
Abstract
In this research, a classification framework to automatically identify well and poorly designed SPARQL queries is proposed. Evaluating
SPARQL queries becomes a difficult challenging issue because of the query design and the volume of data to be handled. The proposed
context applies various machine learning algorithms including decision trees, k nearest neighbours, support vector machine, and naive
Bayes. In addition, two different feature extraction techniques called TFIDF measure and count vectorizer are measured to identify the
key features. The experimental results show that the four machine learning classifiers applied are able to classify the SPARQL queries
into three categories like well, accepted, and poorly designed queries. It also provides hopeful results with respect to recall, precision,
and F1-score. In datasets used for experimentation, it was found that the decision trees classifier outperforms well compared to other
classifiers by achieving 92% in terms of F1-measure. Also, the count vectorizer performs well in measuring the TFIDF property to predict
the poorly designed queries.
Keywords: SPARQL query, Machine learning algorithms, Classification, Feature selection, Semantic web, Query quality.

Machine learning classifiers to predict the quality of semantic
web queries
Gomathi Ramalingam1*, Logeswari S.2, M. D. Kumar3, Manjula Prabakaran4, Neerav Nishant5, Syed A. Ahmed6

RESEARCH ARTICLE

© The Scientific Temper. 2024
Received: 03/01/2024				 Accepted: 06/02/2024			 Published : 15/03/2024

1Bannari Amman Institute of Technology, Sathy, India
2Karpagam College of Engineering, Coimbatore, India
3Kalasalingam Academy of Research and Education Krishnankoil,
India
4Madanapalle Institute of Technology and Science, Andhra
Pradesh, India
5School of Engineering, Babu Banarasi Das University, Lucknow, India
6Assistant professor/CSE, Maulana Azad National Urdu University,
polytechnic, Hyderabad, India.
*Corresponding Author: Gomathi Ramalingam, Bannari Amman
Institute of Technology, Sathy, India, E-Mail: gomathir@bitsathy.
ac.in
How to cite this article: Ramalingam, G., Logeswari, S., Kumar,
M. D., Prabakaran, M., Nishant, N., Ahmed, S. A. (2024). Machine
learning classifiers to predict the quality of semantic web queries.
The Scientific Temper, 15(1):1777-1783.
Doi: 10.58414/SCIENTIFICTEMPER.2024.15.1.28
Source of support: Nil

Conflict of interest: None.

The Scientific Temper (2024) Vol. 15 (1): 1777-1783	 E-ISSN: 2231-6396, ISSN: 0976-8653

Doi: 10.58414/SCIENTIFICTEMPER.2024.15.1.28	 https://scientifictemper.com/

Introduction
A database management system (DBMS) is designed to store
and retrieve data to the customers as and when necessary, in
the required format. The basic mechanism of interaction with
customers is in the form of queries. The users of a DBMS always
expect to retrieve answers as early as possible (Kamatkar et
al., 2018). However, many factors become a challenge with

respect to the query response time of any DBMS. One of the
prominent technologies in the field of computer science is the
semantic web (Gupta et al., 2022). Normally in semantic web,
data will be represented in the form of resource description
framework (RDF). And the popularly used language to query
the semantic web data is the SPARQL. For better performance
of the semantic web data management, we need to use
queries which are well designed.

Every query written will be having many different query
plans and the process of assessing which plan is the best is
not an easy task. Manual assessment of such queries takes
much amount of time and so there is a necessity for an
automated mechanism to complete this kind of a task. This
research work aims to introduce an architecture to identify
well-designed, accepted, and poorly-designed SPARQL
queries using machine learning algorithms.

