area of Ethiopia. Before training the 
convolutional neural network (CNN) model, the images in the dataset are preprocessed to enhance feature extraction and consistency. 
Based on the results of the experiments, we determined that the model’s efficiency was even better, but only when the batch size 
employed in the model was less than the size of the test dataset. The study uses deep learning to detect bacterial wilt in enset leaves 
and provides academics and practitioners with heuristic information to help boost enset production when CNN is used in agriculture.
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Introduction
Agriculture is a critical component of Ethiopia’s economic 
development. The sector that receives the most attention 
in the government’s overall economic growth strategy. It 
accounts for 41% of GDP, over 90% of export value, and 
directly sustains livelihoods (FDRE 2014). Different varieties 
of annual and perennial crops flourish in Ethiopia’s distinct 
agro-ecosystems. Among them, there are a number of 
others. Enset is one of the most important food crops for 
over 20% of the Ethiopian population living in the southern 
and southwestern parts of the country. Enset plantations are 
found at altitudes between 1,200 and 3,100 meters above 
sea level (M.Wolde 2016). Most enset-growing areas have 
an average annual rainfall of 1,100 to 1,500 mm, a mean 
temperature of 10 to 210°C, a relative humidity of 63 to 80%, 
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and an estimated area of enset production of over 321,362.43 
hectares (Birhanu, Adiko, and Duraisamy 2023). Enset is 
expounded to and resembles the banana plant, which is 
an indigenous plant classified under the monocarpic genus 
enset and monocot family. This can be commonly called 
the false banana, the Ethiopian banana, or the herbaceous 
plant (Borrell et al. 2020). Locally, the plant is termed Enset. 
Botanically, it’s named the Ethiopian banana. The enset 
crop is an important indigenous food crop known for its 
tolerance to transient drought, high productivity, gender 
equity, and environmental sustainability. It also helps to 
confirm food security in a country like Ethiopia (Buntine 
and Weigend 1994).

Currently, however, its growth is threatened by many 
production constraints, while the productivity and area 
coverage of the crop are declining because of various 
biotic and abiotic factors. From those factors, a disease 
that is caused by bacteria, fungi, viruses, and nematodes 
is the most severe biological problem. Among these, 
bacterial wilt of enset is the most determinant constraint 
on enset production (Kudama, Tolera, and Gebeyehu, 2022). 
Bacterial wilt of enset, caused by Xanthomonas campestris 
PV. Musacearum, was first reported from Ethiopia and is 
currently found in all the enset-growing regions. It is the 
most serious in terms of its effects on production. Its disease 
symptoms are characterized by: 
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• An initial symptom appears on the central heart leaf or 
one of the inner leaves of enset, whose tip becomes 
yellowish, limp, and droopy. 

• A cut made through the petioles of a newly infected 
enset plant reveals browning of the vascular strands 
and yellowish or grayish masses of bacterial ooze out 
of the strands. 

• Cross sections at the base of the pseudostem and corm 
show discoloration of the vascular strand with a large 
bacterial pocket and grayish or yellowish exudate 
with brownish to black spots. In the later stages of the 
development of the disease, most of the leaves wilt, and 
the petioles break and wilt. Eventually, the entire plant 
dies and rots to the bottom (Figure 1).

In recent years, the application of deep learning has 
shown remarkable results in detecting plant leaf disease 
(Brahimi et al., 2018; Kalaivani et al., 2022; Zhong and Zhao, 
2020; Nagila et al., 2023). However, the effectiveness of the 
deep learning model depends on various factors, and one 
critical aspect of the training hyperparameters, batch size, 
holds particular importance. To date, various studies have 
shown the application of deep learning in detecting Enset 
leaf disease (Chen et al., 2022; Ganore and Tigistu, 2020; 
Gezahegn and Mekbib, 2016; Rashid et al., 2021). However, 
there isn’t much research that has examined how batch size 
affects deep learning models to detect Enset leaf disease in 
the agriculture industry. 

This research seeks to address this gap by systematically 
examining the impact of different batch sizes on model 
convergence, accuracy, and computational efficiency in the 
context of enset leaf disease detection.We collected a total of 
2132 infected and healthy leaves of enset from the Gecha farm 
area and Masha Agricultural Fields in South-West Ethiopia. 
To improve feature extraction and increase consistency, 
the images in the dataset for the deep convolutional neural 
network (CNN) are preprocessed before the model is trained. 
One of the most significant operations is the normalization 
of image size and format. In this study, image preprocessing 
is performed by resizing the image to 128x128 pixels and 
converting to grayscale. Finally, the proposed CNN model 
was evaluated using performance evaluation metrics such 
as accuracy, precision, recall, and F1-score.

