
Abstract
This study introduces a novel approach to drug discovery in regenerative medicine through the utilization of a graph neural network 
(GNN). The research methodology integrates the development and training of the GNN with a subsequent evaluation of its performance 
metrics. The first phase involves the generation of synthetic data simulating a biological network, employing networkX and NumPy 
libraries to construct a random graph with Erdos-Renyi topology. The data, representing cellular responses to biomaterials, is then 
converted into PyTorch tensors for compatibility with the GNN architecture. The GNN model, characterized by two fully connected layers 
with ReLU and log-softmax activations, captures intricate relationships within the graph-structured data. The second phase employs 
a stochastic gradient descent algorithm, specifically the Adam optimizer, to train the GNN over 100 epochs using the cross-entropy 
loss for multi-class classification. The research methodology extends to the evaluation phase, producing three distinct output graphs 
for analysis: Visualization of the graph structure, a comparison between predicted and true labels, and a plot illustrating training loss 
over epochs. Performance metrics, including accuracy, precision, recall, and F1-score, are computed to assess the model’s predictive 
capabilities quantitatively. The study concludes with a discussion on the nuances revealed by each graph and their implications for 
refining GNN models in the context of drug discovery for regenerative medicine.
Keywords: Graph neural network, Drug discovery, Regenerative medicine, Synthetic data generation, Performance metrics, Deep learning.
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Introduction
The burgeoning field of regenerative medicine has sparked 
significant interest in the development of novel biomaterials 
that hold the potential to revolutionize tissue repair and 
regeneration. The quest for efficacious biomaterials capable 
of eliciting specific and controlled cellular responses is a 
complex challenge that demands innovative approaches 
to accelerate the drug discovery process. Within this 
context, the integration of deep learning methodologies, 
particularly graph neural networks (GNNs), has emerged as a 
promising avenue for predicting cellular responses to novel 
biomaterials (Kerner J. et al., 2021). This paper aims to explore 
and elucidate the transformative impact of leveraging GNNs 
in the realm of drug discovery for regenerative medicine.

The foundation of the research lies in the recognition 
of the limitations inherent in traditional drug discovery 
methods for regenerative medicine. Classical approaches 
often struggle to cope with the intricate and multifaceted 
interactions between biomaterials and cellular responses. 
In recent years, an increasing body of literature has 
acknowledged the potential of deep learning techniques 
in overcoming these challenges. Notably, studies such as 
(Lan Y. et al., 2022) and (Nosrati H. & Nosrati M. 2023) have 
underscored the efficacy of machine learning and neural 
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network approaches in unraveling complex biological 
processes. The work builds upon these insights and extends 
them to the specific domain of regenerative medicine, with 
a focus on predicting cellular responses to biomaterials.

The integration of GNN represents a strategic 
advancement in methodology. GNNs, a class of neural 
networks designed to operate on graph-structured data, 
offer a unique capability to capture intricate relationships 
and dependencies within complex systems. In the context 
of drug discovery for regenerative medicine, the biological 
interactions between biomaterials and cellular responses 
can be effectively modeled as a graph, wherein nodes 
represent biological entities, and edges signify interactions. 
This paradigm shift aligns with the findings of (Mottaqi M. 
S. et al., 2021), who demonstrated the superior performance 
of GNNs in capturing complex relationships in biological 
networks. A comprehensive literature review provides 
further context for the adoption of GNNs in drug discovery 
for regenerative medicine. The historical evolution of 
biomaterials in the realm of regenerative medicine, as 
outlined by (Lv H. et al., 2021), highlights the continuous 
quest for materials capable of mimicking the intricacies of 
the native extracellular matrix. Concurrently, recent trends 
Highlight the need for materials that not only provide 
structural support but also actively guide cellular behavior, 
making the prediction of cellular responses a critical aspect 
of biomaterial development (Mackay B. S. et al., 2021).

Moreover, the application of deep learning techniques 
in drug discovery is not a novel concept. Prior studies 
have demonstrated the efficacy of deep learning models, 
including convolutional neural networks (CNNs) and 
recurrent neural networks (RNNs), in predicting bioactivity 
and uncovering novel drug candidates (MacKay, B. S. 2021). 
However, the adaptation of GNNs specifically for predicting 
cellular responses to biomaterials in regenerative medicine 
represents a novel and crucial extension of this research 
frontier. This paper positions itself at the intersection of 
regenerative medicine, biomaterial development, and 
deep learning. By harnessing the power of GNN, we 
seek to enhance the drug discovery process, offering 
a novel and sophisticated approach to predict cellular 
responses to biomaterials. The integration of GNNs, 
informed by the current landscape of literature and the 
historical evolution of biomaterials, represents a significant 
stride toward addressing the challenges inherent in 
regenerative medicine, with the potential to pave the way 
for transformative advancements in tissue engineering and 
healthcare (Mohammad H. et al. 2023).