The rise of various site pages’ step by step prompts the
improvement of the semantic web innovation (Gomathi et
al., 2014). The World Wide Web Consortium (W3C) standard
for putting away semantic web information is the resource
description framework (RDF). There was research which
focusses on the issue of question streamlining of semantic
web information. A proficient calculation called adaptive
cuckoo search (ACS) for questioning and producing
ideal question plan for huge RDF charts was proposed in
literature. Tests were led on various datasets with differing
number of predicates. The exploratory outcomes have
uncovered that the proposed approach has given huge

1778	 Gomathi Ramalingam et al.	 The Scientific Temper. Vol. 15, No. 1

outcomes as far as question execution time. The degree to
which the calculation is productive is tried and the outcomes
are recorded. These days graph oriented database engines
(GDBMS) are equipped for overseeing enormous volumes
of diagram information (Casals et al., 2023). These engines,
are similar to some other database engine, have an inward
question enhancer that proposes a query execution plan
(QEP) for each question they process. In research the issue
of foreseeing SPARQL question execution was addressed
(Hasan et al., 2014). AI strategies were used to gain SPARQL
question execution from recently executed inquiries.
Conventional methodologies for assessing SPARQL inquiry
cost depend on insights about the basic information.

As the intricacy of the semantic web increments,
productive ways of questioning the semantic web
information are turning out to be progressively significant
(Hasan, 2014). In addition, buyers of the semantic web
information might require clarifications for troubleshooting
or understanding the thinking behind delivering the
information. Ontologies are the fundamental parts of the
semantic web (Lewis et al., 2022). Since its starting point
and development over the long haul, ontologies have
been utilized in different spaces of information. One of
the difficulties of dealing with a RDF data set is foreseeing
execution of SPARQL questions before they are executed
(Zhang et al., 2018). With a fast development in the accessible
asset portrayal system (RDF) information from unique
spaces, the SPARQL question handling with chart structures
has become progressively significant (Lin et al., 2022). In
this pursuit, a two-stage SPARQL question streamlining
technique to deal with the SPARQL question was proposed
in literature.

This paper is structured as follows: In section 2, the
methodology of predicting the quality of the SPARQL query
is described. In section 3, the datasets used and the output
of applying machine learning algorithms for prediction
is discussed. In section 4, the results and discussion are
presented. In section 5, the conclusion summarizes the key
results of the research.

Materials and Methods
The components of the proposed architecture is explained in
this section to classify the SPARQL: queries. The architecture
consists of four main components:
•	 Manual SPARQL query labeling
•	 Query pre-processing
•	 Training the model
•	 Prediction & evaluation

The steps involved in each of these steps are illustrated
in Figure 1.

Manual SPARQL Query Labeling
The technique used in this research to find the labeled
data is the Delphi approach (Williams et al., 1994) which

manually classifies the SPARQL queries into two categories:
Well and poor. In continuation, the poor category queries
are further classified as two varieties: Poor and accepted.
The Delphi approach is used for organizing group
communication, apprehending judgments from areas with
imperfect research indication, and determining differences
of views. The group for this research comprises of ten
university Professors, database developers, and database
administrators. In the first iteration, the SPARQL queries from
the datasets were given to the experts group, and are asked
to classify them into the given categories. The data from the
first iteration was collected, analysed, and further reduced
by defining the SPARQL queries that has a common class
from the maximum of the 30 experts. Finally, the label for
these determined SPARQL queries is determined and they
were excluded from the next iteration.

In the second iteration, the remaining SPARQL queries
were given to the same experts group with necessary data
about the responses from the first iteration. The experts
are asked to reclassify each query based on the given data.

Figure 1: Query classification architecture

1779	 Machine learning classifiers to predict the quality of semantic web queries

The data from the second iteration is collected, and the
common class for each SPARQL query is decided as the final
label. In the third iteration questionnaire responses from
the previous questionnaire were provided for the SPARQL
queries. The expert’s group will again rate the final label from
the first and second iterations on a 5-point Likert scale. The
SPARQL queries with an average label of less than 3 were
omitted from the dataset. An example of a poorly written
SPARQL query is given below:
SELECT * WHERE
 {
 ?deal a :Deal ;
 :employee ?employee ;
 :customer ?customer .
	 ?employee :name ?employeeName ;
 :involvedAsEmployee ?matter .
	 ?customer :name ?customerName ;
 :involvedAsCustomer ?matter .
}
The query is graphically represented as below in Figure 2:

