
Abstract
In this research, a classification framework to automatically identify well and poorly designed SPARQL queries is proposed. Evaluating 
SPARQL queries becomes a difficult challenging issue because of the query design and the volume of data to be handled. The proposed 
context applies various machine learning algorithms including decision trees, k nearest neighbours, support vector machine, and naive 
Bayes. In addition, two different feature extraction techniques called TFIDF measure and count vectorizer are measured to identify the 
key features. The experimental results show that the four machine learning classifiers applied are able to classify the SPARQL queries 
into three categories like well, accepted, and poorly designed queries. It also provides hopeful results with respect to recall, precision, 
and F1-score. In datasets used for experimentation, it was found that the decision trees classifier outperforms well compared to other 
classifiers by achieving 92% in terms of F1-measure. Also, the count vectorizer performs well in measuring the TFIDF property to predict 
the poorly designed queries.
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Introduction
A database management system (DBMS) is designed to store 
and retrieve data to the customers as and when necessary, in 
the required format. The basic mechanism of interaction with 
customers is in the form of queries. The users of a DBMS always 
expect to retrieve answers as early as possible (Kamatkar et 
al., 2018). However, many factors become a challenge with 

respect to the query response time of any DBMS. One of the 
prominent technologies in the field of computer science is the 
semantic web (Gupta et al., 2022). Normally in semantic web, 
data will be represented in the form of resource description 
framework (RDF). And the popularly used language to query 
the semantic web data is the SPARQL. For better performance 
of the semantic web data management, we need to use 
queries which are well designed. 

Every query written will be having many different query 
plans and the process of assessing which plan is the best is 
not an easy task. Manual assessment of such queries takes 
much amount of time and so there is a necessity for an 
automated mechanism to complete this kind of a task. This 
research work aims to introduce an architecture to identify 
well-designed, accepted, and poorly-designed SPARQL 
queries using machine learning algorithms. 

The rise of various site pages’ step by step prompts the 
improvement of the semantic web innovation (Gomathi et 
al., 2014). The World Wide Web Consortium (W3C) standard 
for putting away semantic web information is the resource 
description framework (RDF). There was research which 
focusses on the issue of question streamlining of semantic 
web information. A proficient calculation called adaptive 
cuckoo search (ACS) for questioning and producing 
ideal question plan for huge RDF charts was proposed in 
literature. Tests were led on various datasets with differing 
number of predicates. The exploratory outcomes have 
uncovered that the proposed approach has given huge 
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outcomes as far as question execution time. The degree to 
which the calculation is productive is tried and the outcomes 
are recorded. These days graph oriented database engines 
(GDBMS) are equipped for overseeing enormous volumes 
of diagram information (Casals et al., 2023). These engines, 
are similar to some other database engine, have an inward 
question enhancer that proposes a query execution plan 
(QEP) for each question they process. In research the issue 
of foreseeing SPARQL question execution was addressed 
(Hasan et al., 2014). AI strategies were used to gain SPARQL 
question execution from recently executed inquiries. 
Conventional methodologies for assessing SPARQL inquiry 
cost depend on insights about the basic information.

As the intricacy of the semantic web increments, 
productive ways of questioning the semantic web 
information are turning out to be progressively significant 
(Hasan, 2014). In addition, buyers of the semantic web 
information might require clarifications for troubleshooting 
or understanding the thinking behind delivering the 
information. Ontologies are the fundamental parts of the 
semantic web (Lewis et al., 2022). Since its starting point 
and development over the long haul, ontologies have 
been utilized in different spaces of information. One of 
the difficulties of dealing with a RDF data set is foreseeing 
execution of SPARQL questions before they are executed 
(Zhang et al., 2018). With a fast development in the accessible 
asset portrayal system (RDF) information from unique 
spaces, the SPARQL question handling with chart structures 
has become progressively significant (Lin et al., 2022). In 
this pursuit, a two-stage SPARQL question streamlining 
technique to deal with the SPARQL question was proposed 
in literature.

This paper is structured as follows: In section 2, the 
methodology of predicting the quality of the SPARQL query 
is described. In section 3, the datasets used and the output 
of applying machine learning algorithms for prediction 
is discussed. In section 4, the results and discussion are 
presented. In section 5, the conclusion summarizes the key 
results of the research. 

Materials and Methods
The components of the proposed architecture is explained in 
this section to classify the SPARQL: queries. The architecture 
consists of four main components: 
•	 Manual SPARQL query labeling
•	 Query pre-processing
•	 Training the model
•	 Prediction & evaluation

The steps involved in each of these steps are illustrated 
in Figure 1. 