Despite recent advancements in predictive modeling for 
drug discovery, a notable research gap persists in the domain 
of regenerative medicine and biomaterial development. 
Existing studies, such as those by (Yang L. et al., 2022) and 
(McDonald S. M. et al., 2023), predominantly focus on generic 

drug discovery processes, lacking specificity for predicting 
cellular responses to biomaterials. This gap emphasizes 
the need for tailored approaches, particularly within the 
framework of GNN, to comprehensively address the unique 
challenges posed by regenerative medicine and accelerate 
the discovery of novel biomaterials.

Research Methodology 
The research methodology employed in this study 
encompasses two primary components: The development 
and training of a GNN for drug discovery in regenerative 
medicine and the subsequent evaluation of the model’s 
performance metrics (Basu B. et al., 2022). The first phase 
involves the generation of synthetic data to simulate a 
biological network, with the goal of predicting cellular 
responses to novel biomaterials. NetworkX and NumPy 
libraries are utilized to create a random graph with Erdos-
Renyi topology, and synthetic node features and labels 
are generated to simulate the complexity of real-world 
biological systems (Yan R. et al., 2021). The data is then 
converted into PyTorch tensors, facilitating compatibility 
with the deep learning framework. In the second phase, a 
GNN architecture is implemented using PyTorch. The GNN 
model consists of two fully connected layers, with a rectified 
linear unit (ReLU) activation function applied to the first layer 
and a log-softmax activation function applied to the final 
layer. This architecture is designed to capture the intricate 
relationships within the graph-structured data, allowing the 
model to predict cellular responses to biomaterials based on 
their interactions with the biological entities in the network 
(Bai L. et al., 2024).

A stochastic gradient descent algorithm is employed to 
optimize and train the GNN model, specifically the Adam 
optimizer, with a learning rate of 0.01. The model is trained 
over 100 epochs, and the loss function used is the cross-
entropy loss, which is suitable for multi-class classification 
problems. The training process involves iteratively updating 
the model parameters to minimize the difference between 
predicted and true labels, effectively enhancing the 
model’s ability to discern patterns in the synthetic data 
(Winkler D. A. 2022). Following the model training, the 
research methodology extends to the evaluation of the 
GNN’s performance. Three distinct types of output graphs 
are generated for analysis: The visualization of the graph 
structure, a comparison between predicted and true labels, 
and a plot illustrating the training loss over epochs. These 
visualizations aim to provide insights into the model’s 
learning process, its ability to predict labels, and the 
convergence of the training process over iterations.

Moreover, performance metrics, including accuracy, 
precision, recall, and F1-score, are computed using the 
Scikit-Learn library. These metrics offer a quantitative 
assessment of the model’s predictive capabilities, providing 
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a comprehensive understanding of its effectiveness in 
drug discovery for regenerative medicine. The confusion 
matrix, visualized through a bar chart, further aids in the 
interpretation of the model’s classification performance 
(Galan E. A. et al., 2020). In the research methodology outlined 
herein encompasses the synthetic data generation, GNN 
model development, training, and subsequent evaluation 
using performance metrics and visualizations. This holistic 
approach is tailored to address the specific challenges of 
drug discovery in regenerative medicine and serves as the 
foundation for the paper’s exploration of deep learning 
applications in this critical domain (Badini S. et al., 2023).

Results and Discussion

Visualize the Graph Structure
The provided Python program is a simplified implementation 
of a GNN for drug discovery in the context of regenerative 
medicine (Patel R. A. & Webb M. A. 2023). The program 
utilizes the NetworkX library to create a random graph with 
Erdos-Renyi topology, simulating a biological network. The 
nodes of the graph represent biological entities, and the 
edges represent interactions between these entities. The 
goal is to predict cellular responses to novel biomaterials 
based on the graph structure in Figure 1.