The research laid its focus on the impact of batch size 
for training deep learning models in the domain of enset 
leaf disease detection. This study aims to provide valuable 
insights for researchers, practitioners, and stakeholders 
involved in agricultural technology. The findings contribute 
not only to the advancement of enset farming practices but 
also to the broader field of agricultural deep learning.

Related Works
Ignoring early symptoms of plant disease in the agricultural 
sector may result in losses to crops, which might potentially 
destroy the world economy (Rizzo et al., 2021). This section 

provides a comprehensive review of cutting-edge research 
on the subject of disease leaf identification. In addition 
to novel deep learning algorithms, we reviewed various 
traditional classification algorithms in the literature, such 
as neural networks (HECHT-NIELSEN 1992), support vector 
machines (Kumar Sahu and Pandey 2023; Deena et al. 2023), 
and rule-based classification (Rajesh, Vardhan, and Sujihelen 
2020), that are mostly used in plant leaf disease identification.

The research proposed by Kalaivani et al. (2022) 
presented plant seedling classification using deep learning. 
They used convolutional neural network (CNN) algorithms, 
a deep learning technique extensively applied to image 
recognition. A dataset that contains approximately 5,608 
images with 960 unique plants that belong to 12 species in 
a few developing phases is 99.48% of accuracy.

The study by Owomugisha et al. (2014) presented 
automated vision-based diagnosis of banana bacterial wilt 
disease and black sigatoka disease. They used a machine-
learning approach to detect and classify banana bacterial 
wilt and banana black sigatoka. The seven classifiers used 
for classification were: nearest neighbors, decision trees, 
random forests, extremely randomized trees, naive bayes, 
and support vector classifiers (linear SVM and RBF SVM). 
After testing the seven different classifiers, extremely 
randomized trees gave a classification accuracy of 96% for 
banana bacterial wilt and 91% for banana black sigatoka.

Ganore and Tigistu (2020) proposed a novel approach 
using image processing and machine learning techniques 
to detect Ethiopian enset diseases. Image processing and 
multiclass support vector machine (SVM) techniques are used 
to classify a given Enset leaf image as normal or infected.

To detect disease in enset leaves, Afework and Debelee 
(2020) designed a deep learning-based model. The designed 
model is trained and tested using the collected dataset, 
and it is compared with different pre-trained convolutional 
neural network models, namely VGG16 and InceptionV3. The 
dataset contains 4896 healthy and diseased enset images. 
From this, 80% of the images are used for training and the 
rest for testing the model.

The research proposed by Brahimi et al. (2018) has used 
deep learning techniques for plant disease detection and 

Figure 1: Sample images of (a and b) Bacterial wilt enset leaf and (c 
and d) Healthy enset leaf.
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saliency map visualization. They have tested multiple state-
of-the-art CNN architectures using three learning strategies 
on a public dataset for plant disease classification. The 
accuracy is 99.76%.

Sweetwilliams et al. (2019) have developed an internet of 
things (IoT) and machine learning model for the detection 
of Sigatoka disease in plants. The acquired leaf images were 
further processed using two image descriptors, namely 
the scalable color descriptor (SCD) and the Histogram of 
oriented gradient (HOG), to extract discriminative color and 
texture features, respectively. The best accuracy of 98% was 
produced using the HOG descriptor.

An Ethiopian coffee leaf disease detection model was 
developed by Mengistu, Alemayehu, and Mengistu (2016) 
using imaging and machine learning techniques. Artificial 
neural networks (ANN), k-Nearest Neighbors (KNN), Naïve, 
and a hybrid of self-organizing maps (SOM) and radial basis 
functions (RBF) are used. The total number of data sets is 
9100. From the total of 9100, 70% were used for training, and 
the remaining 30% were used for testing. The result showed 
that color features represent more than texture features 
regarding the recognition of coffee plant diseases, and the 
performance of the combination of radial basis function 
(RBF) and self-organizing map (SOM) is 90.07%.

The study by Amara, Bouaziz, and Algergawy (2017) has 
developed a deep learning-based approach for banana leaf 
disease classification. They use the LeNet architecture as a 
convolutional neural network to classify image data sets. The 
leaves infected by the disease are determined based on the 
color difference between the healthy and infected leaves. 
The authors perform feature extraction and classification 
by applying the CNN algorithm. The trained model gives an 
interesting classification with 97.3% accuracy.

Material and Methods
This study utilizes an experimental research approach to 
detect the bacterial wilt disease of enset leaf using deep 
learning techniques and the impact of batch sizes on 
the performance of deep learning model detection. The 
proposed study was separated into four sections: Data 
acquisition, dataset preparation, model development, and 
evaluation techniques. The flowchart for the proposed Enset 
leaf disease detection is shown in Figure 2.