When we try to analyse this query, iit is found that the
: name relation is practical, which means the joins with the
patterns ?employee :name ?employeeName and ?customer
:name ?custName should not create misfortune. The
important planning query here is which join on the ?deal
or the ?matter should be evaluated first? The response

depends on the data: if the deal join is selective, it should
be done first, or if less people are involved in the same
stuff, the matter join should be done first. This is the point
where the decision-making of the optimizer comes into
picture. In the ideal world, it’ll choose based on data and
will decide correctly. But in some situations, like outdated
data or multifaceted inter-dependencies in the data, there
is a possibility for the optimizer to make a wrong choice.
So, it’s likely that there are many deals and the optimizer
decides to first identify people which were involved in the
same matter, but it turns out that some matters in the past
involved many people. So that join is not selective and the
optimizer ended with a wrong choice.

Pre-Processing Phase
Data pre-processing is an important step in any data
processing mechanism, since it can improve classification
results in a few cases (Kumari et al., 2017). Data pre-processing
includes steps like input data cleaning, in which the SPARQL
queries with syntax errors are eliminated. To identify such
errors, the query parser is used. The next step is tokenization,
in which involves the SPARQL query statements are broken
down into words, symbols, or elements called tokens. This
process is vital since it extract the relevant features from
the SPARQL queries.

Feature Extraction
Feature extraction is a step used to extract the informative
set of features in order to increase the classifier accuracy.
Every SPARQL query is split into tokens in the previous
step and identifying which terms in the SPARQL query
are most distinguishing for that query can be considered
an enlightening feature. Machines cannot process data in
its raw form. In order to make the text comprehensible to
machines, it should be converted into a format that can be
easily interpreted by computers. The popular mechanisms to
do this conversion is the term frequency-inverse document
frequency (TF-IDF) and bag-of-words (BoW) which converts
text into numerical vectors. For extracting query features,
both TF-IDF and BoW can be used. The TF-IDF consists of
two parts in which TF guesses how important a term is in
a SPARQL query. The more existence of a term in a query
means the more significant it is.

The term frequency of each term tk of any query q is
computed as below equation 1:

 			 (1)
where 𝑚𝑎𝑥𝑓𝑞 indicates the maximum term frequency

of all terms that is present in the query.
The second IDF is calculated by using the total number of

queries in the corpus and divided by the number of queries
where the term appears as in equation 2.

 				 (2)

Where |𝑄| is the total number of queries, and |𝑄𝑡 | is the
number of queries where the term t appears. Figure 2: Graphical representations of the SPARQL query

1780	 Gomathi Ramalingam et al.	 The Scientific Temper. Vol. 15, No. 1

The result of this step is a vector of integers presenting the
TF-IDF of each query. Reasonably, the BoW approach also
well-known as count vectorizer considers each word count
as a feature. Bags-of Words represents text that illustrate the
occurrence of words within a text. It uses two information:
first, a vocabulary of known words, and second, a measure
of the count of their presence.

Classification
The job of predicting a class label for input is fundamentally a
classification problem. In this method, the SPARQL queries are
divided into three categories: well-designed queries, accepted
queries, and poorly designed queries. The classification process
is done in two phases: The training phase and the prediction
phase. In the training phase, the data is decomposed into a
set of features based on feature generation models, which
includes the vector space model for textual data. As stated
earlier, the classification approach is regarded as a modeling
problem where a class label is predicated based on a given
example of input data. Class labels are usually string values
like “well-designed” “poorly-designed,” and “accepted”. These
ordinal data labels should be encoded to a sole ordinal integer
value, like “well-designed” = 2, “accepted “= 1, and “poorly-
designed” = 0 before given to the classifier. In this situation, a
binary classifier is needed to perform this task. The classifier
is processed to predict a discrete probability distribution of a
query belonging to a specific class. In this research, the most
popular machine learning classification algorithms which
includes logistic regression, k nearest neighbours, decision
trees, support vector machine, and naive Bayes (Tripathy
et al., 2016) are separately applied to the proposed query
classification architecture.