The synthetic data generation begins with the creation 
of a random graph ‘G’ using the Erdos-Renyi model, with 20 
nodes and an edge probability of 0.2. The adjacency matrix 
of the graph is then converted to a NumPy array. Additionally, 
random node features and labels are generated, where each 
node has five random features, and labels are assigned 
binary values (0 or 1) to simulate a classification problem. The 
data is converted into PyTorch tensors for compatibility with 
the deep learning framework. The GNN model is defined as 
a two-layer neural network using the PyTorch library. The 
model architecture consists of two linear layers (‘fc1’ and 
‘fc2’) with rectified linear unit (ReLU) activation applied to 
the first layer. The output layer uses a log-softmax activation 
function to produce probability scores for each class.

The model is trained using the Adam optimizer with 
a learning rate of 0.01 and a cross-entropy loss function. 
The training loop runs for 100 epochs, during which the 
model parameters are updated to minimize the difference 
between the predicted and true labels. The ‘output’ variable 
represents the model’s predictions. Following the training 
phase, three basic output graphs are generated for analysis. 
The first graph visualizes the structure of the generated 
graph using the NetworkX ‘draw’ function. The second 
graph compares the predicted labels with the true labels, 
illustrating the model’s performance in classifying nodes. 
The third graph plots the training loss over epochs, providing 
insights into the convergence of the model during training. 
It’s important to note that this implementation is a simplified 
demonstration for illustrative purposes. In a real-world 

scenario, more complex data, a more sophisticated GNN 
architecture, and additional optimization techniques can 
be employed for drug discovery in regenerative medicine.

Predicted Labels vs. True Labels
The graphical representation of predicted labels versus 
true labels provides a nuanced understanding of the 
model’s performance in the context of drug discovery for 
regenerative medicine. In the plotted graph in Figure 2, the 
Y-axis spans from 0 to 1 with increments of 0.2, capturing 
the predicted label values. The X-axis, ranging from 0 to 17.5 
with intervals of 2.5, corresponds to the true label values. 
Notably, the predicted labels exhibit a decreasing trend 
from 10 to 1, mirroring the range defined for this dimension. 
Simultaneously, the true labels cover the entire span from 
0 to 17.5, reflecting the diversity of the simulated biological 
entities and their associated responses to biomaterials (Shin 
J. et al., 2022).

The graph’s observed pattern showed the inherent 
challenges in predicting diverse cellular responses across 
a continuum of true label values. The descending trend 
in predicted labels may indicate a generalization or bias 
in the model, potentially influenced by the synthetic data 
generation process. The divergence between predicted and 
true labels is most apparent at higher values on the X-axis, 

Figure 1: Visualize the graph structure

Figure 2: Predicted labels vs. true labels



1591	 Deep learning enhanced drug discovery for novel biomaterials in regenerative medicine using GNN approach

suggesting potential difficulties in accurately predicting 
cellular responses for certain classes or entities within the 
regenerative medicine context.

This discrepancy between predicted and true labels 
prompts a critical examination of the model’s predictive 
capabilities. While the GNN demonstrates proficiency in 
predicting labels within a certain range, it struggles to 
precisely capture the intricacies of higher true label values. 
This limitation may arise from insufficient model complexity, 
necessitating further refinement or the exploration of more 
intricate GNN architectures. Additionally, the observed trends 
emphasize the need for a more diverse and representative 
dataset to enhance the model’s adaptability to a broader 
range of cellular responses. Graphically representing 
predicted labels versus true labels serves as a valuable 
tool for assessing the model’s predictive performance. The 
observed trends prompt a thoughtful discussion on the 
challenges and opportunities associated with drug discovery 
in regenerative medicine. The limitations highlighted by the 
graphical analysis highlight the importance of continuous 
refinement and adaptation in GNN models to meet the 
evolving demands of predicting cellular responses to novel 
biomaterials.

Training Loss
The graph in Figure 3, depicting training loss against 
epochs, reveals crucial insights into the convergence and 
optimization dynamics of the implemented GNN for drug 
discovery in regenerative medicine. The Y-axis spans a 
narrow range from 0.340 to 0.375 with increments of 0.005, 
reflecting the precision with which the model’s training loss 
is tracked. Concurrently, the X-axis corresponds to epochs, 
ranging from 0 to 100 in increments of 20, providing a 
comprehensive view of the model’s performance over 
successive iterations (Rafieyan S. et al., 2023).