Data Acquisition
The dataset utilized for these studies was gathered from the 
Gecha and Masha zones of south west Ethiopia. The study 
area map of the proposed system was illustrated in Figure 3. 
The gathered dataset contains 2132 images of enset leaves 
that are separated into two groups: healthy and infected. 
There are 1000 images of healthy enset leaves and 1132 
images of infected leaves. The images were all thought 
about for the review.

Dataset Preparation
The gathered image sizes fluctuated, making learning 
troublesome for the model. Subsequently, prior to 
partitioning the gathered image dataset into the training, 
test, and validation sets, we performed image pre-
processing, for example, resizing, normalization, and dataset 
splitting. The images have been diminished in size to 224 
x 224 pixels. The image’s pixel value is rescaled to the span 
[0, 1] by means of information standardization. The dataset 
was divided into three segments: training, testing, and 

Figure 2: Flowchart of the proposed enset leaf disease detection 
process

Figure 3: Location map of the study area
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validation. The validation and test datasets were utilized 
to survey the exhibition of the proposed model, while the 
training dataset was utilized to prepare the CNN model. 
Subsequently, we isolated the training, validation, and 
testing datasets by 80, 10, and 10%, respectively. 

Model Development
This study examines the impact of different batch sizes on 
CNN model convergence, accuracy, and computational 
efficiency in the context of enset leaf disease detection. The 
proposed CNN model consists of an input layer and output 
layer with multiple hidden layers, including the convolution 
layer, pooling layer, rectified linear unit, dropout layer, and 
normalization layers. The input layer accepts RGB images of 
size 128x128 with two classes (healthy leaf and infected leaf). 
The convolution layer extracts features from the input image 
by convolving it with different learnable filters to produce 
a 2-dimentional activation map called the feature map. 
The basic architecture of CNN shown in Figure 4. The ReLu 
activation function is performed after every convolution 
to introduce nonlinearity to the CNN model. The pooling 
layer reduces the dimensionality of each feature map while 
preserving important information in the input for further 
analysis. The dropout layer randomly switches off or drops 
out some input node elements while training data to learn 
features less dependent on its surroundings. Dropout 
regularization is added to the proposed architecture to 
overcome overfitting.

A fully connected layer connects every neuron in the 
previous layer to every neuron on the next layer, combining 
all the features learned by the previous layer to facilitate 
classification. Two fully connected layers are used: FC1 with 
64 dense and ReLU activation functions, and FC2 with 2 
dense and sigmoid activation functions. Feature extraction 
is a type of dimensionality reduction that represents an 
interesting part of the image, such as color features. The 
classifier is placed at the end of the CNN model, which is also 
called a dense layer, where data dimensions are transformed 
so that data can be classified linearly. 

Evaluation Techniques
Model evaluation is the process of estimating the 
generalization accuracy of the model with unseen data (in 
our case, test data). It is not recommended to use training 
data for evaluating a model because the model remembers 
all data samples that were fed during training, i.e., it predicts 
correctly for all the data points in the training but not for data 
that wasn’t seen during the training. For the evaluation of the 
model, we used the following performance measurement 
factors:

Accuracy
Accuracy is the ratio of the number of true predictions to 
the entire number of input examples.

Accuracy = (TP + FN)/(S)    (1)

Precision
It is the number of true positive outcomes divided by the 
number of positive outcomes expected by the classifier.

Precision=TP/ (TP+FP)     (2)

Recall
It is the number of true positive outcomes divided by the 
total number of patterns that should have been known as 
positive.

Recall=TP/ (TP+FN)     (3)

F1-Score
The F1 score is the choral mean of recall and precision. 
Therefore, this score returns both false positives and false 
negatives as reasons to assault a strength between recall 
and precision.
F1-Score= (2 * Precision * Recall)/(Precision + Recall) (4)

where TP is true positive, TN is true negative, FP is false 
positive, FN is false negative, and S is the total number of 
samples.

Results and Discussion
The goal of this study is to examine the impact of 
different batch sizes on model convergence, accuracy, and 
computational efficiency in the context of enset leaf disease 
detection. The models were built with a convolutional neural 
network using python 3.9 machine learning software. The 
data analysis and classification were carried out using the 
Sklearn Python library. Python provides three options to 
partition the dataset into training, testing, and validation 
data. These are: preparing distinct files for the training 
dataset and the test dataset; validation with the possibility 
of setting a variety of numbers of folds; and percentage split.