Manual SPARQL Query Labeling
The technique used in this research to find the labeled 
data is the Delphi approach (Williams et al., 1994) which 

manually classifies the SPARQL queries into two categories: 
Well and poor. In continuation, the poor category queries 
are further classified as two varieties: Poor and accepted. 
The Delphi approach is used for organizing group 
communication, apprehending judgments from areas with 
imperfect research indication, and determining differences 
of views. The group for this research comprises of ten 
university Professors, database developers, and database 
administrators. In the first iteration, the SPARQL queries from 
the datasets were given to the experts group, and are asked 
to classify them into the given categories. The data from the 
first iteration was collected, analysed, and further reduced 
by defining the SPARQL queries that has a common class 
from the maximum of the 30 experts. Finally, the label for 
these determined SPARQL queries is determined and they 
were excluded from the next iteration.

In the second iteration, the remaining SPARQL queries 
were given to the same experts group with necessary data 
about the responses from the first iteration. The experts 
are asked to reclassify each query based on the given data. 

Figure 1: Query classification architecture
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The data from the second iteration is collected, and the 
common class for each SPARQL query is decided as the final 
label. In the third iteration questionnaire responses from 
the previous questionnaire were provided for the SPARQL 
queries. The expert’s group will again rate the final label from 
the first and second iterations on a 5-point Likert scale. The 
SPARQL queries with an average label of less than 3 were 
omitted from the dataset. An example of a poorly written 
SPARQL query is given below:
SELECT * WHERE
 {
 ?deal a :Deal ;
 :employee ?employee ;
 :customer ?customer .
	 ?employee :name ?employeeName ;
 :involvedAsEmployee ?matter .
	 ?customer :name ?customerName ;
 :involvedAsCustomer ?matter .
}
The query is graphically represented as below in Figure 2:

When we try to analyse this query, iit is found that the 
: name relation is practical, which means the joins with the 
patterns ?employee :name ?employeeName and ?customer 
:name ?custName should not create misfortune. The 
important planning query here is which join on the ?deal 
or the ?matter should be evaluated first? The response 

depends on the data: if the deal join is selective, it should 
be done first, or if less people are involved in the same 
stuff, the matter join should be done first. This is the point 
where the decision-making of the optimizer comes into 
picture. In the ideal world, it’ll choose based on data and 
will decide correctly. But in some situations, like outdated 
data or multifaceted inter-dependencies in the data, there 
is a possibility for the optimizer to make a wrong choice. 
So, it’s likely that there are many deals and the optimizer 
decides to first identify people which were involved in the 
same matter, but it turns out that some matters in the past 
involved many people. So that join is not selective and the 
optimizer ended with a wrong choice.

Pre-Processing Phase 
Data pre-processing is an important step in any data 
processing mechanism, since it can improve classification 
results in a few cases (Kumari et al., 2017). Data pre-processing 
includes steps like input data cleaning, in which the SPARQL 
queries with syntax errors are eliminated. To identify such 
errors, the query parser is used. The next step is tokenization, 
in which involves the SPARQL query statements are broken 
down into words, symbols, or elements called tokens. This 
process is vital since it extract the relevant features from 
the SPARQL queries. 

Feature Extraction 
Feature extraction is a step used to extract the informative 
set of features in order to increase the classifier accuracy. 
Every SPARQL query is split into tokens in the previous 
step and identifying which terms in the SPARQL query 
are most distinguishing for that query can be considered 
an enlightening feature. Machines cannot process data in 
its raw form. In order to make the text comprehensible to 
machines, it should be converted into a format that can be 
easily interpreted by computers. The popular mechanisms to 
do this conversion is the term frequency-inverse document 
frequency (TF-IDF) and bag-of-words (BoW) which converts 
text into numerical vectors. For extracting query features, 
both TF-IDF and BoW can be used. The TF-IDF consists of 
two parts in which TF guesses how important a term is in 
a SPARQL query. The more existence of a term in a query 
means the more significant it is.

The term frequency of each term tk of any query q is 
computed as below equation 1:

 			   (1)
where 𝑚𝑎𝑥𝑓𝑞 indicates the maximum term frequency 

of all terms that is present in the query. 
The second IDF is calculated by using the total number of 

queries in the corpus and divided by the number of queries 
where the term appears as in equation 2.

 				    (2)

Where |𝑄| is the total number of queries, and |𝑄𝑡 | is the 
number of queries where the term t appears. Figure 2: Graphical representations of the SPARQL query
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The result of this step is a vector of integers presenting the 
TF-IDF of each query. Reasonably, the BoW approach also 
well-known as count vectorizer considers each word count 
as a feature. Bags-of Words represents text that illustrate the 
occurrence of words within a text. It uses two information: 
first, a vocabulary of known words, and second, a measure 
of the count of their presence. 