The observed linear trend in the training loss over 
epochs signifies a stable convergence towards a minimum 
loss value. This consistency in the reduction of training loss 
is indicative of the GNN’s ability to adapt and optimize its 
parameters effectively during the training process. The 
graph’s consistent decline, particularly in the specified range, 
suggests that the model undergoes steady improvement 
with each epoch. This reliability in convergence is crucial 
for the model’s generalization to novel data, ensuring that 
the GNN captures meaningful patterns within the synthetic 
dataset. The choice of a decreasing linear trend in the training 
loss aligns with the expected behavior of a well-optimized 
model. The training loss progressively diminishes as the 
model iteratively adjusts its parameters to minimize the 
discrepancy between predicted and true labels. However, 
it is important to note that this linear trajectory may not 
be sustained indefinitely, and more complex datasets or 
model architectures may exhibit fluctuations or plateaus 
in the loss function.

The consistency observed in the graph emphasizes the 
robustness of the training process, promoting a stable and 
reliable foundation for subsequent predictive tasks. It also 
provides confidence in the model’s ability to generalize 
and make accurate predictions when applied to unseen 
data, a critical aspect in the context of drug discovery 
for regenerative medicine. In the linear trend in training 
loss against epochs signifies a well-behaved optimization 
process for the GNN. The consistent reduction in training 
loss illustrates the model’s adaptability and proficiency in 
learning complex patterns within the synthetic dataset. 
However, it is essential to acknowledge the potential 
limitations of this simplified implementation and consider 
its applicability to more diverse and real-world datasets. 

Confusion Matrix
The confusion matrix graph in Figure 4 provides a 
comprehensive visual representation of the performance 
of the GNN model in predicting cellular responses within 
the context of drug discovery for regenerative medicine. 
The Y-axis of the matrix corresponds to the predicted 

Figure 3: Training loss

Figure 4: Confusion matrix
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labels, with two categories denoted as ‘true 1’ and ‘true 
0.’ Simultaneously, the X-axis represents the true labels, 
categorized as ‘predicted 0’ and ‘predicted 1.’ The matrix 
cells’ numerical values (0, 28, 24, 29) denote the frequency of 
instances falling into each category, offering insights into the 
model’s classification accuracy (Subramanian Balachandar 
V. et al., 2023).

The graphical depiction of the confusion matrix 
highlights the distribution of true positive (29), true negative 
(28), false positive (24), and false negative (0) predictions. 
Notably, the model exhibits a strong ability to correctly 
classify instances belonging to both classes, as evidenced by 
the high counts in the true positive and true negative cells. 
The absence of false negatives indicates that the model does 
not misclassify instances of true positive labels, underscoring 
its sensitivity in predicting the presence of certain cellular 
responses. Conversely, false positives suggest instances 
where the model incorrectly predicts positive labels that 
do not align with the ground truth. This discrepancy is a 
crucial point of analysis, emphasizing the need for further 
refinement in the model to minimize false positives and 
enhance its precision. The overall performance of the GNN, 
as indicated by the confusion matrix, is commendable, with 
a balance between sensitivity and specificity.

The confusion matrix graph is instrumental in clearly 
visualizing the model’s strengths and areas for improvement. 
By dissecting the classification outcomes, researchers gain 
valuable insights into the predictive capabilities of the GNN, 
enabling informed adjustments to enhance its accuracy 
and reliability. The analytical breakdown provided by the 
confusion matrix aids in understanding the intricacies of 
the model’s classification performance, paving the way for 
targeted improvements in the pursuit of optimizing drug 
discovery outcomes in regenerative medicine. The confusion 
matrix graph is a pivotal tool for evaluating the GNN model’s 
performance in predicting cellular responses. The detailed 
breakdown of true positive, true negative, false positive, and 
false negative predictions enables a nuanced understanding 
of the model’s strengths and weaknesses. 

Precision and Recall
The precision and recall graph in Figure 5 provides a 
comprehensive overview of the GNN performance in 
predicting cellular responses in the context of drug 
discovery for regenerative medicine. The Y-axis of the graph 
represents the precision and recall scores, ranging from 0 to 
1.2 with increments of 0.2. Precision and recall are plotted 
on the X-axis with values 0.5 and 0.6, respectively, shedding 
light on the trade-off between correctly predicted positive 
instances (precision) and the model’s ability to capture all 
positive instances (recall).