Evaluation
To evaluate the performance of the system, the standard
evaluation metrics like precision, recall, and F-score are used.
The formula for these metrics is given below in equation
3,4 and 5:

 				 (3)

 				 (4)

 		 (5)
Where P is the positive predicted value
N is the negative predicted value
TP indicates the true positive predicted value
TN indicates the true negative predicted value
FP indicates the false positive predicted value
and FN indicates the false negative predicted value.

Observation/Results
In this section, experiments are carried out to evaluate the
classification performance of several machine learning
algorithms in classifying the SPARQL queries as well-
designed or poorly-designed and to predict the most
appropriate feature for classification. The analysis of this
investigation will deliver understanding into the efficiency of
different machine learning algorithms and feature extraction
techniques used to perform this task.

Dataset
Our evaluation is based on two different datasets, namely,
Leigh University benchmark (LUBM) dataset, and the Central
Intelligence Agency (CIA) World Factbook dataset. The
LUBM benchmark is intended to assess the performance of
those repositories with respect to extensional queries over
a huge data set that obligates to a single truthful ontology.
It comprises of university field ontology, a set of test queries,
and several evaluation metrics. The dataset used for this
research is LUBM5 which contains about 645,649 triples.
The CIA World Factbook provides us with data about 250
countries defined using RDF triples. Data about government,
people, transportation, and many more are present in this
dataset. It consists of more than 100,000 RDF statements.

The following Table 1 shows the statistics about the
datasets.

The following Table 2 describes a summary of dataset
information after binary manual labeling.

The following Table 3 describes a summary of dataset
information after binary manual labeling.

Experiment Setting
To assess the performance of the machine learning
classifiers, k-fold cross-validation method is applied (Zhang

Table 1: Summary of dataset statistics

Name of the dataset Total number of queries
taken for experimentation

Number of parsable
queries

Number of distinct query
strings Correct query

LUBM 220 215 145 123

CIA World Factbook 240 232 156 148

Table 2: Summary of dataset statistics after binary manual labeling

Dataset Correct query Well designed Poorly
designed

LUBM 123 85 38

CIA World Factbook 148 121 27

Table 3: Summary of dataset statistics after ternary manual labeling

Dataset Correct
query

Well
designed Accepted Poorly

designed

LUBM 123 42 54 27

CIA World Factbook 148 65 52 31

1781	 Machine learning classifiers to predict the quality of semantic web queries

et al., 2018). In the first step, the dataset is divided based on
k=5 subsets. Each subset is again divided into two subsets:
one for training and the other for testing. About 80% of
datasets are used for training and 20% is used for testing.
The purpose of training dataset is to make the classification
model understand the problem and the purpose of testing
set is to evaluate the fitness of the classification model
used. Experiments are conducted in two sets: One set for
two class labels (Well designed and poorly designed) and
another for three class labels (Well designed, Accepted, and
Poorly designed). Each set of experiments was executed on
the two datasets. The experimental results for four machine
learning classifiers were compared, and the efficiency of
each classifier was assessed based on the metrics precision,
recall, and F1-score. The experiments use two features: TFIDF
features and BoW features.