Classification 
The job of predicting a class label for input is fundamentally a 
classification problem. In this method, the SPARQL queries are 
divided into three categories: well-designed queries, accepted 
queries, and poorly designed queries. The classification process 
is done in two phases: The training phase and the prediction 
phase. In the training phase, the data is decomposed into a 
set of features based on feature generation models, which 
includes the vector space model for textual data. As stated 
earlier, the classification approach is regarded as a modeling  
problem where a class label is predicated based on a given 
example of input data. Class labels are usually string values 
like “well-designed” “poorly-designed,” and “accepted”. These 
ordinal data labels should be encoded to a sole ordinal integer 
value, like “well-designed” = 2, “accepted “= 1, and “poorly-
designed” = 0 before given to the classifier. In this situation, a 
binary classifier is needed to perform this task. The classifier 
is processed to predict a discrete probability distribution of a 
query belonging to a specific class. In this research, the most 
popular machine learning classification algorithms which 
includes logistic regression, k nearest neighbours, decision 
trees, support vector machine, and naive Bayes (Tripathy 
et al., 2016) are separately applied to the proposed query 
classification architecture.

Evaluation
To evaluate the performance of the system, the standard 
evaluation metrics like precision, recall, and F-score are used. 
The formula for these metrics is given below in equation 
3,4 and 5:

 				    (3)

 				    (4)

 		  (5)
Where P is the positive predicted value
N is the negative predicted value
TP indicates the true positive predicted value
TN indicates the true negative predicted value
FP indicates the false positive predicted value
and FN indicates the false negative predicted value.

Observation/Results
In this section, experiments are carried out to evaluate the 
classification performance of several machine learning 
algorithms in classifying the SPARQL queries as well-
designed or poorly-designed and to predict the most 
appropriate feature for classification. The analysis of this 
investigation will deliver understanding into the efficiency of 
different machine learning algorithms and feature extraction 
techniques used to perform this task.

Dataset
Our evaluation is based on two different datasets, namely, 
Leigh University benchmark (LUBM) dataset, and the Central 
Intelligence Agency (CIA) World Factbook dataset. The 
LUBM benchmark is intended to assess the performance of 
those repositories with respect to extensional queries over 
a huge data set that obligates to a single truthful ontology. 
It comprises of university field ontology, a set of test queries, 
and several evaluation metrics. The dataset used for this 
research is LUBM5 which contains about 645,649 triples. 
The CIA World Factbook provides us with data about 250 
countries defined using RDF triples. Data about government, 
people, transportation, and many more are present in this 
dataset. It consists of more than 100,000 RDF statements.

The following Table 1 shows the statistics about the 
datasets.

The following Table 2 describes a summary of dataset 
information after binary manual labeling.

The following Table 3 describes a summary of dataset 
information after binary manual labeling.

Experiment Setting
To assess the performance of the machine learning 
classifiers, k-fold cross-validation method is applied (Zhang 

Table 1: Summary of dataset statistics

Name of the dataset Total number of queries 
taken for experimentation

Number of parsable 
queries

Number of distinct query 
strings Correct query

LUBM 220 215 145 123

CIA World Factbook 240 232 156 148

Table 2: Summary of dataset statistics after binary manual labeling

Dataset Correct query Well designed Poorly 
designed

LUBM 123 85 38

CIA World Factbook 148 121 27

Table 3: Summary of dataset statistics after ternary manual labeling

Dataset Correct 
query

Well 
designed Accepted Poorly 

designed

LUBM 123 42 54 27

CIA World Factbook 148 65 52 31
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et al., 2018). In the first step, the dataset is divided based on 
k=5 subsets. Each subset is again divided into two subsets: 
one for training and the other for testing. About 80% of 
datasets are used for training and 20% is used for testing. 
The purpose of training dataset is to make the classification 
model understand the problem and the purpose of testing 
set is to evaluate the fitness of the classification model 
used. Experiments are conducted in two sets: One set for 
two class labels (Well designed and poorly designed) and 
another for three class labels (Well designed, Accepted, and 
Poorly designed). Each set of experiments was executed on 
the two datasets. The experimental results for four machine 
learning classifiers were compared, and the efficiency of 
each classifier was assessed based on the metrics precision, 
recall, and F1-score. The experiments use two features: TFIDF 
features and BoW features. 