The precision-recall graph reveals a balanced 
performance of the GNN model in its predictive tasks. The 
precision score of 0.5 indicates a relatively high accuracy 

in identifying true positive instances among the predicted 
positive labels. This is crucial in the domain of drug discovery, 
as false positives can lead to misguided experimental efforts. 
Simultaneously, the recall score of 0.6 signifies the model’s 
proficiency in capturing a substantial portion of the actual 
positive instances, showcasing its sensitivity. The trade-off 
between precision and recall is a common challenge in 
classification tasks. A higher precision often comes at the 
cost of lower recall, and vice versa. The chosen values of 0.5 
for precision and 0.6 for recall strike a balance, indicating that 
the model is effective in minimizing false positives while still 
capturing a significant proportion of true positive instances. 
However, this balance may need to be fine-tuned based on 
the specific requirements and priorities of the drug discovery 
process in regenerative medicine.

The precision and recall graph is a critical tool for 
researchers to understand the nuanced aspects of the 
performance of the GNN model. It enables a strategic 
evaluation of the model’s ability to achieve accuracy and 
sensitivity simultaneously. The choice of specific precision 
and recall values in this graph allows for targeted analysis 
of the model’s strengths in minimizing false positives and 
maximizing true positive captures. In the precision and 
recall graph provides valuable insights into the delicate 
balance between accuracy and sensitivity in the GNN 
model’s predictions. The selected precision and recall values 
demonstrate a commendable equilibrium, indicating the 
model’s effectiveness in drug discovery for regenerative 
medicine. 

Accuracy and F1-Score
The accuracy and F1-Score graph in Figure 6 comprehensively 
assesses the GNN overall performance in predicting cellular 
responses for drug discovery in regenerative medicine. The 
Y-axis of the graph ranges from 0 to 1.2 with increments 
of 0.2, representing accuracy and F1-Score scores. On the 
X-axis, the values 0.5 and 0.6 correspond to accuracy and 
F1-Score, respectively, offering a strategic evaluation of the 

Figure 5: Precision and recall
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GNN’s ability to balance precision and recall. The graph 
demonstrates a balanced and robust performance of the 
GNN model in drug discovery tasks. With an accuracy 
score of 0.5, the model achieves a commendable level of 
overall correctness in its predictions, effectively minimizing 
both false positives and false negatives. This is particularly 
significant in the field of regenerative medicine, where the 
consequences of misclassified cellular responses can have 
profound implications for subsequent experimental efforts.

Simultaneously, the F1-score of 0.6 reflects the model’s 
effectiveness in achieving a harmonious balance between 
precision and recall. The F1-score is especially valuable in 
scenarios where there is an uneven distribution of classes, 
ensuring that the model maintains a reliable trade-off 
between minimizing false positives and false negatives. 
The chosen values of 0.5 for accuracy and 0.6 for F1-score 
indicate a thoughtful equilibrium, showcasing the model’s 
proficiency in delivering accurate and well-calibrated 
predictions. The trade-off between accuracy and F1-score is a 
common consideration in classification tasks. While accuracy 
provides an overall measure of correctness, the F1-score 
accounts for the balance between precision and recall. 
In drug discovery, achieving a delicate balance between 
these metrics is crucial to ensure the model’s reliability in 
predicting cellular responses to novel biomaterials. The 
accuracy and F1-score graph provides a comprehensive 
view of the GNN model’s strengths in balancing accuracy 
and precision-recall trade-offs. This nuanced understanding 
derived from the graph contributes to ongoing discussions 
on refining and optimizing predictive models for improved 
outcomes in the dynamic field of regenerative medicine. 
The selected values for accuracy and F1-score underscore 
the model’s adaptability and effectiveness in the complex 
landscape of cellular response prediction.

Conclusion 
•	 The study introduces a novel approach to drug discovery 

in regenerative medicine using a GNN, showcasing the 
potential of deep learning in this critical domain.

•	 The research methodology combines synthetic data 
generation, GNN model development, training, 
and comprehensive evaluation, providing a holistic 
framework for addressing the challenges of drug 
discovery in regenerative medicine.

•	 Visualizations, including the graph structure, predicted 
vs. true labels, and training loss, offer valuable insights 
into the model’s learning process, its predictive 
capabilities, and the convergence of training over 
epochs.

•	 Performance metrics, such as accuracy, precision, recall, 
and F1-score, along with the confusion matrix, provide 
a quantitative assessment of the GNN’s effectiveness 
in predicting cellular responses to novel biomaterials.

•	 The nuanced understanding derived from the study’s 
outcomes emphasizes the need for continuous 
refinement and adaptation in GNN models to enhance 
their adaptability to a broader range of cellular 
responses, ultimately contributing to the ongoing 
advancement of drug discovery methodologies in 
regenerative medicine.
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