Table 4: Results of LUBM dataset

TF-IDF Count vectorizer

Poorly
designed

Well
designed

Poorly
designed

Well
designed

DTC Precision 0.72 0.90 0.72 0.90

Recall 0.72 0.90 0.75 0.90

F1-Score 0.72 0.90 0.76 0.90

KNN Precision 0.66 0.82 0.73 0.88

Recall 0.43 0.91 0.65 0.91

F1-Score 0.52 0.85 0.71 0.90

SVM Precision 0.95 0.85 0.78 0.90

Recall 0.52 0.98 0.71 0.92

F1-Score 0.71 0.90 0.74 0.89

NB Precision 0.37 0.86 0.34 0.86

Recall 0.65 0.57 0.74 0.56

F1-Score 0.45 0.71 0.50 0.68

Table 5: Results of CIA World Factbook dataset

TF-IDF Count vectorizer

Poorly
designed

Well
designed

Poorly
designed

Well
designed

DTC Precision 0.74 0.88 0.71 0.89

Recall 0.74 0.88 0.74 0.89

F1-Score 0.73 0.87 0.71 0.88

KNN Precision 0.62 0.77 0.70 0.82

Recall 0.40 0.81 0.62 0.89

F1-Score 0.51 0.80 0.69 0.89

SVM Precision 0.94 0.81 0.73 0.89

Recall 0.51 0.92 0.70 0.88

F1-Score 0.68 0.91 0.73 0.82

NB Precision 0.33 0.83 0.32 0.84

Recall 0.56 0.54 0.77 0.53

F1-Score 0.42 0.69 0.49 0.62

Discussions
The results of classification accuracy using the evolution
metrics recall, precision, and F1-measure is presented in this
section. For the classification of the datasets, the popular
machine learning classifiers including decision trees (DTC),
k nearest neighbours (KNN), support vector machine (SVM),
and naive Bayes (NB) were trained. The classification results
using two class labels (Poorly designed, well designed) for
the LUBM dataset are shown in Table 4 and the results for
the CIA World Factbook dataset are shown in Table 5.

When we compare the performance of the classifiers
with TFIDF and BoW vectorizer features with respect to
recall, DTC plays well in classifying queries into poorly
designed and well-designed categories. SVM is better than
the classifiers. However, when we consider the accuracy

Table 6: Results of LUBM dataset

TF-IDF Count vectorizer

Poorly designed Accepted Well designed Poorly designed Accepted Well designed

DTC Precision 0.70 0.87 0.88 0.69 0.87 0.88

Recall 0.70 0.82 0.88 0.71 0.87 0.88

F1-Score 0.70 0.86 0.87 0.72 0.86 0.87

KNN Precision 0.62 0.76 0.81 0.71 0.83 0.84

Recall 0.42 0.82 0.89 0.62 0.91 0.92

F1-Score 0.51 0.78 0.83 0.70 0.89 0.88

SVM Precision 0.91 0.77 0.82 0.74 0.89 0.88

Recall 0.50 0.90 0.94 0.68 0.86 0.87

F1-Score 0.68 0.81 0.85 0.72 0.83 0.84

NB Precision 0.32 0.78 0.81 0.32 0.80 0.81

Recall 0.63 0.52 0.54 0.72 0.51 0.52

F1-Score 0.41 0.68 0.72 0.49 0.66 0.65

1782	 Gomathi Ramalingam et al.	 The Scientific Temper. Vol. 15, No. 1

metrics this is not the actual case. When considering the
weighting accuracy in terms of F-score, both DTC and SVM
achieved the best result in each dataset.

The classification using three class labels for LUBM and
CIA World Factbook dataset is presented in Tables 6 and
Table 7 respectively.

The experimental comparisons and values indicate that
the decision tree classifier with count vectorizer features
performs well compared to the other classifiers together in
two-class as well as three-class classifiers for both datasets.
The obtained hopeful results specify that the proposed
architecture is efficiently able to perceive poorly designed
SPARQL query. This research helps the other researchers,
database developers, and SQL programmers in the same
field of research to use the architecture as a tool to detect
the poorly designed SPARQL queries. Moreover, the
proposed architecture serves as an important component
of optimizing the performance of SPARQL query.

Conclusion
Information retrieval from the semantic web data highly
relies on the SPARQL queries written and its quality.
However, poorly designed SPARQL queries leads to
performance problems. In this research, we proposed an
architecture for evaluating quality of a SPARQL query using
machine learning algorithms. The effectiveness of applying
various machine learning classifiers in the classification
of SPARQL queries into three categories: Well-designed,
accepted, and poorly designed was experimented. The
machine learning classifiers used includes k- nearest
neighbours, decision trees, support vector machine, and
naive Bayes. Features, such as term frequency, inverse
document frequency, and bag-of-words count vector, are
used in the training and testing of the classifiers. The results
of the experiments, conducted on two different datasets,

shows that the decision trees and support vector machine
classifiers produces promising results in the classification
of SPARQL queries based on metrics. Future research can
be performed focussing on exploring different features of
SPARQL queries to progress classification accuracy. Also,
the proposed architecture may be tested across different
RDF datasets.