Results
In the experiment, we tested the most commonly used 
batch size combinations for examining the impact of 
different batch sizes on CNN model convergence, accuracy, 
and computational efficiency in the context of enset leaf 
disease detection. This experiment employed BS = [16, 32, 
64, 128, 256] batch sizes, an SGD optimizer, and a 0.001 
learning rate. The number of epochs was chosen to be 
100 to ensure consistency in the results and because of 
the magnitude of the dataset. Table 1 shows the effect on 
different batch sizes. The larger batches (BS_256) had the 
lowest accuracy. The use of a smaller batch size resulted in 
the maximum performance; the greater the performance, 
the smaller the batch size. Due to the batch size of 32, the 

Figure 4: A basic representation of a convolutional neural network.



1617 Impact of batch size for training convolutional neural network

experiments had the best overall accuracy. Our findings are 
consistent with those of Masters & Luschi (2018), where the 
authors recommended using smaller batch sizes. Despite 
the fact that our study does not advocate using large 
batch sizes, the outcomes of Radiuk (2017) concur with our 
conclusions on batch size. Bengio (2012) indicated that an 
acceptable default setting for the batch size is 32. While our 
experiments (in which a batch size of 32 produced positive 
results) support this, the highest performance was obtained 
with a batch size of 32. Figures 5 and 6 show, respectively, 
the comparative results of accuracy and loss acquired from 
the effects of batch size.

Discussion
The data from the experiment indicates that the best results 
are obtained by using a CNN with a smaller batch size 
(BS_32). A CNN model can effectively detect leaf images 
in this situation. A crucial aspect of the new study is its 
theoretical and applied contribution. First, a few studies 
in the agricultural field examine how the hyperparameter 
setting affects the effectiveness of deep neural networks. 
It wouldn’t be too far to conclude that our research would 
surely add to theoretical information, especially by providing 
the framework for a deeper comprehension of the influence 
work of hyperparameter setups. In contrast to earlier 

studies, its purpose is to make it easier for us to understand 
the effects of several commonly used batch sizes in the 
model when it is used to detect enset leaf disease using 
CNN. We looked into how different batch sizes affect CNN 
performance when it comes to detecting enset leaf disease.

On a practical level, this study lays the foundation 
for creating valuable heuristic information that can help 
scientists using deep learning techniques in the agricultural 
sector detect enset leaf disease. This study enhances the 
performance of hyperparameter tuning for CNN training 
to identify enset leaf disease.

Despite the encouraging findings, the study had some 
limitations. To begin with, the dataset used for the study was 
too small to train the CNN model. However, this limitation 
offers a chance for further investigation to evaluate the 
reliability of the results, and we eventually intend to 
consolidate findings from more extensive databases 
gathered from a range of agricultural suppliers throughout 
agricultural sectors.

Conclusion 
Agriculture is a critical component of Ethiopia’s economic 
development. Enset crop is employed as a staple and 
co-staple food and represents a possible pathway to 
bringing several smallholders out of poverty in southern 
and southwestern Ethiopia. This plant is additionally 
rich in carbohydrate, found in an exceedingly false stem 
(pseudostem) and an underground bulb (corm). Detecting 
diseases plays an important role in the field of agriculture 
because most of the diseases in plants are not easily visible 
when they happen for the first time. In this research, we 
looked at how batch size affects the effectiveness of a 
deep learning model to detect enset leaf disease. The study 
investigated how different batch size settings affected model 
performance during the detection of enset leaf disease. To 
confirm this, five commonly used batch sizes [16, 32, 64, 128, 
and 256] were combined in the proposed experiments. For 
the study, we have collected a total of 2132 infected and 
healthy leaves of enset from the south-west area of Ethiopia. 
To improve feature extraction and increase consistency, 
the images in the dataset for the CNN are preprocessed 
before the model is trained. Based on the findings of the 
experiments, we discovered that the model’s performance 
was even better, but only when the batch size used in the 
model was smaller than the size of the test dataset. The 
work is based on deep learning to identify bacterial wilt in 
enset leaves and provide researchers and practitioners with 
heuristic knowledge to help increase enset production when 
CNN is employed in the agricultural sector.
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Figure 5: Accuracy plot of different batch sizes result

Figure 6: Loss plot of different batch sizes results

Table 1: Comparative effect of batch size on CNN performance.

Batch sizes Accuracy Precision Precision F1-Score

16 86.0% 86.3% 84.0% 86.3%

32 91.3% 91.3% 92.3% 92.3%

64 90.1% 90.0% 89.6% 89.6%

128 82.5% 83.4% 83.3% 84.1%

256 75.7% 80.0% 75.6% 76.4%
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