Table 4: Results of LUBM dataset

TF-IDF Count vectorizer

Poorly 
designed

Well 
designed

Poorly 
designed

Well 
designed

DTC Precision 0.72 0.90 0.72 0.90

Recall 0.72 0.90 0.75 0.90

F1-Score 0.72 0.90 0.76 0.90

KNN Precision 0.66 0.82 0.73 0.88

Recall 0.43 0.91 0.65 0.91

F1-Score 0.52 0.85 0.71 0.90

SVM Precision 0.95 0.85 0.78 0.90

Recall 0.52 0.98 0.71 0.92

F1-Score 0.71 0.90 0.74 0.89

NB Precision 0.37 0.86 0.34 0.86

Recall 0.65 0.57 0.74 0.56

F1-Score 0.45 0.71 0.50 0.68

Table 5: Results of CIA World Factbook dataset

TF-IDF Count vectorizer

Poorly 
designed

Well 
designed

Poorly 
designed

Well 
designed

DTC Precision 0.74 0.88 0.71 0.89

Recall 0.74 0.88 0.74 0.89

F1-Score 0.73 0.87 0.71 0.88

KNN Precision 0.62 0.77 0.70 0.82

Recall 0.40 0.81 0.62 0.89

F1-Score 0.51 0.80 0.69 0.89

SVM Precision 0.94 0.81 0.73 0.89

Recall 0.51 0.92 0.70 0.88

F1-Score 0.68 0.91 0.73 0.82

NB Precision 0.33 0.83 0.32 0.84

Recall 0.56 0.54 0.77 0.53

F1-Score 0.42 0.69 0.49 0.62

Discussions
The results of classification accuracy using the evolution 
metrics recall, precision, and F1-measure is presented in this 
section. For the classification of the datasets, the popular 
machine learning classifiers including decision trees (DTC), 
k nearest neighbours (KNN), support vector machine (SVM), 
and naive Bayes (NB) were trained. The classification results 
using two class labels (Poorly designed, well designed) for 
the LUBM dataset are shown in Table 4 and the results for 
the CIA World Factbook dataset are shown in Table 5.

When we compare the performance of the classifiers 
with TFIDF and BoW vectorizer features with respect to 
recall, DTC plays well in classifying queries into poorly 
designed and well-designed categories. SVM is better than 
the classifiers. However, when we consider the accuracy 

Table 6: Results of LUBM dataset

TF-IDF Count vectorizer

Poorly designed Accepted Well designed Poorly designed Accepted Well designed

DTC Precision 0.70 0.87 0.88 0.69 0.87 0.88

Recall 0.70 0.82 0.88 0.71 0.87 0.88

F1-Score 0.70 0.86 0.87 0.72 0.86 0.87

KNN Precision 0.62 0.76 0.81 0.71 0.83 0.84

Recall 0.42 0.82 0.89 0.62 0.91 0.92

F1-Score 0.51 0.78 0.83 0.70 0.89 0.88

SVM Precision 0.91 0.77 0.82 0.74 0.89 0.88

Recall 0.50 0.90 0.94 0.68 0.86 0.87

F1-Score 0.68 0.81 0.85 0.72 0.83 0.84

NB Precision 0.32 0.78 0.81 0.32 0.80 0.81

Recall 0.63 0.52 0.54 0.72 0.51 0.52

F1-Score 0.41 0.68 0.72 0.49 0.66 0.65
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metrics this is not the actual case. When considering the 
weighting accuracy in terms of F-score, both DTC and SVM 
achieved the best result in each dataset.

The classification using three class labels for LUBM and 
CIA World Factbook dataset is presented in Tables 6 and 
Table 7 respectively.

The experimental comparisons and values indicate that 
the decision tree classifier with count vectorizer features 
performs well compared to the other classifiers together in 
two-class as well as three-class classifiers for both datasets. 
The obtained hopeful results specify that the proposed 
architecture is efficiently able to perceive poorly designed 
SPARQL query. This research helps the other researchers, 
database developers, and SQL programmers in the same 
field of research to use the architecture as a tool to detect 
the poorly designed SPARQL queries. Moreover, the 
proposed architecture serves as an important component 
of optimizing the performance of SPARQL query.

Conclusion 
Information retrieval from the semantic web data highly 
relies on the SPARQL queries written and its quality. 
However, poorly designed SPARQL queries leads to 
performance problems. In this research, we proposed an 
architecture for evaluating quality of a SPARQL query using 
machine learning algorithms. The effectiveness of applying 
various machine learning classifiers in the classification 
of SPARQL queries into three categories: Well-designed, 
accepted, and poorly designed was experimented. The 
machine learning classifiers used includes k- nearest 
neighbours, decision trees, support vector machine, and 
naive Bayes. Features, such as term frequency, inverse 
document frequency, and bag-of-words count vector, are 
used in the training and testing of the classifiers. The results 
of the experiments, conducted on two different datasets, 

shows that the decision trees and support vector machine 
classifiers produces promising results in the classification 
of SPARQL queries based on metrics. Future research can 
be performed focussing on exploring different features of 
SPARQL queries to progress classification accuracy. Also, 
the proposed architecture may be tested across different 
RDF datasets. 
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