Acknowledgement
The authors would like to thank the management for
providing the required resources to complete this research
work.

References
Casals, D., Buil-Aranda, C., & Valle, C.(2023). SPARQL query

execution time prediction using Deep Learning.
Gomathi, R., & Sharmila, D. (2014). A novel adaptive cuckoo search

for optimal query plan generation. The Scientific World
Journal,2014.

Gupta, R., & Malik, S. K. (2022, December). Visualizing Semantic Web
Data using Various Tools Focusing RDF, OWL and SPARQL. In
2022 11th International Conference on System Modeling &
Advancement in Research Trends (SMART),1456-1460. IEEE.

Hasan, R. (2014). Predicting SPARQL query performance and
explaining linked data. In The Semantic Web: Trends and
Challenges: 11th International Conference, ESWC 2014,
Anissaras, Crete, Greece, May 25-29, 2014. Proceedings
11,795-805. Springer International Publishing.

Hasan, R., & Gandon, F. (2014, August). A machine learning approach
to sparql query performance prediction. In 2014 IEEE/WIC/
ACM International Joint Conferences on Web Intelligence
(WI) and Intelligent Agent Technologies (IAT), 1, 266-273. IEEE.

Kamatkar, S. J., Kamble, A., Viloria, A., Hernández-Fernandez, L., &
Cali, E. G. (2018). Database performance tuning and query
optimization. In Data Mining and Big Data: Third International
Conference, DMBD 2018, Shanghai, China, June 17–22, 2018,
Proceedings 3,3-11. Springer International Publishing.

Kumari, R., & Srivastava, S. K. (2017). Machine learning: A review

Table 7: Results of CIA World Factbook dataset

TF-IDF Count vectorizer

Poorly designed Accepted Well designed Poorly designed Accepted Well designed

DTC Precision 0.72 0.88 0.87 0.72 0.87 0.88

Recall 0.72 0.88 0.87 0.71 0.87 0.88

F1-Score 0.70 0.87 0.86 0.69 0.87 0.88

KNN Precision 0.58 0.72 0.74 0.69 0.80 0.81

Recall 0.38 0.74 0.76 0.60 0.80 0.82

F1-Score 0.49 0.74 0.77 0.64 0.82 0.82

SVM Precision 0.92 0.73 0.74 0.71 0.82 0.82

Recall 0.49 0.86 0.88 0.68 0.81 0.83

F1-Score 0.64 0.84 0.88 0.69 0.82 0.82

NB Precision 0.31 0.79 0.80 0.31 0.81 0.83

Recall 0.52 0.48 0.51 0.74 0.50 0.51

F1-Score 0.40 0.62 0.63 0.47 0.54 0.57

1783	 Machine learning classifiers to predict the quality of semantic web queries

on binary classification. International Journal of Computer
Applications, 160(7).

Lewis, C. N., Cabrera, V. L., & De Castillo, I. (2022, September).
Semantic Web and Ontologies to Preserve Gastronomic
Knowledge. In 2022 V Congreso Internacional en Inteligencia
Ambiental, Ingeniería de Software y Salud Electrónica y Móvil
(AmITIC) (pp. 1-7). IEEE.

Lin, X., & Jiang, D. (2022). A Two-Phase Method for Optimization
of the SPARQL Query. Journal of Sensors, 2022.

Tripathy, A., Agrawal, A., & Rath, S. K. (2016). Classification of
sentiment reviews using n-gram machine learning approach.
Expert Systems with Applications, 57, 117-126.

Williams, P. L., & Webb, C. (1994). The Delphi technique: a
methodological discussion. Journal of advanced nursing,
19(1), 180-186.

Zhang, W. E., Sheng, Q. Z., Qin, Y., Taylor, K., & Yao, L. (2018).
Learning-based SPARQL query performance modeling and
prediction. world wide web, 21, 1015-1035.

